Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy

Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Chemical Society Ročník 143; číslo 23; s. 8855
Hlavní autori: Yu, Bin, Wang, Wei, Sun, Wenbo, Jiang, Chunhuan, Lu, Lehui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 16.06.2021
Predmet:
ISSN:1520-5126, 1520-5126
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoO (donated as Fe-MoO ) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoO nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoO nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.
AbstractList Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoOx (donated as Fe-MoOv) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoOv nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoOv nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoOx (donated as Fe-MoOv) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoOv nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoOv nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.
Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoO (donated as Fe-MoO ) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoO nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoO nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes.
Author Lu, Lehui
Yu, Bin
Jiang, Chunhuan
Sun, Wenbo
Wang, Wei
Author_xml – sequence: 1
  givenname: Bin
  surname: Yu
  fullname: Yu, Bin
  organization: University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China
– sequence: 2
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
– sequence: 3
  givenname: Wenbo
  surname: Sun
  fullname: Sun, Wenbo
  organization: College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao 266071, People's Republic of China
– sequence: 4
  givenname: Chunhuan
  surname: Jiang
  fullname: Jiang, Chunhuan
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
– sequence: 5
  givenname: Lehui
  orcidid: 0000-0003-1343-0213
  surname: Lu
  fullname: Lu, Lehui
  organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34086444$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAQxy1URB-wMaOMLCl-Jx2rUigSiIEyR45zTl0Sp9gJUvj0pKJI3HL_x0833BSNXOMAoWuC5wRTcrdXOsyJxkwQfIYmRFAcC0Ll6J8eo2kIe4wxpym5QGPGcSo55xPk78GAbqO1K60D8NaVg1Z5BSF66x340obW6mipW9u4qDFD-93XEL_Y2uqPI36sviBagWvBh8g0PtrYchevjbHagtN9tO3qId3uwKtDf4nOjaoCXJ32DL0_rLerTfz8-vi0Wj7HiomkjQUQrjTGC055krJcDy5PlFownRhmIDdGppxIWhQyL2QqwSwMFhoM11gnCZ2h29-7B998dhDarLZBQ1UpB00XMipYIpmgw8zQzQnt8hqK7OBtrXyf_f2J_gDA521v
CitedBy_id crossref_primary_10_1016_j_bios_2023_115315
crossref_primary_10_1016_j_matdes_2024_112942
crossref_primary_10_1186_s12645_022_00144_9
crossref_primary_10_1002_advs_202407196
crossref_primary_10_1016_j_jconrel_2024_01_066
crossref_primary_10_1002_adhm_202301853
crossref_primary_10_1002_anie_202209484
crossref_primary_10_1021_jacs_2c09608
crossref_primary_10_1002_smll_202204131
crossref_primary_10_1016_j_cclet_2024_110153
crossref_primary_10_1002_adma_202304322
crossref_primary_10_1002_smll_202306961
crossref_primary_10_1016_j_apsb_2024_01_017
crossref_primary_10_1021_jacs_2c09967
crossref_primary_10_1016_j_carbon_2025_120118
crossref_primary_10_1002_cbic_202400677
crossref_primary_10_1002_anie_202200670
crossref_primary_10_1002_adma_202208512
crossref_primary_10_1016_j_nantod_2025_102878
crossref_primary_10_1039_D2QM01373H
crossref_primary_10_1002_adhm_202301502
crossref_primary_10_1016_j_colsurfb_2023_113251
crossref_primary_10_1016_j_jcis_2022_05_037
crossref_primary_10_1002_anie_202401758
crossref_primary_10_1002_smm2_1243
crossref_primary_10_1002_adfm_202414837
crossref_primary_10_1002_smll_202200595
crossref_primary_10_1016_j_foodhyd_2024_110832
crossref_primary_10_1016_j_jallcom_2023_169233
crossref_primary_10_1016_S1872_2067_22_64207_4
crossref_primary_10_1016_j_inoche_2023_111423
crossref_primary_10_1016_j_foodres_2025_116079
crossref_primary_10_1016_j_actbio_2025_07_065
crossref_primary_10_1016_j_mattod_2021_10_032
crossref_primary_10_1186_s12951_024_02907_5
crossref_primary_10_1016_j_nantod_2024_102478
crossref_primary_10_1016_j_ccr_2024_216242
crossref_primary_10_1016_j_ccr_2022_214821
crossref_primary_10_1016_j_cej_2024_151773
crossref_primary_10_1002_adma_202508613
crossref_primary_10_1002_ange_202204502
crossref_primary_10_1002_ange_202115939
crossref_primary_10_1002_adfm_202302541
crossref_primary_10_1007_s00604_024_06537_4
crossref_primary_10_1016_j_cej_2024_154236
crossref_primary_10_1016_j_nantod_2023_102066
crossref_primary_10_1016_j_cej_2024_149451
crossref_primary_10_1007_s11426_023_1693_8
crossref_primary_10_1021_jacs_1c07372
crossref_primary_10_1002_ange_202401758
crossref_primary_10_1002_adhm_202302190
crossref_primary_10_1039_D4NR03135K
crossref_primary_10_1016_j_bej_2023_109165
crossref_primary_10_1007_s12274_022_4150_8
crossref_primary_10_1016_j_aca_2024_342664
crossref_primary_10_1039_D2RA00963C
crossref_primary_10_1002_bio_4620
crossref_primary_10_1016_j_cclet_2025_111606
crossref_primary_10_1016_j_cej_2025_161957
crossref_primary_10_1016_j_cej_2022_137847
crossref_primary_10_1016_j_colsurfb_2025_115100
crossref_primary_10_1039_D2NR05281D
crossref_primary_10_1002_adhm_202401836
crossref_primary_10_1002_adma_202408502
crossref_primary_10_1002_adtp_202300368
crossref_primary_10_1039_D1CS01106E
crossref_primary_10_1002_adfm_202304271
crossref_primary_10_1016_j_cclet_2023_108793
crossref_primary_10_1021_jacs_2c13597
crossref_primary_10_1007_s40820_025_01735_y
crossref_primary_10_1002_smll_202407214
crossref_primary_10_1039_D5NR00921A
crossref_primary_10_1002_smtd_202301676
crossref_primary_10_1039_D2SC02050E
crossref_primary_10_1002_ange_202216822
crossref_primary_10_1016_j_trac_2024_117862
crossref_primary_10_1002_adfm_202200331
crossref_primary_10_1016_j_aca_2023_342006
crossref_primary_10_1016_j_nantod_2024_102386
crossref_primary_10_1016_j_talanta_2022_124024
crossref_primary_10_1126_sciadv_adt8451
crossref_primary_10_1002_adma_202106838
crossref_primary_10_1016_j_biomaterials_2024_122907
crossref_primary_10_1016_j_cej_2024_154204
crossref_primary_10_1088_2053_1591_acfb5c
crossref_primary_10_1002_adhm_202400083
crossref_primary_10_1016_j_cej_2024_153914
crossref_primary_10_1002_adfm_202205013
crossref_primary_10_1002_adma_202304262
crossref_primary_10_1016_j_actbio_2022_12_067
crossref_primary_10_1021_acsnano_4c12343
crossref_primary_10_3390_ma18071649
crossref_primary_10_1007_s12274_023_6119_7
crossref_primary_10_1016_j_cej_2023_142962
crossref_primary_10_1016_j_colsurfb_2025_115143
crossref_primary_10_1002_smll_202302929
crossref_primary_10_1007_s11694_022_01366_6
crossref_primary_10_1021_acsnano_5c05124
crossref_primary_10_1002_adhm_202304002
crossref_primary_10_1016_j_colsurfa_2024_136040
crossref_primary_10_1016_j_cej_2024_156730
crossref_primary_10_1002_adhm_202302056
crossref_primary_10_1002_advs_202413215
crossref_primary_10_1002_adma_202211147
crossref_primary_10_1039_D5MH01000D
crossref_primary_10_1002_anie_202217448
crossref_primary_10_1016_j_ejpb_2022_10_010
crossref_primary_10_1016_j_bioactmat_2021_10_023
crossref_primary_10_1002_adma_202408016
crossref_primary_10_1016_j_talanta_2025_127833
crossref_primary_10_1016_j_cej_2024_150058
crossref_primary_10_1016_j_apsusc_2024_160256
crossref_primary_10_1002_anie_202204502
crossref_primary_10_1002_EXP_20210238
crossref_primary_10_1016_j_ijpharm_2024_124744
crossref_primary_10_1002_ange_202217448
crossref_primary_10_1016_j_jcis_2024_12_076
crossref_primary_10_1016_j_actbio_2024_07_045
crossref_primary_10_1016_j_talanta_2025_128259
crossref_primary_10_1016_j_nantod_2023_102113
crossref_primary_10_1016_j_snb_2024_137066
crossref_primary_10_1039_D3NR06538C
crossref_primary_10_1016_j_cej_2025_163893
crossref_primary_10_1016_j_chempr_2022_06_006
crossref_primary_10_1038_s41565_025_01943_y
crossref_primary_10_1021_acs_analchem_4c07058
crossref_primary_10_1016_j_bios_2025_117466
crossref_primary_10_1016_j_saa_2024_125117
crossref_primary_10_1002_chem_202500574
crossref_primary_10_1002_adma_202313670
crossref_primary_10_1002_cjoc_202400066
crossref_primary_10_1039_D2NR04534F
crossref_primary_10_1002_adfm_202313853
crossref_primary_10_1002_adma_202304176
crossref_primary_10_1021_jacs_3c05162
crossref_primary_10_1007_s12274_023_5393_8
crossref_primary_10_1016_j_snb_2021_131131
crossref_primary_10_1002_ange_202413661
crossref_primary_10_1002_adfm_202404789
crossref_primary_10_1002_ange_202200670
crossref_primary_10_1039_D4MH01703J
crossref_primary_10_1016_j_talanta_2024_126207
crossref_primary_10_1021_jacs_3c02005
crossref_primary_10_1007_s00604_024_06923_y
crossref_primary_10_1016_j_envres_2022_113444
crossref_primary_10_1002_anie_202115939
crossref_primary_10_1016_j_bej_2023_109106
crossref_primary_10_1016_j_biomaterials_2023_122074
crossref_primary_10_1002_smll_202403354
crossref_primary_10_1007_s41664_023_00257_z
crossref_primary_10_1002_smll_202401171
crossref_primary_10_1002_smll_202300327
crossref_primary_10_1016_j_talanta_2025_128237
crossref_primary_10_1002_advs_202508150
crossref_primary_10_1002_smll_202207142
crossref_primary_10_1002_anie_202216822
crossref_primary_10_1038_s41596_025_01199_9
crossref_primary_10_1002_adhm_202400325
crossref_primary_10_1002_advs_202405643
crossref_primary_10_1039_D4QM01009D
crossref_primary_10_1002_slct_202501351
crossref_primary_10_1039_D2NR03479D
crossref_primary_10_1016_j_biomaterials_2022_121495
crossref_primary_10_1002_adfm_202309338
crossref_primary_10_1016_j_microc_2024_111305
crossref_primary_10_1002_adhm_202102073
crossref_primary_10_1002_ange_202209484
crossref_primary_10_1016_j_jfutfo_2023_05_006
crossref_primary_10_1016_j_bios_2025_117811
crossref_primary_10_1002_advs_202407713
crossref_primary_10_1002_adma_202301810
crossref_primary_10_1002_adma_202404411
crossref_primary_10_1016_j_cej_2024_154500
crossref_primary_10_1038_s41467_024_50687_1
crossref_primary_10_1002_adma_202211210
crossref_primary_10_1016_j_carbon_2025_120833
crossref_primary_10_1002_adma_202107054
crossref_primary_10_1007_s00216_024_05416_4
crossref_primary_10_1007_s12598_024_03221_7
crossref_primary_10_1039_D4NR00155A
crossref_primary_10_1002_smll_202311027
crossref_primary_10_1002_cssc_202500297
crossref_primary_10_1016_j_cej_2024_159189
crossref_primary_10_1002_adma_202312024
crossref_primary_10_1002_advs_202307424
crossref_primary_10_1016_j_mtnano_2023_100330
crossref_primary_10_1016_j_nantod_2022_101690
crossref_primary_10_1021_acssensors_5c00205
crossref_primary_10_1080_17435889_2025_2476386
crossref_primary_10_1002_smll_202401416
crossref_primary_10_1021_acs_chemrev_5c00193
crossref_primary_10_1002_adma_202206401
crossref_primary_10_1016_j_actbio_2025_07_025
crossref_primary_10_1002_adhm_202202911
crossref_primary_10_1002_smll_202506750
crossref_primary_10_1007_s12274_022_4336_0
crossref_primary_10_1002_adhm_202202596
crossref_primary_10_1186_s12951_024_02591_5
crossref_primary_10_1016_j_cej_2023_147463
crossref_primary_10_1002_anie_202413661
crossref_primary_10_3390_pharmaceutics16070942
crossref_primary_10_1002_adhm_202402785
crossref_primary_10_1002_adfm_202306392
crossref_primary_10_1002_adhm_202401576
crossref_primary_10_1016_j_ccr_2023_215332
crossref_primary_10_1002_adma_202208817
crossref_primary_10_1038_s41467_024_53047_1
crossref_primary_10_1007_s10853_024_09991_w
crossref_primary_10_1039_D5TA00879D
crossref_primary_10_1002_adfm_202314686
crossref_primary_10_1002_anbr_202200065
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/jacs.1c03510
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
ExternalDocumentID 34086444
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YIN
YQT
YZZ
ZCA
~02
7X8
AAYWT
ABBLG
ABLBI
ID FETCH-LOGICAL-a357t-5e14ac009424783bc4acb7aa93c7f3febff684162dd6bd686ef9f05cef4c0c772
IEDL.DBID 7X8
ISICitedReferencesCount 259
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000664300200042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5126
IngestDate Wed Oct 01 14:15:36 EDT 2025
Wed Feb 19 02:28:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-5e14ac009424783bc4acb7aa93c7f3febff684162dd6bd686ef9f05cef4c0c772
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1343-0213
PMID 34086444
PQID 2537635222
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2537635222
pubmed_primary_34086444
PublicationCentury 2000
PublicationDate 2021-06-16
PublicationDateYYYYMMDD 2021-06-16
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J Am Chem Soc
PublicationYear 2021
SSID ssj0004281
Score 2.6974373
Snippet Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging,...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 8855
SubjectTerms Humans
Iron - chemistry
Iron - metabolism
Lasers
Molybdenum - chemistry
Molybdenum - metabolism
Neoplasms - metabolism
Neoplasms - therapy
Oxidation-Reduction
Oxides - chemistry
Oxides - metabolism
Particle Size
Title Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy
URI https://www.ncbi.nlm.nih.gov/pubmed/34086444
https://www.proquest.com/docview/2537635222
Volume 143
WOSCitedRecordID wos000664300200042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3Ivga1iVp0z7JmBs-uDFwyt5GkiUwYd3cDeav95y2w70Igi-lTSiUnDT5cs53vkPIgxFWJXFimJBaoKh2whJhPQPTB1JFngdZBP_9RbXbca-XdAqH26ygVa7XxGyhHowt-sgrHHVHEC3wx8knw6pRGF0tSmhsk5IAKIOzWvU21MJ5nOulwhEJNraoIL7Dtlb50BZJRxhHC34Hl9km0zz87-cdkYMCXtJaPh-OyZZLT8hefV3V7ZRMnxwSOOiGDiHcY_7UjL6uMBEwU26mtSzfgY499H6tRo61hqOhRb961rV0FP3CgB0poF6KbBHWyNQoMJWTdhcjaO3migVn5K3Z6NafWVF3gWkRqjkLXVVqi5xDLlUsjIUno7QGIyovvDPeRxit5INBZAZRHDmf-CC0zksbWIDr52QnHafuktBAK1u1SeCk8BLsHrvQam4S6WNrPDdlcr8ezj4MBAYrdOrGi1n_Z0DL5CK3SX-SC3D0hYSDmJTy6g9vX5N9jjQULDcU3ZCSh7_a3ZJdu5wPZ9O7bMLAtd1pfQN1nsyl
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+Engineering+Enables+Synergistic+Action+of+Enzyme-Mimicking+Active+Centers+for+High-Efficiency+Tumor+Therapy&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Yu%2C+Bin&rft.au=Wang%2C+Wei&rft.au=Sun%2C+Wenbo&rft.au=Jiang%2C+Chunhuan&rft.date=2021-06-16&rft.eissn=1520-5126&rft.volume=143&rft.issue=23&rft.spage=8855&rft_id=info:doi/10.1021%2Fjacs.1c03510&rft_id=info%3Apmid%2F34086444&rft_id=info%3Apmid%2F34086444&rft.externalDocID=34086444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon