Characterization of field‐scale dryland salinity with depth by quasi‐3d inversion of DUALEM‐1 data
To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map t...
Uloženo v:
| Vydáno v: | Soil use and management Ročník 33; číslo 2; s. 205 - 215 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Bedfordshire
Wiley Subscription Services, Inc
01.06.2017
|
| Témata: | |
| ISSN: | 0266-0032, 1475-2743 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECe) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = −0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions. |
|---|---|
| AbstractList | To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECe) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = −0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions. To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM ‐1 instrument and the EM 4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity ( EC a – mS /m) data acquired with a DUALEM ‐1, by comparing the estimates of true electrical conductivity ( σ – mS /m) derived from electromagnetic conductivity images ( EMCI ) to values of soil electrical conductivity of a soil‐paste extract ( EC e ) which exhibited large ranges at 0–0.25 (32.4 dS /m), 0.25–0.50 (18.6 dS /m) and 0.50–0.75 m (17.6 dS /m). We developed EMCI using EM 4Soil and the quasi‐3d (q‐3d), cumulative function ( CF ) forward modelling and S2 inversion algorithm with a damping factor ( λ ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted EC e , the prediction was shown to have high accuracy ( RMSE = 2.24 dS /m), small bias ( ME = −0.03 dS /m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between EC a and EC e for each depth of interest but were slightly less accurate (2.26 dS /m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of EC e to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions. To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM-1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa - mS/m) data acquired with a DUALEM-1, by comparing the estimates of true electrical conductivity (σ - mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil-paste extract (ECe) which exhibited large ranges at 0-0.25 (32.4 dS/m), 0.25-0.50 (18.6 dS/m) and 0.50-0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi-3d (q-3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross-validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = -0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q-3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions. To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECₐ – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECₑ) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECₑ, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = −0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECₐ and ECₑ for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECₑ to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions. |
| Author | Barrett‐Lennard, E. G. Triantafilis, J. Goss, Michael Huang, J. Kilminster, T. |
| Author_xml | – sequence: 1 givenname: J. surname: Huang fullname: Huang, J. organization: UNSW Sydney – sequence: 2 givenname: T. surname: Kilminster fullname: Kilminster, T. organization: Department of Agriculture and Food Western Australia – sequence: 3 givenname: E. G. surname: Barrett‐Lennard fullname: Barrett‐Lennard, E. G. organization: Department of Agriculture and Food Western Australia – sequence: 4 givenname: J. orcidid: 0000-0003-1561-0242 surname: Triantafilis fullname: Triantafilis, J. email: j.triantafilis@unsw.edu.au organization: UNSW Sydney – sequence: 5 givenname: Michael surname: Goss fullname: Goss, Michael |
| BookMark | eNp9kLtO7EAMhkcIJJZLwRuMRANFwHPJrUQLHJAWUcDWI-_E0Q7KJstMAgoVj3Ce8TzJGVgqJHBhF_7-X_a_x7bbriXGjgSciVjnYVidCal0usUmQudpInOtttkEZJYlAErusr0QngCkyDOYsOV0iR5tT969Ye-6lnc1rx011b_3v8FiQ7zyY4NtxQM2rnX9yF9dv-QVrWNfjPx5wOAirCru2hfy4cvkcn4xu7qLC8Er7PGA7dTYBDr8mvtsfn31OL1JZvd_bqcXswRVqtKkslZbXYCAciHKNIcCraKFzPIyyyyoPBVWU4FEVupaoxVK5ShlAZTWqJTaZycb37XvngcKvVm5YKmJL1A3BCNBQlFAqSGix9_Qp27wbbzOiFIIkEUmPwxPN5T1XQiearP2boV-NALMR-YmZm4-M4_s-TfWuv4z1t6ja35TvLqGxp-tzcP8bqP4D5qGlrk |
| CitedBy_id | crossref_primary_10_1016_j_catena_2022_106395 crossref_primary_10_1111_ejss_13044 crossref_primary_10_1002_ldr_2973 crossref_primary_10_5194_soil_10_843_2024 crossref_primary_10_1002_ldr_3317 crossref_primary_10_1016_j_geoderma_2018_08_001 crossref_primary_10_1016_j_scitotenv_2021_145865 crossref_primary_10_1016_j_agwat_2021_107246 crossref_primary_10_1111_sum_12370 |
| Cites_doi | 10.1111/sum.12106 10.1190/1.1442813 10.1016/j.geoderma.2012.11.005 10.2136/vzj2009.0088 10.1002/ldr.820 10.2136/vzj2012.0086 10.1190/1.1442649 10.1016/S0016-7061(99)00034-8 10.1016/j.envsoft.2013.01.012 10.2136/sssaj1984.03615995004800020011x 10.1007/s11104-010-0393-3 10.1016/j.smallrumres.2009.11.022 10.1071/SR09149 10.1071/SR09013 10.1016/S0016-7061(99)00003-8 10.1071/9780643094680 10.2136/sssaj2005.0394 10.1016/j.jaridenv.2006.03.010 10.2136/sssaj2014.11.0447 10.1016/j.jappgeo.2014.09.004 10.1111/gwat.12231 10.1016/S0926-9851(00)00038-0 10.1016/j.geoderma.2009.10.007 10.1016/j.agwat.2005.07.003 10.1016/j.jappgeo.2004.04.005 10.1007/s100400050103 10.1190/1.3537834 10.1071/SR15043 10.1071/CP12416 10.2136/sssaj2015.06.0238 10.1016/j.geoderma.2013.06.001 10.1016/j.agwat.2010.02.001 |
| ContentType | Journal Article |
| Copyright | 2017 British Society of Soil Science Copyright © 2017 British Society of Soil Science |
| Copyright_xml | – notice: 2017 British Society of Soil Science – notice: Copyright © 2017 British Society of Soil Science |
| DBID | AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H96 KR7 L.G SOI 7S9 L.6 |
| DOI | 10.1111/sum.12345 |
| DatabaseName | CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1475-2743 |
| EndPage | 215 |
| ExternalDocumentID | 10_1111_sum_12345 SUM12345 |
| Genre | article |
| GeographicLocations | Australia |
| GeographicLocations_xml | – name: Australia |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7ST 7UA 8FD C1K F1W FR3 H96 KR7 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-a3535-dcc4c480109b195708ac3eb267966c03751c4e8aeec24f4ac1337a2280e5fa333 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403898200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-0032 |
| IngestDate | Fri Jul 11 18:27:53 EDT 2025 Sun Jul 13 04:43:05 EDT 2025 Sat Nov 29 06:52:27 EST 2025 Tue Nov 18 22:22:12 EST 2025 Wed Jan 22 16:25:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3535-dcc4c480109b195708ac3eb267966c03751c4e8aeec24f4ac1337a2280e5fa333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1561-0242 |
| PQID | 1911028623 |
| PQPubID | 1046348 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2020880940 proquest_journals_1911028623 crossref_primary_10_1111_sum_12345 crossref_citationtrail_10_1111_sum_12345 wiley_primary_10_1111_sum_12345_SUM12345 |
| PublicationCentury | 2000 |
| PublicationDate | June 2017 2017-06-00 20170601 |
| PublicationDateYYYYMMDD | 2017-06-01 |
| PublicationDate_xml | – month: 06 year: 2017 text: June 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | Bedfordshire |
| PublicationPlace_xml | – name: Bedfordshire |
| PublicationTitle | Soil use and management |
