At-Home Pupillometry using Smartphone Facial Identification Cameras

With recent developments in medical and psychiatric research surrounding pupillary response, cheap and accessible pupillometers could enable medical benefits from early neurological disease detection to measurements of cognitive load. In this paper, we introduce a novel smartphone-based pupillometer...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the SIGCHI conference on human factors in computing systems. CHI Conference Ročník 2022
Hlavní autoři: Barry, Colin, De Souza, Jessica, Xuan, Yinan, Holden, Jason, Granholm, Eric, Wang, Edward Jay
Médium: Journal Article
Jazyk:angličtina
Vydáno: 29.04.2022
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With recent developments in medical and psychiatric research surrounding pupillary response, cheap and accessible pupillometers could enable medical benefits from early neurological disease detection to measurements of cognitive load. In this paper, we introduce a novel smartphone-based pupillometer to allow for future development in clinical research surrounding at-home pupil measurements. Our solution utilizes a NIR front-facing camera for facial recognition paired with the RGB selfie camera to perform tracking of absolute pupil dilation with sub-millimeter accuracy. In comparison to a gold standard pupillometer during a pupillary light reflex test, the smartphone-based system achieves a median MAE of 0.27mm for absolute pupil dilation tracking and a median error of 3.52% for pupil dilation change tracking. Additionally, we remotely deployed the system to older adults as part of a usability study that demonstrates promise for future smartphone deployments to remotely collect data in older, inexperienced adult users operating the system themselves.With recent developments in medical and psychiatric research surrounding pupillary response, cheap and accessible pupillometers could enable medical benefits from early neurological disease detection to measurements of cognitive load. In this paper, we introduce a novel smartphone-based pupillometer to allow for future development in clinical research surrounding at-home pupil measurements. Our solution utilizes a NIR front-facing camera for facial recognition paired with the RGB selfie camera to perform tracking of absolute pupil dilation with sub-millimeter accuracy. In comparison to a gold standard pupillometer during a pupillary light reflex test, the smartphone-based system achieves a median MAE of 0.27mm for absolute pupil dilation tracking and a median error of 3.52% for pupil dilation change tracking. Additionally, we remotely deployed the system to older adults as part of a usability study that demonstrates promise for future smartphone deployments to remotely collect data in older, inexperienced adult users operating the system themselves.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
DOI:10.1145/3491102.3502493