Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy
Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to...
Uložené v:
| Vydané v: | Journal of the American Chemical Society Ročník 143; číslo 23; s. 8855 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
16.06.2021
|
| Predmet: | |
| ISSN: | 1520-5126, 1520-5126 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoO
(donated as Fe-MoO
) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoO
nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoO
nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes. |
|---|---|
| AbstractList | Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoOx (donated as Fe-MoOv) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoOv nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoOv nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoOx (donated as Fe-MoOv) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoOv nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoOv nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes. Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoO (donated as Fe-MoO ) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoO nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoO nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes. |
| Author | Lu, Lehui Yu, Bin Jiang, Chunhuan Sun, Wenbo Wang, Wei |
| Author_xml | – sequence: 1 givenname: Bin surname: Yu fullname: Yu, Bin organization: University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China – sequence: 2 givenname: Wei surname: Wang fullname: Wang, Wei organization: School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China – sequence: 3 givenname: Wenbo surname: Sun fullname: Sun, Wenbo organization: College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China – sequence: 4 givenname: Chunhuan surname: Jiang fullname: Jiang, Chunhuan organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China – sequence: 5 givenname: Lehui orcidid: 0000-0003-1343-0213 surname: Lu fullname: Lu, Lehui organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34086444$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAQxy1URB-wMaOMLCl-Jx2rUigSiIEyR45zTl0Sp9gJUvj0pKJI3HL_x0833BSNXOMAoWuC5wRTcrdXOsyJxkwQfIYmRFAcC0Ll6J8eo2kIe4wxpym5QGPGcSo55xPk78GAbqO1K60D8NaVg1Z5BSF66x340obW6mipW9u4qDFD-93XEL_Y2uqPI36sviBagWvBh8g0PtrYchevjbHagtN9tO3qId3uwKtDf4nOjaoCXJ32DL0_rLerTfz8-vi0Wj7HiomkjQUQrjTGC055krJcDy5PlFownRhmIDdGppxIWhQyL2QqwSwMFhoM11gnCZ2h29-7B998dhDarLZBQ1UpB00XMipYIpmgw8zQzQnt8hqK7OBtrXyf_f2J_gDA521v |
| CitedBy_id | crossref_primary_10_1016_j_bios_2023_115315 crossref_primary_10_1016_j_matdes_2024_112942 crossref_primary_10_1186_s12645_022_00144_9 crossref_primary_10_1002_advs_202407196 crossref_primary_10_1016_j_jconrel_2024_01_066 crossref_primary_10_1002_adhm_202301853 crossref_primary_10_1002_anie_202209484 crossref_primary_10_1021_jacs_2c09608 crossref_primary_10_1002_smll_202204131 crossref_primary_10_1016_j_cclet_2024_110153 crossref_primary_10_1002_adma_202304322 crossref_primary_10_1002_smll_202306961 crossref_primary_10_1016_j_apsb_2024_01_017 crossref_primary_10_1021_jacs_2c09967 crossref_primary_10_1016_j_carbon_2025_120118 crossref_primary_10_1002_cbic_202400677 crossref_primary_10_1002_anie_202200670 crossref_primary_10_1002_adma_202208512 crossref_primary_10_1016_j_nantod_2025_102878 crossref_primary_10_1039_D2QM01373H crossref_primary_10_1002_adhm_202301502 crossref_primary_10_1016_j_colsurfb_2023_113251 crossref_primary_10_1016_j_jcis_2022_05_037 crossref_primary_10_1002_anie_202401758 crossref_primary_10_1002_smm2_1243 crossref_primary_10_1002_adfm_202414837 crossref_primary_10_1002_smll_202200595 crossref_primary_10_1016_j_foodhyd_2024_110832 crossref_primary_10_1016_j_jallcom_2023_169233 crossref_primary_10_1016_S1872_2067_22_64207_4 crossref_primary_10_1016_j_inoche_2023_111423 crossref_primary_10_1016_j_foodres_2025_116079 crossref_primary_10_1016_j_actbio_2025_07_065 crossref_primary_10_1016_j_mattod_2021_10_032 crossref_primary_10_1186_s12951_024_02907_5 crossref_primary_10_1016_j_nantod_2024_102478 crossref_primary_10_1016_j_ccr_2024_216242 crossref_primary_10_1016_j_ccr_2022_214821 crossref_primary_10_1016_j_cej_2024_151773 crossref_primary_10_1002_adma_202508613 crossref_primary_10_1002_ange_202204502 crossref_primary_10_1002_ange_202115939 crossref_primary_10_1002_adfm_202302541 crossref_primary_10_1007_s00604_024_06537_4 crossref_primary_10_1016_j_cej_2024_154236 crossref_primary_10_1016_j_nantod_2023_102066 crossref_primary_10_1016_j_cej_2024_149451 crossref_primary_10_1007_s11426_023_1693_8 crossref_primary_10_1021_jacs_1c07372 crossref_primary_10_1002_ange_202401758 crossref_primary_10_1002_adhm_202302190 crossref_primary_10_1039_D4NR03135K crossref_primary_10_1016_j_bej_2023_109165 crossref_primary_10_1007_s12274_022_4150_8 crossref_primary_10_1016_j_aca_2024_342664 crossref_primary_10_1039_D2RA00963C crossref_primary_10_1002_bio_4620 crossref_primary_10_1016_j_cclet_2025_111606 crossref_primary_10_1016_j_cej_2025_161957 crossref_primary_10_1016_j_cej_2022_137847 crossref_primary_10_1016_j_colsurfb_2025_115100 crossref_primary_10_1039_D2NR05281D crossref_primary_10_1002_adhm_202401836 crossref_primary_10_1002_adma_202408502 crossref_primary_10_1002_adtp_202300368 crossref_primary_10_1039_D1CS01106E crossref_primary_10_1002_adfm_202304271 crossref_primary_10_1016_j_cclet_2023_108793 crossref_primary_10_1021_jacs_2c13597 crossref_primary_10_1007_s40820_025_01735_y crossref_primary_10_1002_smll_202407214 crossref_primary_10_1039_D5NR00921A crossref_primary_10_1002_smtd_202301676 crossref_primary_10_1039_D2SC02050E crossref_primary_10_1002_ange_202216822 crossref_primary_10_1016_j_trac_2024_117862 crossref_primary_10_1002_adfm_202200331 crossref_primary_10_1016_j_aca_2023_342006 crossref_primary_10_1016_j_nantod_2024_102386 crossref_primary_10_1016_j_talanta_2022_124024 crossref_primary_10_1126_sciadv_adt8451 crossref_primary_10_1002_adma_202106838 crossref_primary_10_1016_j_biomaterials_2024_122907 crossref_primary_10_1016_j_cej_2024_154204 crossref_primary_10_1088_2053_1591_acfb5c crossref_primary_10_1002_adhm_202400083 crossref_primary_10_1016_j_cej_2024_153914 crossref_primary_10_1002_adfm_202205013 crossref_primary_10_1002_adma_202304262 crossref_primary_10_1016_j_actbio_2022_12_067 crossref_primary_10_1021_acsnano_4c12343 crossref_primary_10_3390_ma18071649 crossref_primary_10_1007_s12274_023_6119_7 crossref_primary_10_1016_j_cej_2023_142962 crossref_primary_10_1016_j_colsurfb_2025_115143 crossref_primary_10_1002_smll_202302929 crossref_primary_10_1007_s11694_022_01366_6 crossref_primary_10_1021_acsnano_5c05124 crossref_primary_10_1002_adhm_202304002 crossref_primary_10_1016_j_colsurfa_2024_136040 crossref_primary_10_1016_j_cej_2024_156730 crossref_primary_10_1002_adhm_202302056 crossref_primary_10_1002_advs_202413215 crossref_primary_10_1002_adma_202211147 crossref_primary_10_1039_D5MH01000D crossref_primary_10_1002_anie_202217448 crossref_primary_10_1016_j_ejpb_2022_10_010 crossref_primary_10_1016_j_bioactmat_2021_10_023 crossref_primary_10_1002_adma_202408016 crossref_primary_10_1016_j_talanta_2025_127833 crossref_primary_10_1016_j_cej_2024_150058 