Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria

We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide suppor...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 139; no. 17; p. 6190
Main Authors: Liu, Jin-Cheng, Wang, Yang-Gang, Li, Jun
Format: Journal Article
Language:English
Published: United States 03.05.2017
ISSN:1520-5126, 1520-5126
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports.
AbstractList We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports.We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports.
We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports.
Author Li, Jun
Liu, Jin-Cheng
Wang, Yang-Gang
Author_xml – sequence: 1
  givenname: Jin-Cheng
  surname: Liu
  fullname: Liu, Jin-Cheng
  organization: Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China
– sequence: 2
  givenname: Yang-Gang
  orcidid: 0000-0002-0582-0855
  surname: Wang
  fullname: Wang, Yang-Gang
  organization: Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-8456-3980
  surname: Li
  fullname: Li, Jun
  organization: Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28406020$$D View this record in MEDLINE/PubMed
BookMark eNpNkNFLwzAQxoNMnJu--Sx59KUzSdM19W10OoXBwM3ncmmvIyNtatOi--_tcIJwcN_B7z6-uwkZ1a5GQu44m3Em-OMBcj-LNeNzJi7INY8ECyIu5qN_ekwm3h8YY1IofkXGQkk24Oya5Dv3BW1B36EzrgZLl-jNvqaupJtvU2Cw7ZvGtR0WdGvqvcVg0bmKptCBPfrOP9HTbHK6NL7B1g8mp92VswUdZIqtgRtyWYL1eHvuU_Lx8rxLX4P1ZvWWLtYBhFHcBVJw0IVWUuZxEsVKhwUHBZiEcy2g1ImSOIQWAsRwa6nKMOE8QR2HYijBxZQ8_Po2rfvs0XdZZXyO1kKNrvcZVyqWnIcyHtD7M9rrCousaU0F7TH7e4z4AYxAZYI
CitedBy_id crossref_primary_10_1021_jacs_9b06808
crossref_primary_10_1007_s40843_022_2416_2
crossref_primary_10_1002_anie_202423438
crossref_primary_10_1016_j_cplett_2019_136629
crossref_primary_10_1016_j_cej_2023_145700
crossref_primary_10_1039_C9EE01722D
crossref_primary_10_1093_nsr_nwaf060
crossref_primary_10_1002_ange_202302877
crossref_primary_10_3390_molecules27113627
crossref_primary_10_1088_1361_6528_acc9ca
crossref_primary_10_1088_1361_6528_ad15bc
crossref_primary_10_1093_nsr_nwy094
crossref_primary_10_1002_advs_201801471
crossref_primary_10_1016_j_ijhydene_2024_08_255
crossref_primary_10_1016_j_matdes_2025_113998
crossref_primary_10_1002_aenm_201903181
crossref_primary_10_1016_j_apsusc_2022_154522
crossref_primary_10_1021_acs_cgd_4c01163
crossref_primary_10_1039_D0NR04571C
crossref_primary_10_1039_C9EE03492G
crossref_primary_10_1016_j_ijhydene_2024_02_294
crossref_primary_10_1002_ange_202503997
crossref_primary_10_1016_j_molliq_2019_111366
crossref_primary_10_1002_smll_202002071
crossref_primary_10_1002_smll_202308213
crossref_primary_10_1016_S1872_2067_23_64597_8
crossref_primary_10_1007_s12274_020_3199_5
crossref_primary_10_1016_j_apsusc_2020_145249
crossref_primary_10_1002_smtd_201800471
crossref_primary_10_1007_s11431_018_9407_3
crossref_primary_10_1016_j_ccr_2022_214600
crossref_primary_10_1002_adma_201705369
crossref_primary_10_1016_j_comptc_2023_114399
crossref_primary_10_1016_j_apsusc_2021_150697
crossref_primary_10_1016_j_pmatsci_2022_100964
crossref_primary_10_1038_s41598_018_19876_z
crossref_primary_10_1007_s10311_017_0679_2
crossref_primary_10_1016_j_cej_2024_153969
crossref_primary_10_1016_j_cplett_2020_137851
crossref_primary_10_3389_fchem_2022_1039874
crossref_primary_10_1002_anie_201806936
crossref_primary_10_1039_D2CY01314B
crossref_primary_10_1016_j_apsusc_2018_08_071
crossref_primary_10_1039_D2NR02545K
crossref_primary_10_1038_s41467_018_05831_z
crossref_primary_10_1016_j_apsusc_2018_05_053
crossref_primary_10_1016_j_jcat_2024_115299
crossref_primary_10_1016_j_apsusc_2019_05_137
crossref_primary_10_1016_j_jmgm_2019_06_010
crossref_primary_10_1016_j_nanoen_2024_109869
crossref_primary_10_1039_D3RA02891G
crossref_primary_10_1007_s40843_020_1399_y
crossref_primary_10_1038_s41578_020_0198_9
crossref_primary_10_1002_ange_202410520
crossref_primary_10_1007_s10311_020_01023_8
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1038_s41467_018_08206_6
crossref_primary_10_1039_C8SC03186J
crossref_primary_10_1039_D4CP04459B
crossref_primary_10_1016_j_dwt_2024_100656
crossref_primary_10_1007_s40843_020_1458_5
crossref_primary_10_1016_j_susc_2024_122617
crossref_primary_10_1002_pssb_201800386
crossref_primary_10_1002_adma_202201796
crossref_primary_10_1016_j_jpowsour_2022_232492
crossref_primary_10_1016_j_chempr_2025_102498
crossref_primary_10_3390_molecules27010307
crossref_primary_10_1002_adfm_201902041
crossref_primary_10_1002_solr_202000283
crossref_primary_10_1016_j_apsusc_2020_148541
crossref_primary_10_1016_j_nanoen_2021_105799
crossref_primary_10_1016_j_jcat_2020_01_022
crossref_primary_10_1016_S1872_2067_19_63517_5
crossref_primary_10_1080_23746149_2021_1905545
crossref_primary_10_1080_08927022_2018_1547820
crossref_primary_10_1002_slct_201701663
crossref_primary_10_1021_jacs_2c02762
crossref_primary_10_1002_chem_201904229
crossref_primary_10_1038_s41467_019_12461_6
crossref_primary_10_1039_C9CY02110H
crossref_primary_10_1016_j_mssp_2023_107544
crossref_primary_10_1021_jacs_8b04613
crossref_primary_10_1038_s41598_020_59739_0
crossref_primary_10_1007_s12598_019_01350_y
crossref_primary_10_1002_smll_202107840
crossref_primary_10_1016_j_cclet_2025_110998
crossref_primary_10_1039_C8EE03781G
crossref_primary_10_1002_adma_202415265
crossref_primary_10_1016_j_jelechem_2019_113814
crossref_primary_10_1038_s41565_018_0197_9
crossref_primary_10_1002_cctc_202401494
crossref_primary_10_1039_D0CY00392A
crossref_primary_10_1016_j_jhazmat_2025_137182
crossref_primary_10_1002_sstr_202400479
crossref_primary_10_1016_j_gee_2020_07_006
crossref_primary_10_1016_j_memsci_2021_119608
crossref_primary_10_1007_s12274_023_6037_8
crossref_primary_10_1016_j_jpowsour_2020_228446
crossref_primary_10_1021_acscatal_5c01820
crossref_primary_10_1002_aenm_201900722
crossref_primary_10_1002_anie_202412637
crossref_primary_10_1016_j_jre_2024_09_015
crossref_primary_10_1021_jacs_4c01315
crossref_primary_10_1016_j_apcatb_2023_123688
crossref_primary_10_1038_s41467_019_11600_3
crossref_primary_10_1002_anie_202302877
crossref_primary_10_1002_smll_202412000
crossref_primary_10_1016_j_comptc_2020_113089
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1016_j_checat_2022_11_022
crossref_primary_10_1038_s41929_022_00741_2
crossref_primary_10_1007_s11244_023_01802_x
crossref_primary_10_1016_j_mcat_2019_110670
crossref_primary_10_1016_j_chempr_2020_11_015
crossref_primary_10_1016_j_jmgm_2019_07_010
crossref_primary_10_1016_j_jpcs_2019_109149
crossref_primary_10_1007_s11244_024_01943_7
crossref_primary_10_1002_advs_202509726
crossref_primary_10_1016_j_mcat_2023_113646
crossref_primary_10_1016_j_cplett_2025_142225
crossref_primary_10_1002_cey2_695
crossref_primary_10_1007_s40843_021_1950_0
crossref_primary_10_1016_j_jeurceramsoc_2023_10_002
crossref_primary_10_1016_j_mssp_2020_105578
crossref_primary_10_1016_j_apcatb_2018_05_019
crossref_primary_10_1002_admi_202001777
crossref_primary_10_1080_01614940_2020_1821443
crossref_primary_10_1016_j_cis_2024_103176
crossref_primary_10_1002_cctc_202300545
crossref_primary_10_1002_cctc_202301634
crossref_primary_10_1007_s12274_021_3457_1
crossref_primary_10_1002_qua_25767
crossref_primary_10_1021_jacs_2c08422
crossref_primary_10_1039_D0NR08065A
crossref_primary_10_1016_j_checat_2022_05_001
crossref_primary_10_1021_acs_accounts_5c00140
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1002_cctc_201901878
crossref_primary_10_1002_smtd_201800497
crossref_primary_10_1002_nano_202000155
crossref_primary_10_1039_C9RA05031K
crossref_primary_10_1002_ange_202412637
crossref_primary_10_1038_s41467_019_09188_9
crossref_primary_10_1038_s41467_019_11871_w
crossref_primary_10_1038_s41570_023_00540_8
crossref_primary_10_1016_j_cej_2022_138171
crossref_primary_10_1002_anie_202410520
crossref_primary_10_1016_j_mcat_2021_111684
crossref_primary_10_1016_j_mcat_2024_113907
crossref_primary_10_1002_adma_201906972
crossref_primary_10_1016_j_mcat_2024_114318
crossref_primary_10_3390_catal13030619
crossref_primary_10_1002_slct_202202489
crossref_primary_10_1016_j_renene_2023_03_136
crossref_primary_10_1002_anie_201807056
crossref_primary_10_1002_adfm_202415774
crossref_primary_10_1002_ange_201806936
crossref_primary_10_1016_j_jechem_2018_03_023
crossref_primary_10_1002_cssc_201701306
crossref_primary_10_1016_j_jelechem_2021_115359
crossref_primary_10_1016_j_cej_2023_145896
crossref_primary_10_1002_adma_201905994
crossref_primary_10_1021_acsami_4c20555
crossref_primary_10_1038_s41467_020_15806_8
crossref_primary_10_1016_j_apsusc_2020_146612
crossref_primary_10_1021_jacs_8b11118
crossref_primary_10_1016_j_cej_2024_151035
crossref_primary_10_1007_s12274_022_4476_2
crossref_primary_10_1039_D0CY00413H
crossref_primary_10_1039_D4EE04511D
crossref_primary_10_1039_C8NR09300H
crossref_primary_10_1007_s10562_018_2532_z
crossref_primary_10_1016_j_jcat_2019_07_054
crossref_primary_10_1016_j_checat_2024_101083
crossref_primary_10_1021_acs_inorgchem_4c03815
crossref_primary_10_1002_cnma_201800052
crossref_primary_10_1039_D1NR00465D
crossref_primary_10_1016_j_apsusc_2024_159840
crossref_primary_10_1016_j_apcatb_2020_119540
crossref_primary_10_1002_cnma_202000407
crossref_primary_10_1016_S1872_2067_21_64027_5
crossref_primary_10_1016_j_enchem_2021_100054
crossref_primary_10_1021_acscatal_4c06661
crossref_primary_10_1007_s11244_022_01599_1
crossref_primary_10_1016_j_jcat_2022_02_008
crossref_primary_10_1039_D1NR06285A
crossref_primary_10_1039_C8CP01694A
crossref_primary_10_1007_s12274_017_1775_0
crossref_primary_10_1016_j_ijhydene_2024_06_261
crossref_primary_10_3390_catal12101223
crossref_primary_10_1002_tcr_202100328
crossref_primary_10_1007_s00894_024_06094_w
crossref_primary_10_1002_adma_202003300
crossref_primary_10_1002_ange_202509239
crossref_primary_10_1002_ange_202423438
crossref_primary_10_1002_anie_202004945
crossref_primary_10_1016_j_ijhydene_2019_11_135
crossref_primary_10_1016_j_molliq_2025_126951
crossref_primary_10_1016_j_jechem_2021_03_012
crossref_primary_10_1021_jacs_5c10989
crossref_primary_10_1002_anie_202509239
crossref_primary_10_1038_s41467_023_38307_w
crossref_primary_10_1016_j_scib_2019_12_025
crossref_primary_10_1016_j_jechem_2023_03_055
crossref_primary_10_1016_j_jechem_2023_07_032
crossref_primary_10_1016_j_checat_2022_06_008
crossref_primary_10_1016_j_xpro_2025_104005
crossref_primary_10_1016_S1872_2067_20_63557_4
crossref_primary_10_1002_smll_201704319
crossref_primary_10_1007_s41918_021_00124_4
crossref_primary_10_1016_j_matt_2023_12_001
crossref_primary_10_1016_S1872_2067_17_62879_1
crossref_primary_10_1039_D4TC04761C
crossref_primary_10_1016_j_ijhydene_2024_02_142
crossref_primary_10_1007_s12274_023_5640_z
crossref_primary_10_1039_D5CP00343A
crossref_primary_10_1016_j_apsusc_2020_146305
crossref_primary_10_1002_asia_202401762
crossref_primary_10_1016_j_surfin_2023_103206
crossref_primary_10_1002_anie_202503997
crossref_primary_10_1016_j_apsusc_2024_159460
crossref_primary_10_1016_j_jechem_2021_03_003
crossref_primary_10_1039_D5CC01287B
crossref_primary_10_1039_D5NR00548E
crossref_primary_10_1016_j_cej_2022_135946
crossref_primary_10_1002_aenm_202001482
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1021_jacs_2c06785
crossref_primary_10_1016_j_apsusc_2022_155774
crossref_primary_10_1002_cjoc_201900185
crossref_primary_10_1016_j_mcat_2017_09_024
crossref_primary_10_1016_j_apsusc_2019_03_145
crossref_primary_10_1016_j_ijhydene_2023_11_333
crossref_primary_10_1002_ange_202004945
crossref_primary_10_1016_j_joule_2018_06_019
crossref_primary_10_1002_sstr_202000051
crossref_primary_10_1016_j_jcis_2024_01_174
crossref_primary_10_1016_j_nanoen_2023_108527
crossref_primary_10_1002_aenm_201903949
crossref_primary_10_1039_D3CY00240C
crossref_primary_10_1016_j_nanoen_2023_108404
crossref_primary_10_1016_j_cclet_2022_04_010
crossref_primary_10_1039_C7CC05986H
crossref_primary_10_1016_j_cogsc_2020_01_004
crossref_primary_10_1002_adma_202211790
crossref_primary_10_1016_j_mcat_2024_114536
crossref_primary_10_1002_ange_201807056
crossref_primary_10_1016_j_ijhydene_2024_08_026
crossref_primary_10_1016_j_mssp_2022_107164
crossref_primary_10_1002_adma_201902031
crossref_primary_10_1007_s40843_020_1267_2
crossref_primary_10_1002_cctc_202200853
crossref_primary_10_1016_j_jes_2024_04_027
crossref_primary_10_1039_D1CY00736J
crossref_primary_10_1007_s12598_022_02007_z
crossref_primary_10_1016_j_ijhydene_2025_04_491
crossref_primary_10_1021_acs_accounts_5c00305
crossref_primary_10_1016_j_inoche_2024_113014
crossref_primary_10_1016_j_apcatb_2019_118178
crossref_primary_10_1002_adfm_202108381
crossref_primary_10_1002_adma_202205303
crossref_primary_10_1016_j_jcat_2020_09_027
crossref_primary_10_1039_D5CP01296A
crossref_primary_10_1039_D3CY00779K
crossref_primary_10_1002_smsc_202000028
crossref_primary_10_1002_smtd_201800406
crossref_primary_10_1038_s41570_018_0010_1
crossref_primary_10_1038_s41467_018_08136_3
crossref_primary_10_1016_j_physe_2022_115561
crossref_primary_10_1002_advs_201801103
crossref_primary_10_1007_s12274_024_6655_9
crossref_primary_10_1021_jacs_1c02859
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/jacs.7b01602
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
ExternalDocumentID 28406020
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
CUPRZ
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YIN
YQT
YZZ
ZCA
~02
7X8
AAYWT
ABBLG
ABLBI
AETEA
AHDLI
ID FETCH-LOGICAL-a357t-421abdb844c79578b3d1a8ae936b2afb984e60222a2160f8f39119eb732732212
IEDL.DBID 7X8
ISICitedReferencesCount 391
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400802300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-5126
IngestDate Wed Oct 01 13:11:41 EDT 2025
Wed Feb 19 02:41:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a357t-421abdb844c79578b3d1a8ae936b2afb984e60222a2160f8f39119eb732732212
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8456-3980
0000-0002-0582-0855
PMID 28406020
PQID 1887411347
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1887411347
pubmed_primary_28406020
PublicationCentury 2000
PublicationDate 2017-05-03
20170503
PublicationDateYYYYMMDD 2017-05-03
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J Am Chem Soc
PublicationYear 2017
SSID ssj0004281
Score 2.6601422
Snippet We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6190
Title Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria
URI https://www.ncbi.nlm.nih.gov/pubmed/28406020
https://www.proquest.com/docview/1887411347
Volume 139
WOSCitedRecordID wos000400802300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qBL34_TG_iOA1bkuyNvUio3N6cQ6dsNtI0hQms522iv73vtd26EUQvJT2EEhf897v5eXX9yPkTGqjpfM95kXSMWlNxALPgF-ZAODeKie5LsQm_H5fjUbBoCq4ZRWtch4Ti0AdpRZr5I0WeINs4Y-Pl7MXhqpReLpaSWgskpqAVAYpXf7oR7dwrsp-qbBFAmDzKuI7wFrjSdvs3DfYX43_nlwWINNb_-_0NshalV7STrkeNsmCS7bISjhXddsmdljwZOl9VQSk3YLCQdOY3n1MIsdQ5hMJuBF9AFSbOtbJ02caYpXnM8uzC4rPE0u7E-wxjrU2HHudTiMKtyEu6B3y2LsahjesElpgWrT9nEne0iYySkrrB-DCRkQtrbQLhGe4jk2gpPNwZ6g52CtWsYAQGTjjC0h-OIDfLllK0sTtE-ph62PX5sopIdvWA7M0nRYatXBgs-3XyencfmN4czyd0IlL37LxtwXrZK_8CONZ2XFjDBjahAk0D_4w-pCscoReJCWKI1KLwY3dMVm27_kkez0pVghc-4PbL9MDxLc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Rational+Design+of+Oxide-Supported+Single-Atom+Catalysts%3A+Atomic+Dispersion+of+Gold+on+Ceria&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Jin-Cheng&rft.au=Wang%2C+Yang-Gang&rft.au=Li%2C+Jun&rft.date=2017-05-03&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=139&rft.issue=17&rft.spage=6190&rft_id=info:doi/10.1021%2Fjacs.7b01602&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon