Plug-and-Play Gesture Control Using Muscle and Motion Sensors

As the capacity for machines to extend human capabilities continues to grow, the communication channels used must also expand. Allowing machines to interpret nonverbal commands such as gestures can help make interactions more similar to interactions with another person. Yet to be pervasive and effec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2020 15th ACM/IEEE International Conference on Human-Robot Interaction (HRI) s. 439 - 448
Hlavní autori: DelPreto, Joseph, Rus, Daniela
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: New York, NY, USA ACM 09.03.2020
Edícia:ACM Conferences
Predmet:
ISBN:1450367461, 9781450367462
ISSN:2167-2148
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As the capacity for machines to extend human capabilities continues to grow, the communication channels used must also expand. Allowing machines to interpret nonverbal commands such as gestures can help make interactions more similar to interactions with another person. Yet to be pervasive and effective in realistic scenarios, such interfaces should not require significant sensing infrastructure or per-user setup time. The presented work takes a step towards these goals by using wearable muscle and motion sensors to detect gestures without dedicated calibration or training procedures. An algorithm is presented for clustering unlabeled streaming data in real time, and it is applied to adaptively thresholding muscle and motion signals acquired via electromyography (EMG) and an inertial measurement unit (IMU). This enables plug-and-play online detection of arm stiffening, fist clenching, rotation gestures, and forearm activation. It also augments a neural network pipeline, trained only on strategically chosen training data from previous users, to detect left, right, up, and down gestures. Together, these pipelines offer a plug-and-play gesture vocabulary suitable for remotely controlling a robot. Experiments with 6 subjects evaluate classifier performance and interface efficacy. Classifiers correctly identified 97.6% of 1,200 cued gestures, and a drone correctly responded to 81.6% of 1,535 unstructured gestures as subjects remotely controlled it through target hoops during 119 minutes of total flight time.
AbstractList As the capacity for machines to extend human capabilities continues to grow, the communication channels used must also expand. Allowing machines to interpret nonverbal commands such as gestures can help make interactions more similar to interactions with another person. Yet to be pervasive and effective in realistic scenarios, such interfaces should not require significant sensing infrastructure or per-user setup time. The presented work takes a step towards these goals by using wearable muscle and motion sensors to detect gestures without dedicated calibration or training procedures. An algorithm is presented for clustering unlabeled streaming data in real time, and it is applied to adaptively thresholding muscle and motion signals acquired via electromyography (EMG) and an inertial measurement unit (IMU). This enables plug-and-play online detection of arm stiffening, fist clenching, rotation gestures, and forearm activation. It also augments a neural network pipeline, trained only on strategically chosen training data from previous users, to detect left, right, up, and down gestures. Together, these pipelines offer a plug-and-play gesture vocabulary suitable for remotely controlling a robot. Experiments with 6 subjects evaluate classifier performance and interface efficacy. Classifiers correctly identified 97.6% of 1,200 cued gestures, and a drone correctly responded to 81.6% of 1,535 unstructured gestures as subjects remotely controlled it through target hoops during 119 minutes of total flight time. CCS CONCEPTS * Human-centered computing → Human computer interaction (HCI); Gestural input; * Computer systems organization →Robotics; * Computing methodologies→Machine learning. ACM Reference Format: Joseph DelPreto and Daniela Rus. 2020. Plug-and-Play Gesture Control Using Muscle and Motion Sensors. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI '20), March 23-26, 2020, Cambridge, United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3319502.3374823
As the capacity for machines to extend human capabilities continues to grow, the communication channels used must also expand. Allowing machines to interpret nonverbal commands such as gestures can help make interactions more similar to interactions with another person. Yet to be pervasive and effective in realistic scenarios, such interfaces should not require significant sensing infrastructure or per-user setup time. The presented work takes a step towards these goals by using wearable muscle and motion sensors to detect gestures without dedicated calibration or training procedures. An algorithm is presented for clustering unlabeled streaming data in real time, and it is applied to adaptively thresholding muscle and motion signals acquired via electromyography (EMG) and an inertial measurement unit (IMU). This enables plug-and-play online detection of arm stiffening, fist clenching, rotation gestures, and forearm activation. It also augments a neural network pipeline, trained only on strategically chosen training data from previous users, to detect left, right, up, and down gestures. Together, these pipelines offer a plug-and-play gesture vocabulary suitable for remotely controlling a robot. Experiments with 6 subjects evaluate classifier performance and interface efficacy. Classifiers correctly identified 97.6% of 1,200 cued gestures, and a drone correctly responded to 81.6% of 1,535 unstructured gestures as subjects remotely controlled it through target hoops during 119 minutes of total flight time.
Author DelPreto, Joseph
Rus, Daniela
Author_xml – sequence: 1
  givenname: Joseph
  surname: DelPreto
  fullname: DelPreto, Joseph
  email: delpreto@csail.mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA, USA
– sequence: 2
  givenname: Daniela
  surname: Rus
  fullname: Rus, Daniela
  email: rus@csail.mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA, USA
BookMark eNqNkD1PwzAQQM2XRFs6M7B4ZEnwVxJ7YEBRKUitqASdLTu-VIHURnEy9N8T1A6MTCfdezqd3hRd-uABoVtKUkpF9sA5VRlhKeeFkIyfoem4JTwvRE7P0YTRvEgYFfLiL7hG8xg_CSFM5pRQPkGPm3bYJca7ZNOaA15C7IcOcBl834UWb2Pjd3g9xKoFPFp4HfomePwOPoYu3qCr2rQR5qc5Q9vnxUf5kqzelq_l0yoxPBN9YmtZKRBQGWddpeT4CmQ2N7WRUjoFRQ28cMY4khtrKyFsximQwgkGTAnFZ-jueLcBAP3dNXvTHbQSUjAmR3p_pKbaaxvCV9SU6N9K-lRJnyqNavpPVduugZr_ACGfZRs
ContentType Conference Proceeding
Copyright 2020 Owner/Author
Copyright_xml – notice: 2020 Owner/Author
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/3319502.3374823
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1450367461
9781450367462
EISSN 2167-2148
EndPage 448
ExternalDocumentID 9484228
Genre orig-research
GrantInformation_xml – fundername: Boeing
  funderid: 10.13039/100000003
GroupedDBID 6IE
6IF
6IL
6IN
ABLEC
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
GUFHI
IEGSK
LHSKQ
OCL
RIE
RIL
AAWTH
ADZIZ
CHZPO
ID FETCH-LOGICAL-a354t-bf8c9e4ecadbdc98746e5b6afa888d9e7fe37daad06abbc44b531e07d42e29493
IEDL.DBID RIE
ISBN 1450367461
9781450367462
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000570011000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:40:05 EDT 2025
Wed Jan 31 06:39:26 EST 2024
Sat Jun 15 16:36:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords imu
human-robot interaction
plug-and-play
robotics
teleoperation
wearable sensors
machine learning
emg
gestures
Language English
License This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.
LinkModel DirectLink
MeetingName HRI '20: ACM/IEEE International Conference on Human-Robot Interaction
MergedId FETCHMERGED-LOGICAL-a354t-bf8c9e4ecadbdc98746e5b6afa888d9e7fe37daad06abbc44b531e07d42e29493
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3319502.3374823
PageCount 10
ParticipantIDs ieee_primary_9484228
acm_books_10_1145_3319502_3374823_brief
acm_books_10_1145_3319502_3374823
PublicationCentury 2000
PublicationDate 2020-03-09
PublicationDateYYYYMMDD 2020-03-09
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-09
  day: 09
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle 2020 15th ACM/IEEE International Conference on Human-Robot Interaction (HRI)
PublicationTitleAbbrev HRI
PublicationYear 2020
Publisher ACM
Publisher_xml – name: ACM
SSID ssj0002861013
ssj0003204102
Score 1.9740807
Snippet As the capacity for machines to extend human capabilities continues to grow, the communication channels used must also expand. Allowing machines to interpret...
SourceID ieee
acm
SourceType Publisher
StartPage 439
SubjectTerms Computer systems organization -- Embedded and cyber-physical systems -- Robotics
Computing methodologies -- Machine learning
EMG
Gestures
Human computer interaction
Human-centered computing -- Human computer interaction (HCI)
Human-centered computing -- Human computer interaction (HCI) -- Interaction techniques -- Gestural input
Human-robot interaction
IMU
Machine Learning
Muscles
Neural networks
Pipelines
Plug-and-Play
Robotics
Training data
Vocabulary
Title Plug-and-Play Gesture Control Using Muscle and Motion Sensors
URI https://ieeexplore.ieee.org/document/9484228
WOSCitedRecordID wos000570011000046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5swwd98TIv80YEwRezdUm6NA8-idOXjYEKvpVcTmWgm3Sr4L83actUEMS3toQSPpKcnOR83wdwrhXDyGSKJn6JpIGqSXU_UlRFzAknXd9mpjSbkONx8vSkJg24XHFhELEsPsNueCzv8t3cFuGorKdEEhSrmtCUUlZcrdV5Ckv8RqAOTeGds0j0Q_HOfiWIG_c4D5anrMuD4kppT6Tt6w9TlTKmDDf_15st2P0i55HJKuxsQwNnO7DxTVewDVeTl-KZ6pmjkxf9QW79yl_kSK6rsnRSlgmQUbHwQ4b4VmRUWvmQe5_SzvPFLjwObx6u72jtk0A1j8WSmiyxCgVa7YyzKpFigLEZ6Ez79NYplBly6bR20UAbY4UwfuJhJJ1gyJRQfA9as_kMD4D47RS3VimpjBED_wMuYiY4k9YkmbW8A2cetDQkAIu04jTHaQ1sWgPbgYs_26Qmn2LWgXaANX2rhDXSGtHD3z8fwToLyW4oAFPH0FrmBZ7Amn1fThf5aTkaPgG8ta8j
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagvfk2dnxEEX4x2Sbo2Dz4Np6IbAyf4VvJxK4Ju0q2C_96kLVNBEN_aEko4JLm5yT3nABwryTDQqaSxWyKpp2pS1QoklQGzwka2ZVJdmE1E_X78-CgHNTidcWEQsSg-wzP_WNzl27HJ_VHZuRSxV6yag_lQCNYq2VqzExUWu61AFZz8O2eBaPnyna1SEjc859ybnrIz7jVXCoMiZV5_2KoUUaW78r_-rELji55HBrPAswY1HK3D8jdlwQ24GLzkT1SNLB28qA9y5db-PEPSKQvTSVEoQHr5xA0a4lqRXmHmQ-5dUjvOJg146F4OO9e0ckqgiodiSnUaG4kCjbLaGhlHoo2hbqtUuQTXSoxS5JFVygZtpbURQruph0FkBUMmheSbUB-NR7gNxG2ouDFSRlJr0XY_4CJkgrPI6Dg1hjfhyIGW-BRgkpSs5jCpgE0qYJtw8mebRGfPmDZhw8OavJXSGkmF6M7vnw9h8XrYu0vubvq3u7DEfOrry8HkHtSnWY77sGDep8-T7KAYGZ8Lu7Jq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+15th+ACM%2FIEEE+International+Conference+on+Human-Robot+Interaction+%28HRI%29&rft.atitle=Plug-and-Play+Gesture+Control+Using+Muscle+and+Motion+Sensors&rft.au=DelPreto%2C+Joseph&rft.au=Rus%2C+Daniela&rft.date=2020-03-09&rft.pub=ACM&rft.eissn=2167-2148&rft.spage=439&rft.epage=448&rft_id=info:doi/10.1145%2F3319502.3374823&rft.externalDocID=9484228
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450367462/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450367462/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781450367462/sc.gif&client=summon&freeimage=true