crossref_primary_10_1016_j_apsusc_2024_160256 crossref_primary_10_1002_anie_202204502 crossref_primary_10_1002_EXP_20210238 crossref_primary_10_1016_j_ijpharm_2024_124744 crossref_primary_10_1002_ange_202217448 crossref_primary_10_1016_j_jcis_2024_12_076 crossref_primary_10_1016_j_actbio_2024_07_045 crossref_primary_10_1016_j_talanta_2025_128259 crossref_primary_10_1016_j_nantod_2023_102113 crossref_primary_10_1016_j_snb_2024_137066 crossref_primary_10_1039_D3NR06538C crossref_primary_10_1016_j_cej_2025_163893 crossref_primary_10_1016_j_chempr_2022_06_006 crossref_primary_10_1038_s41565_025_01943_y crossref_primary_10_1021_acs_analchem_4c07058 crossref_primary_10_1016_j_bios_2025_117466 crossref_primary_10_1016_j_saa_2024_125117 crossref_primary_10_1002_chem_202500574 crossref_primary_10_1002_adma_202313670 crossref_primary_10_1002_cjoc_202400066 crossref_primary_10_1039_D2NR04534F crossref_primary_10_1002_adfm_202313853 crossref_primary_10_1002_adma_202304176 crossref_primary_10_1021_jacs_3c05162 crossref_primary_10_1007_s12274_023_5393_8 crossref_primary_10_1016_j_snb_2021_131131 crossref_primary_10_1002_ange_202413661 crossref_primary_10_1002_adfm_202404789 crossref_primary_10_1002_ange_202200670 crossref_primary_10_1039_D4MH01703J crossref_primary_10_1016_j_talanta_2024_126207 crossref_primary_10_1021_jacs_3c02005 crossref_primary_10_1007_s00604_024_06923_y crossref_primary_10_1016_j_envres_2022_113444 crossref_primary_10_1002_anie_202115939 crossref_primary_10_1016_j_bej_2023_109106 crossref_primary_10_1016_j_biomaterials_2023_122074 crossref_primary_10_1002_smll_202403354 crossref_primary_10_1007_s41664_023_00257_z crossref_primary_10_1002_smll_202401171 crossref_primary_10_1002_smll_202300327 crossref_primary_10_1016_j_talanta_2025_128237 crossref_primary_10_1002_advs_202508150 crossref_primary_10_1002_smll_202207142 crossref_primary_10_1002_anie_202216822 crossref_primary_10_1038_s41596_025_01199_9 crossref_primary_10_1002_adhm_202400325 crossref_primary_10_1002_advs_202405643 crossref_primary_10_1039_D4QM01009D crossref_primary_10_1002_slct_202501351 crossref_primary_10_1039_D2NR03479D crossref_primary_10_1016_j_biomaterials_2022_121495 crossref_primary_10_1002_adfm_202309338 crossref_primary_10_1016_j_microc_2024_111305 crossref_primary_10_1002_adhm_202102073 crossref_primary_10_1002_ange_202209484 crossref_primary_10_1016_j_jfutfo_2023_05_006 crossref_primary_10_1016_j_bios_2025_117811 crossref_primary_10_1002_advs_202407713 crossref_primary_10_1002_adma_202301810 crossref_primary_10_1002_adma_202404411 crossref_primary_10_1016_j_cej_2024_154500 crossref_primary_10_1038_s41467_024_50687_1 crossref_primary_10_1002_adma_202211210 crossref_primary_10_1016_j_carbon_2025_120833 crossref_primary_10_1002_adma_202107054 crossref_primary_10_1007_s00216_024_05416_4 crossref_primary_10_1007_s12598_024_03221_7 crossref_primary_10_1039_D4NR00155A crossref_primary_10_1002_smll_202311027 crossref_primary_10_1002_cssc_202500297 crossref_primary_10_1016_j_cej_2024_159189 crossref_primary_10_1002_adma_202312024 crossref_primary_10_1002_advs_202307424 crossref_primary_10_1016_j_mtnano_2023_100330 crossref_primary_10_1016_j_nantod_2022_101690 crossref_primary_10_1021_acssensors_5c00205 crossref_primary_10_1080_17435889_2025_2476386 crossref_primary_10_1002_smll_202401416 crossref_primary_10_1021_acs_chemrev_5c00193 crossref_primary_10_1002_adma_202206401 crossref_primary_10_1016_j_actbio_2025_07_025 crossref_primary_10_1002_adhm_202202911 crossref_primary_10_1002_smll_202506750 crossref_primary_10_1007_s12274_022_4336_0 