| PublicationYear | 2017 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2015; 79 2009; 47 2010; 97 1990; 55 2013a; 12 1984; 48 2015; 53 2013; 64 2009; 154 2008 2007 1996 2011; 76 2007; 71 2002 2014; 110 1997; 5 2001; 46 2006; 80 2010; 48 1989; 54 2006; 67 2013b; 43 1924; 10 2010; 334 2015a; 79 2013; 195–196 2004; 56 2002; 66 2015 2014 1980 2013 2014; 30 1999; 92 2010; 91 1999; 91 2015b; 53 2013; 211–212 1989 2010; 9 Lawrence I. (e_1_2_6_25_1) 1989 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 SAS Institute (e_1_2_6_34_1) 2015 Keller G.V. (e_1_2_6_24_1) 1996 EMTOMO (e_1_2_6_15_1) 2014 Hazelton P. (e_1_2_6_18_1) 2007 e_1_2_6_13_1 e_1_2_6_36_1 Dualem Inc (e_1_2_6_14_1) 2008 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_39_1 e_1_2_6_38_1 e_1_2_6_16_1 Isbell R. (e_1_2_6_23_1) 2002 e_1_2_6_37_1 Wood W.E. (e_1_2_6_44_1) 1924; 10 e_1_2_6_42_1 McNeill J.D. (e_1_2_6_28_1) 1980 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 Hendrickx J.M.H. (e_1_2_6_19_1) 2002; 66 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 |
| References_xml | – volume: 48 start-page: 434 year: 2010 end-page: 446 article-title: Resolving the spatial distribution of the true electrical conductivity with depth using EM38 and EM31 signal data and a laterally constrained inversion model publication-title: Australian Journal of Soil Research – volume: 110 start-page: 115 year: 2014 end-page: 125 article-title: An efficient calibration procedure for correction of drift in EMI survey data publication-title: Journal of Applied Geophysics – volume: 53 start-page: 424 year: 2015 end-page: 431 article-title: Modelling coastal salinity using a DUALEM‐421 and inversion software publication-title: Groundwater – start-page: 160 year: 2007 – volume: 30 start-page: 241 year: 2014 end-page: 250 article-title: Spatial prediction of the exchangeable sodium percentage at multiple depths using electromagnetic inversion modelling publication-title: Soil Use and Management – volume: 195–196 start-page: 31 year: 2013 end-page: 41 article-title: Mapping the three‐dimensional variation of soil salinity in a rice‐paddy soil publication-title: Geoderma – volume: 334 start-page: 423 year: 2010 end-page: 432 article-title: Five‐year growth and yield response of two young olive cultivars ( L., cvs. Arbequina and Empeltre) to soil salinity publication-title: Plant and Soil – volume: 97 start-page: 1961 year: 2010 end-page: 1970 article-title: Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method publication-title: Agricultural Water Management – volume: 53 start-page: 561 year: 2015b end-page: 575 article-title: An error budget for soil salinity mapping using different ancillary data publication-title: Soil Research – volume: 91 start-page: 27 year: 1999 end-page: 45 article-title: Modelling soil attribute depth functions with equal‐area quadratic smoothing splines publication-title: Geoderma – volume: 46 start-page: 45 year: 2001 end-page: 54 article-title: Full 3‐D inversion of electromagnetic data on PC publication-title: Journal of Applied Geophysics – volume: 43 start-page: 88 year: 2013b end-page: 95 article-title: An inversion approach to generate electromagnetic conductivity images from signal data publication-title: Environmental Modelling and Software – volume: 5 start-page: 6 year: 1997 end-page: 21 article-title: Salinity threatens the viability of agriculture and ecosystems in Western Australia publication-title: Hydrogeology Journal – volume: 10 start-page: 35 year: 1924 end-page: 47 article-title: Increase of salt in soil and streams following the destruction of the native vegetation publication-title: Journal of the Royal Society of Western Australia – volume: 67 start-page: 594 year: 2006 end-page: 606 article-title: An integrated methodology for assessing soil salinization, a pre‐condition for land desertification publication-title: Journal of Arid Environments – start-page: 513 year: 1996 – volume: 79 start-page: 1729 year: 2015 end-page: 1740 article-title: Mapping salinity in three dimensions using a DUALEM‐421 and electromagnetic inversion software publication-title: Soil Science Society of America Journal – start-page: 152 year: 2002 – year: 2014 – volume: 79 start-page: 1142 year: 2015a end-page: 1153 article-title: Modelling soil salinity along a hill slope in Iran by inversion of EM38 data publication-title: Soil Science Society of America Journal – volume: 47 start-page: 809 year: 2009 end-page: 820 article-title: 2‐Dimensional soil and vadose‐zone representation using an EM38 and EM34 and a laterally constrained inversion model publication-title: Soil Research – volume: 154 start-page: 138 year: 2009 end-page: 152 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – volume: 92 start-page: 125 year: 1999 end-page: 140 article-title: Impact of non‐drained irrigated rice cropping on soil salinization in the Senegal River Delta publication-title: Geoderma – volume: 211–212 start-page: 28 year: 2013 end-page: 38 article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM‐421 and inversion modelling software (EM4Soil) publication-title: Geoderma – volume: 55 start-page: 1613 year: 1990 end-page: 1624 article-title: Occam's inversion to generate smooth, two‐dimensional models from magnetotelluric data publication-title: Geophysics – year: 1980 – volume: 91 start-page: 103 year: 2010 end-page: 109 article-title: Sheep production, plant growth and nutritive value of a saltbush‐based pasture system subject to rotational grazing or set‐stocking publication-title: Small Ruminant Research – volume: 12 start-page: 117 year: 2013a end-page: 125 article-title: Inferring the location of preferential flow paths of a leachate plume using a DUALEM‐421 and a quasi‐3 dimensional inversion model publication-title: Vadose Zone Journal – volume: 64 start-page: 123 year: 2013 end-page: 136 article-title: Survival and growth of perennial halophytes on saltland in a Mediterranean environment is affected by depth to water table in summer as well as subsoil salinity publication-title: Crop and Pasture Science – year: 2008 – volume: 9 start-page: 117 year: 2010 end-page: 125 article-title: Inversion of multiconfiguration electromagnetic (DUALEM‐421) profiling data using a one‐dimensional laterally constrained algorithm publication-title: Vadose Zone Journal – volume: 76 start-page: B43 year: 2011 end-page: B53 article-title: A spatially constrained 1D inversion algorithm for quasi‐3D conductivity imaging: application to DUALEM‐421 data collected in a riverine plain publication-title: Geophysics – volume: 48 start-page: 288 year: 1984 end-page: 291 article-title: Measurement of inverted electrical conductivity profiles using electromagnetic induction publication-title: Soil Science Society of America Journal – volume: 66 start-page: 673 year: 2002 end-page: 685 article-title: Inversion of soil conductivity profiles from electromagnetic induction measurements publication-title: Soil Science Society of America Journal – start-page: 255 year: 1989 end-page: 268 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 56 start-page: 123 year: 2004 end-page: 134 article-title: 1‐D laterally constrained inversion of EM34 profiling data publication-title: Journal of Applied Geophysics – volume: 71 start-page: 189 year: 2007 end-page: 196 article-title: Comparing bulk soil electrical conductivity determination using the DUALEM‐1S and EM38‐DD electromagnetic induction instruments publication-title: Soil Science Society of America Journal – year: 2015 – volume: 54 start-page: 254 year: 1989 end-page: 262 article-title: Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data publication-title: Geophysics – volume: 80 start-page: 41 year: 2006 end-page: 56 article-title: Managing secondary dryland salinity: options and challenges publication-title: Agricultural Water Management – year: 2013 – ident: e_1_2_6_20_1 doi: 10.1111/sum.12106 – volume: 66 start-page: 673 year: 2002 ident: e_1_2_6_19_1 article-title: Inversion of soil conductivity profiles from electromagnetic induction measurements publication-title: Soil Science Society of America Journal – volume-title: EMTOMO manual for EM4Soil: a program for 1‐D laterally constrained inversion of EM data year: 2014 ident: e_1_2_6_15_1 – ident: e_1_2_6_12_1 doi: 10.1190/1.1442813 – ident: e_1_2_6_26_1 doi: 10.1016/j.geoderma.2012.11.005 – ident: e_1_2_6_30_1 doi: 10.2136/vzj2009.0088 – ident: e_1_2_6_4_1 doi: 10.1002/ldr.820 – start-page: 513 volume-title: Electrical methods in geophysical prospecting year: 1996 ident: e_1_2_6_24_1 – ident: e_1_2_6_42_1 doi: 10.2136/vzj2012.0086 – start-page: 152 volume-title: The Australian soil classification. Australian soil and land survey handbooks series 4 year: 2002 ident: e_1_2_6_23_1 – ident: e_1_2_6_35_1 doi: 10.1190/1.1442649 – start-page: 255 year: 1989 ident: e_1_2_6_25_1 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume-title: DUALEM‐421S user's manual year: 2008 ident: e_1_2_6_14_1 – ident: e_1_2_6_9_1 doi: 10.1016/S0016-7061(99)00034-8 – volume-title: JMP v. 12.2 year: 2015 ident: e_1_2_6_34_1 – ident: e_1_2_6_43_1 doi: 10.1016/j.envsoft.2013.01.012 – ident: e_1_2_6_37_1 – ident: e_1_2_6_10_1 doi: 10.2136/sssaj1984.03615995004800020011x – ident: e_1_2_6_5_1 doi: 10.1007/s11104-010-0393-3 – ident: e_1_2_6_32_1 doi: 10.1016/j.smallrumres.2009.11.022 – ident: e_1_2_6_41_1 doi: 10.1071/SR09149 – ident: e_1_2_6_39_1 doi: 10.1071/SR09013 – ident: e_1_2_6_8_1 doi: 10.1016/S0016-7061(99)00003-8 – volume: 10 start-page: 35 year: 1924 ident: e_1_2_6_44_1 article-title: Increase of salt in soil and streams following the destruction of the native vegetation publication-title: Journal of the Royal Society of Western Australia – start-page: 160 volume-title: Interpreting soil test results: what do all the numbers mean? year: 2007 ident: e_1_2_6_18_1 doi: 10.1071/9780643094680 – ident: e_1_2_6_2_1 doi: 10.2136/sssaj2005.0394 – ident: e_1_2_6_17_1 – ident: e_1_2_6_3_1 doi: 10.1016/j.jaridenv.2006.03.010 – ident: e_1_2_6_21_1 doi: 10.2136/sssaj2014.11.0447 – ident: e_1_2_6_13_1 doi: 10.1016/j.jappgeo.2014.09.004 – volume-title: Electrical conductivity of soils and rock year: 1980 ident: e_1_2_6_28_1 – ident: e_1_2_6_11_1 doi: 10.1111/gwat.12231 – ident: e_1_2_6_36_1 doi: 10.1016/S0926-9851(00)00038-0 – ident: e_1_2_6_27_1 doi: 10.1016/j.geoderma.2009.10.007 – ident: e_1_2_6_33_1 doi: 10.1016/j.agwat.2005.07.003 – ident: e_1_2_6_29_1 doi: 10.1016/j.jappgeo.2004.04.005 – ident: e_1_2_6_16_1 doi: 10.1007/s100400050103 – ident: e_1_2_6_38_1 – ident: e_1_2_6_31_1 doi: 10.1190/1.3537834 – ident: e_1_2_6_6_1 – ident: e_1_2_6_22_1 doi: 10.1071/SR15043 – ident: e_1_2_6_7_1 doi: 10.1071/CP12416 – ident: e_1_2_6_46_1 doi: 10.2136/sssaj2015.06.0238 – ident: e_1_2_6_40_1 doi: 10.1016/j.geoderma.2013.06.001 – ident: e_1_2_6_45_1 doi: 10.1016/j.agwat.2010.02.001 |
| SSID | ssj0021760 |
| Score | 2.1996496 |
| Snippet | To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 205 |
| SubjectTerms | Accuracy Algorithms arid lands Arid zones Australia best management practices Bias Calibration Computer programs computer software Damping Data acquisition Depth Dimensions Distribution DUALEM‐1 Electrical conductivity Electrical resistivity Estimates landscapes Management methods Mathematical models Modelling normal and inverted salinity profiles Parameter identification prediction Predictions quasi‐3d inversion Regression analysis Saline soils Salinity Salinity effects Software Soil Soil conductivity Soil profiles Soil salinity Soils Three dimensional models |
| Title | Characterization of field‐scale dryland salinity with depth by quasi‐3d inversion of DUALEM‐1 data |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12345 https://www.proquest.com/docview/1911028623 https://www.proquest.com/docview/2020880940 |
| Volume | 33 |
| WOSCitedRecordID | wos000403898200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1475-2743 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021760 issn: 0266-0032 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB5q9aAH_8VqlVU8eIkk2c0fnkq1eKgiYsFb2Gw2WpC0Nm2hNx_BZ_RJnEnSqKAgeAmBnSTL7s7uN5OZbwBOLD_yXceODDS8AkNwIQyphTRcRCNOIrROzDgvNuHd3PgPD8FtDc7nuTAFP0TlcCPNyPdrUnAZZV-UHCfqDLdd4SzAIiVVoeW1eHHX6XUre8vy3NLFgkazye2SWIgCeaqHvx9HnxjzK1LNj5rO2r86uQ6rJcJkrWJJbEBNp5uw0noclSwbegue2hVNc5GFyQYJy2PZ3l_fMpw1zeLRjGIeWSYpdXI8Y-SwZbEe4jWasZeJzPoozGPWT6eFz41ectFrdS-vscFiFHu6Db3O5X37yihLLhiSO9wxYqWEIkYZM4iswPFMXyqOxjd5m1xF9XItJbQvtVa2SIRUaOJ6kih1tJNIzvkO1NNBqneBWZ6VuBrRoBcHiNICaeJioWBXYcdJoGQDTucjH6qSj5zKYjyHc7sEBy_MB68Bx5XosCDh-EmoOZ--sNTDLERrlBAUYrwGHFXNqEH0W0SmejDJQpvqlPrEI4hdyifz94-EeNblN3t_F92HZZuwQO66aUJ9PJroA1hS03E_Gx2Wi_YDJK_yDQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB60CurBf7FadRUPXiJJdvMHXkq1KNYiYsFb2G42WpBUm1bozUfwGX0SZ5I0KigIXkJgJ8mys7P7zWT2G4BDy-_6rmN3DXS8AkNwIQyphTRcRCNOLLSOzSgrNuG12_7dXXA9BSeTszA5P0QZcCPLyNZrMnAKSH-xctTUMa67wpmGGeFyz6_AzOlNs9MqHS7Lc4sYC3rNJrcLZiHK5Ckf_r4ffYLMr1A122uaS__r5TIsFhiT1fNJsQJTOlmFhfr9oODZ0Gvw0CiJmvNzmKwfsyyb7f31LUW9aRYNxpT1yFJJhyeHY0YhWxbpJ7x2x-x5JNMeCvOI9ZKXPOpGLznt1FtnV9hgMco-XYdO8-y2cW4URRcMyR3uGJFSQhGnjBl0rcDxTF8qju43xZtcRRVzLSW0L7VWtoiFVOjkepJIdbQTS875BlSSfqI3gVmeFbsa8aAXBYjTAmnidKF0V2FHcaBkFY4mQx-qgpGcCmM8hhPPBAcvzAavCgel6FNOw_GTUG2iv7CwxDREf5QwFKK8KuyXzWhD9GNEJro_SkObKpX6xCSIXcq0-ftHQtztsputv4vuwdz57VUrbF20L7dh3iZkkAVyalAZDkZ6B2bVy7CXDnaLGfwBnAf1_Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-NAEB-0itw9qKce1j_nnvjgSyTJ7uYP-FKsxcNaRCz4FrabjRYkrU0r9O0-gp_RT-JMkkYFBcGXENhJsuzs7P5mMvsbgAMn6AWedHsWOl6hJbgQljJCWR6iEZkIYxI7zotN-J1OcHMTXs7B8ewsTMEPUQXcyDLy9ZoM3Azj5I2Vo6aOcN0Vch4WhAylqMFC86rVbVcOl-N7ZYwFvWabuyWzEGXyVA-_349eQeZbqJrvNa2V7_VyFZZLjMkaxaT4BXMmXYOfjdtRybNh1uHupCJqLs5hskHC8my25_9PGerNsHg0paxHlik6PDmeMgrZstgM8dqbsoeJyvoozGPWTx-LqBu9pNlttE8vsMFhlH26Ad3W6fXJmVUWXbAUl1xasdZCE6eMHfacUPp2oDRH95viTZ6mirmOFiZQxmhXJEJpdHJ9RaQ6RiaKc_4baukgNZvAHN9JPIN40I9DxGmhsnG6ULqrcOMk1KoOh7Ohj3TJSE6FMe6jmWeCgxflg1eH_Up0WNBwfCS0M9NfVFpiFqE_ShgKUV4d_lbNaEP0Y0SlZjDJIpcqlQbEJIhdyrX5-Uci3O3ym62vi-7B0mWzFbX_dc634YdLwCCP4-xAbTyamF1Y1I_jfjb6U07gFzbG9Xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+field%E2%80%90scale+dryland+salinity+with+depth+by+quasi%E2%80%903d+inversion+of+DUALEM%E2%80%901+data&rft.jtitle=Soil+use+and+management&rft.au=Huang%2C+J&rft.au=Kilminster%2C+T&rft.au=Barrett%E2%80%90Lennard%2C+E.+G.&rft.au=Triantafilis%2C+J&rft.date=2017-06-01&rft.issn=0266-0032&rft.volume=33&rft.issue=2+p.205-215&rft.spage=205&rft.epage=215&rft_id=info:doi/10.1111%2Fsum.12345&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon |