Defect Engineering Enables Synergistic Action of Enzyme-Mimicking Active Centers for High-Efficiency Tumor Therapy
Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to...
Uloženo v:
| Vydáno v: | Journal of the American Chemical Society Ročník 143; číslo 23; s. 8855 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
16.06.2021
|
| Témata: | |
| ISSN: | 1520-5126, 1520-5126 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Perusing redox nanozymes capable of disrupting cellular homeostasis offers new opportunities to develop cancer-specific therapy, but remains challenging, because most artificial enzymes lack enzyme-like scale and configuration. Herein, for the first time, we leverage a defect engineering strategy to develop a simple yet efficient redox nanozyme by constructing enzyme-mimicking active centers and investigated its formation and catalysis mechanism thoroughly. Specifically, the partial Fe doping in MoO
(donated as Fe-MoO
) was demonstrated to activate structure reconstruction with abundant defect site generation, including Fe substitution and oxygen vacancy (OV) defects, which significantly enable the binding capacity and catalytic activity of Fe-MoO
nanozymes in a synergetic fashion. More intriguingly, plenty of delocalized electrons appear due to Fe-facilitated band structure reconstruction, directly contributing to the remarkable surface plasmon resonance effect in the near-infrared (NIR) region. Under NIR-II laser irradiation, the designed Fe-MoO
nanozymes are able to induce substantial disruption of redox and metabolism homeostasis in the tumor region via enzyme-mimicking cascade reactions, thus significantly augmenting therapeutic effects. This study that takes advantage of defect engineering offers new insights into developing high-efficiency redox nanozymes. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1520-5126 1520-5126 |
| DOI: | 10.1021/jacs.1c03510 |