crossref_primary_10_1002_adhm_202202596 crossref_primary_10_1186_s12951_024_02591_5 crossref_primary_10_1016_j_cej_2023_147463 crossref_primary_10_1002_anie_202413661 crossref_primary_10_3390_pharmaceutics16070942 crossref_primary_10_1002_adhm_202402785 crossref_primary_10_1002_adfm_202306392 crossref_primary_10_1002_adhm_202401576 crossref_primary_10_1016_j_ccr_2023_215332 crossref_primary_10_1002_adma_202208817 crossref_primary_10_1038_s41467_024_53047_1 crossref_primary_10_1007_s10853_024_09991_w crossref_primary_10_1039_D5TA00879D crossref_primary_10_1002_adfm_202314686 crossref_primary_10_1002_anbr_202200065 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/jacs.1c03510 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5126 |
| ExternalDocumentID | 34086444 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CGR CS3 CUPRZ CUY CVF DU5 EBS ECM ED~ EIF F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YIN YQT YZZ ZCA ~02 7X8 AAYWT ABBLG ABLBI |
| ID | FETCH-LOGICAL-a357t-5e14ac009424783bc4acb7aa93c7f3febff684162dd6bd686ef9f05cef4c0c772 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 259 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664300200042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5126 |
| IngestDate | Wed Oct 01 14:15:36 EDT 2025 Wed Feb 19 02:28:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a357t-5e14ac009424783bc4acb7aa93c7f3febff684162dd6bd686ef9f05cef4c0c772 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1343-0213 |
| PMID | 34086444 |
| PQID | 2537635222 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2537635222 pubmed_primary_34086444 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-16 |
| PublicationDateYYYYMMDD | 2021-06-16 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Chemical Society |
| PublicationTitleAlternate | J Am Chem Soc |
| PublicationYear | 2021 |
| SSID | ssj0004281 |
| Score | 2.6974373 |
| Snippet | Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging,... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 8855 |
| SubjectTerms | Humans Iron - chemistry Iron - metabolism Lasers Molybdenum - chemistry Molybdenum - metabolism Neoplasms - metabolism Neoplasms - therapy Oxidation-Reduction Oxides - chemistry Oxides - metabolism Particle Size |
| Title | Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34086444 https://www.proquest.com/docview/2537635222 |
| Volume | 143 |
| WOSCitedRecordID | wos000664300200042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3Ivga1iVp0z7JmBs-uDFwyt5GkiUwYd3cDeav95y2w70Igi-lTSiUnDT5cs53vkPIgxFWJXFimJBaoKh2whJhPQPTB1JFngdZBP_9RbXbca-XdAqH26ygVa7XxGyhHowt-sgrHHVHEC3wx8knw6pRGF0tSmhsk5IAKIOzWvU21MJ5nOulwhEJNraoIL7Dtlb50BZJRxhHC34Hl9km0zz87-cdkYMCXtJaPh-OyZZLT8hefV3V7ZRMnxwSOOiGDiHcY_7UjL6uMBEwU26mtSzfgY499H6tRo61hqOhRb961rV0FP3CgB0poF6KbBHWyNQoMJWTdhcjaO3migVn5K3Z6NafWVF3gWkRqjkLXVVqi5xDLlUsjIUno7QGIyovvDPeRxit5INBZAZRHDmf-CC0zksbWIDr52QnHafuktBAK1u1SeCk8BLsHrvQam4S6WNrPDdlcr8ezj4MBAYrdOrGi1n_Z0DL5CK3SX-SC3D0hYSDmJTy6g9vX5N9jjQULDcU3ZCSh7_a3ZJdu5wPZ9O7bMLAtd1pfQN1nsyl |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Engineering+Enables+Synergistic+Action+of+Enzyme-Mimicking+Active+Centers+for+High-Efficiency+Tumor+Therapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yu%2C+Bin&rft.au=Wang%2C+Wei&rft.au=Sun%2C+Wenbo&rft.au=Jiang%2C+Chunhuan&rft.date=2021-06-16&rft.eissn=1520-5126&rft.volume=143&rft.issue=23&rft.spage=8855&rft_id=info:doi/10.1021%2Fjacs.1c03510&rft_id=info%3Apmid%2F34086444&rft_id=info%3Apmid%2F34086444&rft.externalDocID=34086444 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon |