Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria
We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide suppor...
Uloženo v:
| Vydáno v: | Journal of the American Chemical Society Ročník 139; číslo 17; s. 6190 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
03.05.2017
|
| ISSN: | 1520-5126, 1520-5126 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports. |
|---|---|
| AbstractList | We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports.We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports. We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well as kinetic Monte Carlo analysis, to probe the dynamical, reactive, and kinetic aspects of metal single-atom catalysts (SACs) on oxide support. We choose Au single atoms (SAs) supported on ceria as a typical example to demonstrate how our model can guide the rational design of highly stable and reactive SACs. It is shown that, under realistic conditions, various factors such as temperature, pressure, particle size, and the reducibility of the support can strongly affect both the stability and the reactivity of SACs by altering the relative chemical potentials between SAs and metal nanoparticles (NPs). The Au SAs at step sites of ceria support are rather stable, even at temperatures as high as 700 K, and exhibit around 10 orders of magnitude more reactivity for CO oxidation than the terrace sites. Remarkably, under reaction conditions, Au SAs can be dynamically created at the interface of small-size Au NPs on ceria support even without step sites, which accounts for the puzzling significant size effect in gold catalysis. Our work underscores an unrecognized critical role of Au SAs in gold nanocatalysis and provides a general methodology for designing the metal SACs on oxide supports. |
| Author | Li, Jun Liu, Jin-Cheng Wang, Yang-Gang |
| Author_xml | – sequence: 1 givenname: Jin-Cheng surname: Liu fullname: Liu, Jin-Cheng organization: Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China – sequence: 2 givenname: Yang-Gang orcidid: 0000-0002-0582-0855 surname: Wang fullname: Wang, Yang-Gang organization: Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China – sequence: 3 givenname: Jun orcidid: 0000-0002-8456-3980 surname: Li fullname: Li, Jun organization: Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28406020$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkNFLwzAQxoNMnJu--Sx59KUzSdM19W10OoXBwM3ncmmvIyNtatOi--_tcIJwcN_B7z6-uwkZ1a5GQu44m3Em-OMBcj-LNeNzJi7INY8ECyIu5qN_ekwm3h8YY1IofkXGQkk24Oya5Dv3BW1B36EzrgZLl-jNvqaupJtvU2Cw7ZvGtR0WdGvqvcVg0bmKptCBPfrOP9HTbHK6NL7B1g8mp92VswUdZIqtgRtyWYL1eHvuU_Lx8rxLX4P1ZvWWLtYBhFHcBVJw0IVWUuZxEsVKhwUHBZiEcy2g1ImSOIQWAsRwa6nKMOE8QR2HYijBxZQ8_Po2rfvs0XdZZXyO1kKNrvcZVyqWnIcyHtD7M9rrCousaU0F7TH7e4z4AYxAZYI |
| CitedBy_id | crossref_primary_10_1021_jacs_9b06808 crossref_primary_10_1007_s40843_022_2416_2 crossref_primary_10_1002_anie_202423438 crossref_primary_10_1016_j_cplett_2019_136629 crossref_primary_10_1016_j_cej_2023_145700 crossref_primary_10_1039_C9EE01722D crossref_primary_10_1093_nsr_nwaf060 crossref_primary_10_1002_ange_202302877 crossref_primary_10_3390_molecules27113627 crossref_primary_10_1088_1361_6528_acc9ca crossref_primary_10_1088_1361_6528_ad15bc crossref_primary_10_1093_nsr_nwy094 crossref_primary_10_1002_advs_201801471 crossref_primary_10_1016_j_ijhydene_2024_08_255 crossref_primary_10_1016_j_matdes_2025_113998 crossref_primary_10_1002_aenm_201903181 crossref_primary_10_1016_j_apsusc_2022_154522 crossref_primary_10_1021_acs_cgd_4c01163 crossref_primary_10_1039_D0NR04571C crossref_primary_10_1039_C9EE03492G crossref_primary_10_1016_j_ijhydene_2024_02_294 crossref_primary_10_1002_ange_202503997 crossref_primary_10_1016_j_molliq_2019_111366 crossref_primary_10_1002_smll_202002071 crossref_primary_10_1002_smll_202308213 crossref_primary_10_1016_S1872_2067_23_64597_8 crossref_primary_10_1007_s12274_020_3199_5 crossref_primary_10_1016_j_apsusc_2020_145249 crossref_primary_10_1002_smtd_201800471 crossref_primary_10_1007_s11431_018_9407_3 crossref_primary_10_1016_j_ccr_2022_214600 crossref_primary_10_1002_adma_201705369 crossref_primary_10_1016_j_comptc_2023_114399 crossref_primary_10_1016_j_apsusc_2021_150697 crossref_primary_10_1016_j_pmatsci_2022_100964 crossref_primary_10_1038_s41598_018_19876_z crossref_primary_10_1007_s10311_017_0679_2 crossref_primary_10_1016_j_cej_2024_153969 crossref_primary_10_1016_j_cplett_2020_137851 crossref_primary_10_3389_fchem_2022_1039874 crossref_primary_10_1002_anie_201806936 crossref_primary_10_1039_D2CY01314B crossref_primary_10_1016_j_apsusc_2018_08_071 crossref_primary_10_1039_D2NR02545K crossref_primary_10_1038_s41467_018_05831_z crossref_primary_10_1016_j_apsusc_2018_05_053 crossref_primary_10_1016_j_jcat_2024_115299 crossref_primary_10_1016_j_apsusc_2019_05_137 crossref_primary_10_1016_j_jmgm_2019_06_010 crossref_primary_10_1016_j_nanoen_2024_109869 crossref_primary_10_1039_D3RA02891G crossref_primary_10_1007_s40843_020_1399_y crossref_primary_10_1038_s41578_020_0198_9 crossref_primary_10_1002_ange_202410520 crossref_primary_10_1007_s10311_020_01023_8 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1038_s41467_018_08206_6 crossref_primary_10_1039_C8SC03186J crossref_primary_10_1039_D4CP04459B crossref_primary_10_1016_j_dwt_2024_100656 crossref_primary_10_1007_s40843_020_1458_5 crossref_primary_10_1016_j_susc_2024_122617 crossref_primary_10_1002_pssb_201800386 crossref_primary_10_1002_adma_202201796 crossref_primary_10_1016_j_jpowsour_2022_232492 crossref_primary_10_1016_j_chempr_2025_102498 crossref_primary_10_3390_molecules27010307 crossref_primary_10_1002_adfm_201902041 crossref_primary_10_1002_solr_202000283 crossref_primary_10_1016_j_apsusc_2020_148541 crossref_primary_10_1016_j_nanoen_2021_105799 crossref_primary_10_1016_j_jcat_2020_01_022 crossref_primary_10_1016_S1872_2067_19_63517_5 crossref_primary_10_1080_23746149_2021_1905545 crossref_primary_10_1080_08927022_2018_1547820 crossref_primary_10_1002_slct_201701663 crossref_primary_10_1021_jacs_2c02762 crossref_primary_10_1002_chem_201904229 crossref_primary_10_1038_s41467_019_12461_6 crossref_primary_10_1039_C9CY02110H crossref_primary_10_1016_j_mssp_2023_107544 crossref_primary_10_1021_jacs_8b04613 crossref_primary_10_1038_s41598_020_59739_0 crossref_primary_10_1007_s12598_019_01350_y crossref_primary_10_1002_smll_202107840 crossref_primary_10_1016_j_cclet_2025_110998 crossref_primary_10_1039_C8EE03781G crossref_primary_10_1002_adma_202415265 crossref_primary_10_1016_j_jelechem_2019_113814 crossref_primary_10_1038_s41565_018_0197_9 crossref_primary_10_1002_cctc_202401494 crossref_primary_10_1039_D0CY00392A crossref_primary_10_1016_j_jhazmat_2025_137182 crossref_primary_10_1002_sstr_202400479 crossref_primary_10_1016_j_gee_2020_07_006 crossref_primary_10_1016_j_memsci_2021_119608 crossref_primary_10_1007_s12274_023_6037_8 crossref_primary_10_1016_j_jpowsour_2020_228446 crossref_primary_10_1021_acscatal_5c01820 crossref_primary_10_1002_aenm_201900722 crossref_primary_10_1002_anie_202412637 crossref_primary_10_1016_j_jre_2024_09_015 crossref_primary_10_1021_jacs_4c01315 crossref_primary_10_1016_j_apcatb_2023_123688 crossref_primary_10_1038_s41467_019_11600_3 crossref_primary_10_1002_anie_202302877 crossref_primary_10_1002_smll_202412000 crossref_primary_10_1016_j_comptc_2020_113089 crossref_primary_10_1002_smll_202006473 crossref_primary_10_1016_j_checat_2022_11_022 crossref_primary_10_1038_s41929_022_00741_2 crossref_primary_10_1007_s11244_023_01802_x crossref_primary_10_1016_j_mcat_2019_110670 crossref_primary_10_1016_j_chempr_2020_11_015 crossref_primary_10_1016_j_jmgm_2019_07_010 crossref_primary_10_1016_j_jpcs_2019_109149 crossref_primary_10_1007_s11244_024_01943_7 crossref_primary_10_1002_advs_202509726 crossref_primary_10_1016_j_mcat_2023_113646 crossref_primary_10_1016_j_cplett_2025_142225 crossref_primary_10_1002_cey2_695 crossref_primary_10_1007_s40843_021_1950_0 crossref_primary_10_1016_j_jeurceramsoc_2023_10_002 crossref_primary_10_1016_j_mssp_2020_105578 crossref_primary_10_1016_j_apcatb_2018_05_019 crossref_primary_10_1002_admi_202001777 crossref_primary_10_1080_01614940_2020_1821443 crossref_primary_10_1016_j_cis_2024_103176 crossref_primary_10_1002_cctc_202300545 crossref_primary_10_1002_cctc_202301634 crossref_primary_10_1007_s12274_021_3457_1 crossref_primary_10_1002_qua_25767 crossref_primary_10_1021_jacs_2c08422 crossref_primary_10_1039_D0NR08065A crossref_primary_10_1016_j_checat_2022_05_001 crossref_primary_10_1021_acs_accounts_5c00140 crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1002_cctc_201901878 crossref_primary_10_1002_smtd_201800497 crossref_primary_10_1002_nano_202000155 crossref_primary_10_1039_C9RA05031K crossref_primary_10_1002_ange_202412637 crossref_primary_10_1038_s41467_019_09188_9 crossref_primary_10_1038_s41467_019_11871_w crossref_primary_10_1038_s41570_023_00540_8 crossref_primary_10_1016_j_cej_2022_138171 crossref_primary_10_1002_anie_202410520 crossref_primary_10_1016_j_mcat_2021_111684 crossref_primary_10_1016_j_mcat_2024_113907 crossref_primary_10_1002_adma_201906972 crossref_primary_10_1016_j_mcat_2024_114318 crossref_primary_10_3390_catal13030619 crossref_primary_10_1002_slct_202202489 crossref_primary_10_1016_j_renene_2023_03_136 crossref_primary_10_1002_anie_201807056 crossref_primary_10_1002_adfm_202415774 crossref_primary_10_1002_ange_201806936 crossref_primary_10_1016_j_jechem_2018_03_023 crossref_primary_10_1002_cssc_201701306 crossref_primary_10_1016_j_jelechem_2021_115359 crossref_primary_10_1016_j_cej_2023_145896 crossref_primary_10_1002_adma_201905994 crossref_primary_10_1021_acsami_4c20555 crossref_primary_10_1038_s41467_020_15806_8 crossref_primary_10_1016_j_apsusc_2020_146612 crossref_primary_10_1021_jacs_8b11118 crossref_primary_10_1016_j_cej_2024_151035 crossref_primary_10_1007_s12274_022_4476_2 crossref_primary_10_1039_D0CY00413H crossref_primary_10_1039_D4EE04511D crossref_primary_10_1039_C8NR09300H crossref_primary_10_1007_s10562_018_2532_z crossref_primary_10_1016_j_jcat_2019_07_054 crossref_primary_10_1016_j_checat_2024_101083 crossref_primary_10_1021_acs_inorgchem_4c03815 crossref_primary_10_1002_cnma_201800052 crossref_primary_10_1039_D1NR00465D crossref_primary_10_1016_j_apsusc_2024_159840 crossref_primary_10_1016_j_apcatb_2020_119540 crossref_primary_10_1002_cnma_202000407 crossref_primary_10_1016_S1872_2067_21_64027_5 crossref_primary_10_1016_j_enchem_2021_100054 crossref_primary_10_1021_acscatal_4c06661 crossref_primary_10_1007_s11244_022_01599_1 crossref_primary_10_1016_j_jcat_2022_02_008 crossref_primary_10_1039_D1NR06285A crossref_primary_10_1039_C8CP01694A crossref_primary_10_1007_s12274_017_1775_0 crossref_primary_10_1016_j_ijhydene_2024_06_261 crossref_primary_10_3390_catal12101223 crossref_primary_10_1002_tcr_202100328 crossref_primary_10_1007_s00894_024_06094_w crossref_primary_10_1002_adma_202003300 crossref_primary_10_1002_ange_202509239 crossref_primary_10_1002_ange_202423438 crossref_primary_10_1002_anie_202004945 crossref_primary_10_1016_j_ijhydene_2019_11_135 crossref_primary_10_1016_j_molliq_2025_126951 crossref_primary_10_1016_j_jechem_2021_03_012 crossref_primary_10_1021_jacs_5c10989 crossref_primary_10_1002_anie_202509239 crossref_primary_10_1038_s41467_023_38307_w crossref_primary_10_1016_j_scib_2019_12_025 crossref_primary_10_1016_j_jechem_2023_03_055 crossref_primary_10_1016_j_jechem_2023_07_032 crossref_primary_10_1016_j_checat_2022_06_008 crossref_primary_10_1016_j_xpro_2025_104005 crossref_primary_10_1016_S1872_2067_20_63557_4 crossref_primary_10_1002_smll_201704319 crossref_primary_10_1007_s41918_021_00124_4 crossref_primary_10_1016_j_matt_2023_12_001 crossref_primary_10_1016_S1872_2067_17_62879_1 crossref_primary_10_1039_D4TC04761C crossref_primary_10_1016_j_ijhydene_2024_02_142 crossref_primary_10_1007_s12274_023_5640_z crossref_primary_10_1039_D5CP00343A crossref_primary_10_1016_j_apsusc_2020_146305 crossref_primary_10_1002_asia_202401762 crossref_primary_10_1016_j_surfin_2023_103206 crossref_primary_10_1002_anie_202503997 crossref_primary_10_1016_j_apsusc_2024_159460 crossref_primary_10_1016_j_jechem_2021_03_003 crossref_primary_10_1039_D5CC01287B crossref_primary_10_1039_D5NR00548E crossref_primary_10_1016_j_cej_2022_135946 crossref_primary_10_1002_aenm_202001482 crossref_primary_10_1002_eom2_12186 crossref_primary_10_1021_jacs_2c06785 crossref_primary_10_1016_j_apsusc_2022_155774 crossref_primary_10_1002_cjoc_201900185 crossref_primary_10_1016_j_mcat_2017_09_024 crossref_primary_10_1016_j_apsusc_2019_03_145 crossref_primary_10_1016_j_ijhydene_2023_11_333 crossref_primary_10_1002_ange_202004945 crossref_primary_10_1016_j_joule_2018_06_019 crossref_primary_10_1002_sstr_202000051 crossref_primary_10_1016_j_jcis_2024_01_174 crossref_primary_10_1016_j_nanoen_2023_108527 crossref_primary_10_1002_aenm_201903949 crossref_primary_10_1039_D3CY00240C crossref_primary_10_1016_j_nanoen_2023_108404 crossref_primary_10_1016_j_cclet_2022_04_010 crossref_primary_10_1039_C7CC05986H crossref_primary_10_1016_j_cogsc_2020_01_004 crossref_primary_10_1002_adma_202211790 crossref_primary_10_1016_j_mcat_2024_114536 crossref_primary_10_1002_ange_201807056 crossref_primary_10_1016_j_ijhydene_2024_08_026 crossref_primary_10_1016_j_mssp_2022_107164 crossref_primary_10_1002_adma_201902031 crossref_primary_10_1007_s40843_020_1267_2 crossref_primary_10_1002_cctc_202200853 crossref_primary_10_1016_j_jes_2024_04_027 crossref_primary_10_1039_D1CY00736J crossref_primary_10_1007_s12598_022_02007_z crossref_primary_10_1016_j_ijhydene_2025_04_491 crossref_primary_10_1021_acs_accounts_5c00305 crossref_primary_10_1016_j_inoche_2024_113014 crossref_primary_10_1016_j_apcatb_2019_118178 crossref_primary_10_1002_adfm_202108381 crossref_primary_10_1002_adma_202205303 crossref_primary_10_1016_j_jcat_2020_09_027 crossref_primary_10_1039_D5CP01296A crossref_primary_10_1039_D3CY00779K crossref_primary_10_1002_smsc_202000028 crossref_primary_10_1002_smtd_201800406 crossref_primary_10_1038_s41570_018_0010_1 crossref_primary_10_1038_s41467_018_08136_3 crossref_primary_10_1016_j_physe_2022_115561 crossref_primary_10_1002_advs_201801103 crossref_primary_10_1007_s12274_024_6655_9 crossref_primary_10_1021_jacs_1c02859 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/jacs.7b01602 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5126 |
| ExternalDocumentID | 28406020 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YIN YQT YZZ ZCA ~02 7X8 AAYWT ABBLG ABLBI AETEA AHDLI |
| ID | FETCH-LOGICAL-a357t-421abdb844c79578b3d1a8ae936b2afb984e60222a2160f8f39119eb732732212 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 391 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000400802300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-5126 |
| IngestDate | Wed Oct 01 13:11:41 EDT 2025 Wed Feb 19 02:41:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a357t-421abdb844c79578b3d1a8ae936b2afb984e60222a2160f8f39119eb732732212 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8456-3980 0000-0002-0582-0855 |
| PMID | 28406020 |
| PQID | 1887411347 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1887411347 pubmed_primary_28406020 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-03 20170503 |
| PublicationDateYYYYMMDD | 2017-05-03 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Chemical Society |
| PublicationTitleAlternate | J Am Chem Soc |
| PublicationYear | 2017 |
| SSID | ssj0004281 |
| Score | 2.6601882 |
| Snippet | We have constructed a general thermodynamic model of chemical potentials and applied ab initio electronic structure and molecular dynamics simulations, as well... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 6190 |
| Title | Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28406020 https://www.proquest.com/docview/1887411347 |
| Volume | 139 |
| WOSCitedRecordID | wos000400802300034&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN6oNdGL70d9ZU28roWFwuLFNNTqxdpoTXoju8uSYCpUQaP_3hmg0YuJiRcCh02WYWa-mdmPGULObG0rLSzJLGkr5no8ZtL1XKaklXi-qpKOatiEPxyKySQYNQW3oqFVzn1i5ajjXGONvGODNbg2_vh4OXthODUKT1ebERqLpOVAKIOULn_yo1s4F3W_VEiRANi8hvgOsNZ5kro49xX2V-O_B5cVyAzW_7u9DbLWhJe0V-vDJlkw2RZZCedT3baJHlc8WXrfFAFpv6Jw0Dyhdx9pbBiO-UQCbkwfANWmhvXK_JmGWOX5LMriguJzqmk_xR7jWGvDtdf5NKZwG6JC75DHwdU4vGHNoAUmna5fMpfbUsVKuK72AzBh5cS2FNIEjqe4TFQgXONhZig5yCsRiQMuMjDKdyD44QB-u2QpyzOzT2jctZyuCJRtJCQqHPRUKmFp7mHjQyNFm5zO5RfBm-PphMxM_lZE3xJsk736I0SzuuNGBBhqwQasgz-sPiSrHKEXSYnOEWklYMbmmCzr9zItXk8qDYHrcHT7BflWxSo |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Rational+Design+of+Oxide-Supported+Single-Atom+Catalysts%3A+Atomic+Dispersion+of+Gold+on+Ceria&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Liu%2C+Jin-Cheng&rft.au=Wang%2C+Yang-Gang&rft.au=Li%2C+Jun&rft.date=2017-05-03&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=139&rft.issue=17&rft.spage=6190&rft_id=info:doi/10.1021%2Fjacs.7b01602&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-5126&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-5126&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-5126&client=summon |