Characterization of field‐scale dryland salinity with depth by quasi‐3d inversion of DUALEM‐1 data

To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soil use and management Ročník 33; číslo 2; s. 205 - 215
Hlavní autoři: Huang, J., Kilminster, T., Barrett‐Lennard, E. G., Triantafilis, J., Goss, Michael
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bedfordshire Wiley Subscription Services, Inc 01.06.2017
Témata:
ISSN:0266-0032, 1475-2743
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECe) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = −0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.
AbstractList To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECe) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = −0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.
To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM ‐1 instrument and the EM 4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity ( EC a – mS /m) data acquired with a DUALEM ‐1, by comparing the estimates of true electrical conductivity ( σ – mS /m) derived from electromagnetic conductivity images ( EMCI ) to values of soil electrical conductivity of a soil‐paste extract ( EC e ) which exhibited large ranges at 0–0.25 (32.4 dS /m), 0.25–0.50 (18.6 dS /m) and 0.50–0.75 m (17.6 dS /m). We developed EMCI using EM 4Soil and the quasi‐3d (q‐3d), cumulative function ( CF ) forward modelling and S2 inversion algorithm with a damping factor ( λ ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted EC e , the prediction was shown to have high accuracy ( RMSE  = 2.24 dS /m), small bias ( ME  = −0.03 dS /m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between EC a and EC e for each depth of interest but were slightly less accurate (2.26 dS /m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of EC e to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.
To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM-1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa - mS/m) data acquired with a DUALEM-1, by comparing the estimates of true electrical conductivity (σ - mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil-paste extract (ECe) which exhibited large ranges at 0-0.25 (32.4 dS/m), 0.25-0.50 (18.6 dS/m) and 0.50-0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi-3d (q-3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross-validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = -0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q-3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.
To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECₐ – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECₑ) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECₑ, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = −0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECₐ and ECₑ for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECₑ to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.
Author Barrett‐Lennard, E. G.
Triantafilis, J.
Goss, Michael
Huang, J.
Kilminster, T.
Author_xml – sequence: 1
  givenname: J.
  surname: Huang
  fullname: Huang, J.
  organization: UNSW Sydney
– sequence: 2
  givenname: T.
  surname: Kilminster
  fullname: Kilminster, T.
  organization: Department of Agriculture and Food Western Australia
– sequence: 3
  givenname: E. G.
  surname: Barrett‐Lennard
  fullname: Barrett‐Lennard, E. G.
  organization: Department of Agriculture and Food Western Australia
– sequence: 4
  givenname: J.
  orcidid: 0000-0003-1561-0242
  surname: Triantafilis
  fullname: Triantafilis, J.
  email: j.triantafilis@unsw.edu.au
  organization: UNSW Sydney
– sequence: 5
  givenname: Michael
  surname: Goss
  fullname: Goss, Michael
BookMark eNp9kLtO7EAMhkcIJJZLwRuMRANFwHPJrUQLHJAWUcDWI-_E0Q7KJstMAgoVj3Ce8TzJGVgqJHBhF_7-X_a_x7bbriXGjgSciVjnYVidCal0usUmQudpInOtttkEZJYlAErusr0QngCkyDOYsOV0iR5tT969Ye-6lnc1rx011b_3v8FiQ7zyY4NtxQM2rnX9yF9dv-QVrWNfjPx5wOAirCru2hfy4cvkcn4xu7qLC8Er7PGA7dTYBDr8mvtsfn31OL1JZvd_bqcXswRVqtKkslZbXYCAciHKNIcCraKFzPIyyyyoPBVWU4FEVupaoxVK5ShlAZTWqJTaZycb37XvngcKvVm5YKmJL1A3BCNBQlFAqSGix9_Qp27wbbzOiFIIkEUmPwxPN5T1XQiearP2boV-NALMR-YmZm4-M4_s-TfWuv4z1t6ja35TvLqGxp-tzcP8bqP4D5qGlrk
CitedBy_id crossref_primary_10_1016_j_catena_2022_106395
crossref_primary_10_1111_ejss_13044
crossref_primary_10_1002_ldr_2973
crossref_primary_10_5194_soil_10_843_2024
crossref_primary_10_1002_ldr_3317
crossref_primary_10_1016_j_geoderma_2018_08_001
crossref_primary_10_1016_j_scitotenv_2021_145865
crossref_primary_10_1016_j_agwat_2021_107246
crossref_primary_10_1111_sum_12370
Cites_doi 10.1111/sum.12106
10.1190/1.1442813
10.1016/j.geoderma.2012.11.005
10.2136/vzj2009.0088
10.1002/ldr.820
10.2136/vzj2012.0086
10.1190/1.1442649
10.1016/S0016-7061(99)00034-8
10.1016/j.envsoft.2013.01.012
10.2136/sssaj1984.03615995004800020011x
10.1007/s11104-010-0393-3
10.1016/j.smallrumres.2009.11.022
10.1071/SR09149
10.1071/SR09013
10.1016/S0016-7061(99)00003-8
10.1071/9780643094680
10.2136/sssaj2005.0394
10.1016/j.jaridenv.2006.03.010
10.2136/sssaj2014.11.0447
10.1016/j.jappgeo.2014.09.004
10.1111/gwat.12231
10.1016/S0926-9851(00)00038-0
10.1016/j.geoderma.2009.10.007
10.1016/j.agwat.2005.07.003
10.1016/j.jappgeo.2004.04.005
10.1007/s100400050103
10.1190/1.3537834
10.1071/SR15043
10.1071/CP12416
10.2136/sssaj2015.06.0238
10.1016/j.geoderma.2013.06.001
10.1016/j.agwat.2010.02.001
ContentType Journal Article
Copyright 2017 British Society of Soil Science
Copyright © 2017 British Society of Soil Science
Copyright_xml – notice: 2017 British Society of Soil Science
– notice: Copyright © 2017 British Society of Soil Science
DBID AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
DOI 10.1111/sum.12345
DatabaseName CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1475-2743
EndPage 215
ExternalDocumentID 10_1111_sum_12345
SUM12345
Genre article
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-a3535-dcc4c480109b195708ac3eb267966c03751c4e8aeec24f4ac1337a2280e5fa333
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403898200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-0032
IngestDate Fri Jul 11 18:27:53 EDT 2025
Sun Jul 13 04:43:05 EDT 2025
Sat Nov 29 06:52:27 EST 2025
Tue Nov 18 22:22:12 EST 2025
Wed Jan 22 16:25:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3535-dcc4c480109b195708ac3eb267966c03751c4e8aeec24f4ac1337a2280e5fa333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1561-0242
PQID 1911028623
PQPubID 1046348
PageCount 11
ParticipantIDs proquest_miscellaneous_2020880940
proquest_journals_1911028623
crossref_primary_10_1111_sum_12345
crossref_citationtrail_10_1111_sum_12345
wiley_primary_10_1111_sum_12345_SUM12345
PublicationCentury 2000
PublicationDate June 2017
2017-06-00
20170601
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: June 2017
PublicationDecade 2010
PublicationPlace Bedfordshire
PublicationPlace_xml – name: Bedfordshire
PublicationTitle Soil use and management
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 79
2009; 47
2010; 97
1990; 55
2013a; 12
1984; 48
2015; 53
2013; 64
2009; 154
2008
2007
1996
2011; 76
2007; 71
2002
2014; 110
1997; 5
2001; 46
2006; 80
2010; 48
1989; 54
2006; 67
2013b; 43
1924; 10
2010; 334
2015a; 79
2013; 195–196
2004; 56
2002; 66
2015
2014
1980
2013
2014; 30
1999; 92
2010; 91
1999; 91
2015b; 53
2013; 211–212
1989
2010; 9
Lawrence I. (e_1_2_6_25_1) 1989
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
SAS Institute (e_1_2_6_34_1) 2015
Keller G.V. (e_1_2_6_24_1) 1996
EMTOMO (e_1_2_6_15_1) 2014
Hazelton P. (e_1_2_6_18_1) 2007
e_1_2_6_13_1
e_1_2_6_36_1
Dualem Inc (e_1_2_6_14_1) 2008
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
Isbell R. (e_1_2_6_23_1) 2002
e_1_2_6_37_1
Wood W.E. (e_1_2_6_44_1) 1924; 10
e_1_2_6_42_1
McNeill J.D. (e_1_2_6_28_1) 1980
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
Hendrickx J.M.H. (e_1_2_6_19_1) 2002; 66
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
References_xml – volume: 48
  start-page: 434
  year: 2010
  end-page: 446
  article-title: Resolving the spatial distribution of the true electrical conductivity with depth using EM38 and EM31 signal data and a laterally constrained inversion model
  publication-title: Australian Journal of Soil Research
– volume: 110
  start-page: 115
  year: 2014
  end-page: 125
  article-title: An efficient calibration procedure for correction of drift in EMI survey data
  publication-title: Journal of Applied Geophysics
– volume: 53
  start-page: 424
  year: 2015
  end-page: 431
  article-title: Modelling coastal salinity using a DUALEM‐421 and inversion software
  publication-title: Groundwater
– start-page: 160
  year: 2007
– volume: 30
  start-page: 241
  year: 2014
  end-page: 250
  article-title: Spatial prediction of the exchangeable sodium percentage at multiple depths using electromagnetic inversion modelling
  publication-title: Soil Use and Management
– volume: 195–196
  start-page: 31
  year: 2013
  end-page: 41
  article-title: Mapping the three‐dimensional variation of soil salinity in a rice‐paddy soil
  publication-title: Geoderma
– volume: 334
  start-page: 423
  year: 2010
  end-page: 432
  article-title: Five‐year growth and yield response of two young olive cultivars ( L., cvs. Arbequina and Empeltre) to soil salinity
  publication-title: Plant and Soil
– volume: 97
  start-page: 1961
  year: 2010
  end-page: 1970
  article-title: Quantitative evaluation of soil salinity and its spatial distribution using electromagnetic induction method
  publication-title: Agricultural Water Management
– volume: 53
  start-page: 561
  year: 2015b
  end-page: 575
  article-title: An error budget for soil salinity mapping using different ancillary data
  publication-title: Soil Research
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  article-title: Modelling soil attribute depth functions with equal‐area quadratic smoothing splines
  publication-title: Geoderma
– volume: 46
  start-page: 45
  year: 2001
  end-page: 54
  article-title: Full 3‐D inversion of electromagnetic data on PC
  publication-title: Journal of Applied Geophysics
– volume: 43
  start-page: 88
  year: 2013b
  end-page: 95
  article-title: An inversion approach to generate electromagnetic conductivity images from signal data
  publication-title: Environmental Modelling and Software
– volume: 5
  start-page: 6
  year: 1997
  end-page: 21
  article-title: Salinity threatens the viability of agriculture and ecosystems in Western Australia
  publication-title: Hydrogeology Journal
– volume: 10
  start-page: 35
  year: 1924
  end-page: 47
  article-title: Increase of salt in soil and streams following the destruction of the native vegetation
  publication-title: Journal of the Royal Society of Western Australia
– volume: 67
  start-page: 594
  year: 2006
  end-page: 606
  article-title: An integrated methodology for assessing soil salinization, a pre‐condition for land desertification
  publication-title: Journal of Arid Environments
– start-page: 513
  year: 1996
– volume: 79
  start-page: 1729
  year: 2015
  end-page: 1740
  article-title: Mapping salinity in three dimensions using a DUALEM‐421 and electromagnetic inversion software
  publication-title: Soil Science Society of America Journal
– start-page: 152
  year: 2002
– year: 2014
– volume: 79
  start-page: 1142
  year: 2015a
  end-page: 1153
  article-title: Modelling soil salinity along a hill slope in Iran by inversion of EM38 data
  publication-title: Soil Science Society of America Journal
– volume: 47
  start-page: 809
  year: 2009
  end-page: 820
  article-title: 2‐Dimensional soil and vadose‐zone representation using an EM38 and EM34 and a laterally constrained inversion model
  publication-title: Soil Research
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– volume: 92
  start-page: 125
  year: 1999
  end-page: 140
  article-title: Impact of non‐drained irrigated rice cropping on soil salinization in the Senegal River Delta
  publication-title: Geoderma
– volume: 211–212
  start-page: 28
  year: 2013
  end-page: 38
  article-title: Electromagnetic conductivity imaging (EMCI) of soil using a DUALEM‐421 and inversion modelling software (EM4Soil)
  publication-title: Geoderma
– volume: 55
  start-page: 1613
  year: 1990
  end-page: 1624
  article-title: Occam's inversion to generate smooth, two‐dimensional models from magnetotelluric data
  publication-title: Geophysics
– year: 1980
– volume: 91
  start-page: 103
  year: 2010
  end-page: 109
  article-title: Sheep production, plant growth and nutritive value of a saltbush‐based pasture system subject to rotational grazing or set‐stocking
  publication-title: Small Ruminant Research
– volume: 12
  start-page: 117
  year: 2013a
  end-page: 125
  article-title: Inferring the location of preferential flow paths of a leachate plume using a DUALEM‐421 and a quasi‐3 dimensional inversion model
  publication-title: Vadose Zone Journal
– volume: 64
  start-page: 123
  year: 2013
  end-page: 136
  article-title: Survival and growth of perennial halophytes on saltland in a Mediterranean environment is affected by depth to water table in summer as well as subsoil salinity
  publication-title: Crop and Pasture Science
– year: 2008
– volume: 9
  start-page: 117
  year: 2010
  end-page: 125
  article-title: Inversion of multiconfiguration electromagnetic (DUALEM‐421) profiling data using a one‐dimensional laterally constrained algorithm
  publication-title: Vadose Zone Journal
– volume: 76
  start-page: B43
  year: 2011
  end-page: B53
  article-title: A spatially constrained 1D inversion algorithm for quasi‐3D conductivity imaging: application to DUALEM‐421 data collected in a riverine plain
  publication-title: Geophysics
– volume: 48
  start-page: 288
  year: 1984
  end-page: 291
  article-title: Measurement of inverted electrical conductivity profiles using electromagnetic induction
  publication-title: Soil Science Society of America Journal
– volume: 66
  start-page: 673
  year: 2002
  end-page: 685
  article-title: Inversion of soil conductivity profiles from electromagnetic induction measurements
  publication-title: Soil Science Society of America Journal
– start-page: 255
  year: 1989
  end-page: 268
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 56
  start-page: 123
  year: 2004
  end-page: 134
  article-title: 1‐D laterally constrained inversion of EM34 profiling data
  publication-title: Journal of Applied Geophysics
– volume: 71
  start-page: 189
  year: 2007
  end-page: 196
  article-title: Comparing bulk soil electrical conductivity determination using the DUALEM‐1S and EM38‐DD electromagnetic induction instruments
  publication-title: Soil Science Society of America Journal
– year: 2015
– volume: 54
  start-page: 254
  year: 1989
  end-page: 262
  article-title: Two‐dimensional joint inversion of magnetotelluric and dipole‐dipole resistivity data
  publication-title: Geophysics
– volume: 80
  start-page: 41
  year: 2006
  end-page: 56
  article-title: Managing secondary dryland salinity: options and challenges
  publication-title: Agricultural Water Management
– year: 2013
– ident: e_1_2_6_20_1
  doi: 10.1111/sum.12106
– volume: 66
  start-page: 673
  year: 2002
  ident: e_1_2_6_19_1
  article-title: Inversion of soil conductivity profiles from electromagnetic induction measurements
  publication-title: Soil Science Society of America Journal
– volume-title: EMTOMO manual for EM4Soil: a program for 1‐D laterally constrained inversion of EM data
  year: 2014
  ident: e_1_2_6_15_1
– ident: e_1_2_6_12_1
  doi: 10.1190/1.1442813
– ident: e_1_2_6_26_1
  doi: 10.1016/j.geoderma.2012.11.005
– ident: e_1_2_6_30_1
  doi: 10.2136/vzj2009.0088
– ident: e_1_2_6_4_1
  doi: 10.1002/ldr.820
– start-page: 513
  volume-title: Electrical methods in geophysical prospecting
  year: 1996
  ident: e_1_2_6_24_1
– ident: e_1_2_6_42_1
  doi: 10.2136/vzj2012.0086
– start-page: 152
  volume-title: The Australian soil classification. Australian soil and land survey handbooks series 4
  year: 2002
  ident: e_1_2_6_23_1
– ident: e_1_2_6_35_1
  doi: 10.1190/1.1442649
– start-page: 255
  year: 1989
  ident: e_1_2_6_25_1
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume-title: DUALEM‐421S user's manual
  year: 2008
  ident: e_1_2_6_14_1
– ident: e_1_2_6_9_1
  doi: 10.1016/S0016-7061(99)00034-8
– volume-title: JMP v. 12.2
  year: 2015
  ident: e_1_2_6_34_1
– ident: e_1_2_6_43_1
  doi: 10.1016/j.envsoft.2013.01.012
– ident: e_1_2_6_37_1
– ident: e_1_2_6_10_1
  doi: 10.2136/sssaj1984.03615995004800020011x
– ident: e_1_2_6_5_1
  doi: 10.1007/s11104-010-0393-3
– ident: e_1_2_6_32_1
  doi: 10.1016/j.smallrumres.2009.11.022
– ident: e_1_2_6_41_1
  doi: 10.1071/SR09149
– ident: e_1_2_6_39_1
  doi: 10.1071/SR09013
– ident: e_1_2_6_8_1
  doi: 10.1016/S0016-7061(99)00003-8
– volume: 10
  start-page: 35
  year: 1924
  ident: e_1_2_6_44_1
  article-title: Increase of salt in soil and streams following the destruction of the native vegetation
  publication-title: Journal of the Royal Society of Western Australia
– start-page: 160
  volume-title: Interpreting soil test results: what do all the numbers mean?
  year: 2007
  ident: e_1_2_6_18_1
  doi: 10.1071/9780643094680
– ident: e_1_2_6_2_1
  doi: 10.2136/sssaj2005.0394
– ident: e_1_2_6_17_1
– ident: e_1_2_6_3_1
  doi: 10.1016/j.jaridenv.2006.03.010
– ident: e_1_2_6_21_1
  doi: 10.2136/sssaj2014.11.0447
– ident: e_1_2_6_13_1
  doi: 10.1016/j.jappgeo.2014.09.004
– volume-title: Electrical conductivity of soils and rock
  year: 1980
  ident: e_1_2_6_28_1
– ident: e_1_2_6_11_1
  doi: 10.1111/gwat.12231
– ident: e_1_2_6_36_1
  doi: 10.1016/S0926-9851(00)00038-0
– ident: e_1_2_6_27_1
  doi: 10.1016/j.geoderma.2009.10.007
– ident: e_1_2_6_33_1
  doi: 10.1016/j.agwat.2005.07.003
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jappgeo.2004.04.005
– ident: e_1_2_6_16_1
  doi: 10.1007/s100400050103
– ident: e_1_2_6_38_1
– ident: e_1_2_6_31_1
  doi: 10.1190/1.3537834
– ident: e_1_2_6_6_1
– ident: e_1_2_6_22_1
  doi: 10.1071/SR15043
– ident: e_1_2_6_7_1
  doi: 10.1071/CP12416
– ident: e_1_2_6_46_1
  doi: 10.2136/sssaj2015.06.0238
– ident: e_1_2_6_40_1
  doi: 10.1016/j.geoderma.2013.06.001
– ident: e_1_2_6_45_1
  doi: 10.1016/j.agwat.2010.02.001
SSID ssj0021760
Score 2.1996496
Snippet To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 205
SubjectTerms Accuracy
Algorithms
arid lands
Arid zones
Australia
best management practices
Bias
Calibration
Computer programs
computer software
Damping
Data acquisition
Depth
Dimensions
Distribution
DUALEM‐1
Electrical conductivity
Electrical resistivity
Estimates
landscapes
Management methods
Mathematical models
Modelling
normal and inverted salinity profiles
Parameter identification
prediction
Predictions
quasi‐3d inversion
Regression analysis
Saline soils
Salinity
Salinity effects
Software
Soil
Soil conductivity
Soil profiles
Soil salinity
Soils
Three dimensional models
Title Characterization of field‐scale dryland salinity with depth by quasi‐3d inversion of DUALEM‐1 data
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12345
https://www.proquest.com/docview/1911028623
https://www.proquest.com/docview/2020880940
Volume 33
WOSCitedRecordID wos000403898200004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1475-2743
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021760
  issn: 0266-0032
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB5q9aAH_8VqlVU8eIkk2c0fnkq1eKgiYsFb2Gw2WpC0Nm2hNx_BZ_RJnEnSqKAgeAmBnSTL7s7uN5OZbwBOLD_yXceODDS8AkNwIQyphTRcRCNOIrROzDgvNuHd3PgPD8FtDc7nuTAFP0TlcCPNyPdrUnAZZV-UHCfqDLdd4SzAIiVVoeW1eHHX6XUre8vy3NLFgkazye2SWIgCeaqHvx9HnxjzK1LNj5rO2r86uQ6rJcJkrWJJbEBNp5uw0noclSwbegue2hVNc5GFyQYJy2PZ3l_fMpw1zeLRjGIeWSYpdXI8Y-SwZbEe4jWasZeJzPoozGPWT6eFz41ectFrdS-vscFiFHu6Db3O5X37yihLLhiSO9wxYqWEIkYZM4iswPFMXyqOxjd5m1xF9XItJbQvtVa2SIRUaOJ6kih1tJNIzvkO1NNBqneBWZ6VuBrRoBcHiNICaeJioWBXYcdJoGQDTucjH6qSj5zKYjyHc7sEBy_MB68Bx5XosCDh-EmoOZ--sNTDLERrlBAUYrwGHFXNqEH0W0SmejDJQpvqlPrEI4hdyifz94-EeNblN3t_F92HZZuwQO66aUJ9PJroA1hS03E_Gx2Wi_YDJK_yDQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSsNAEB60CurBf7FadRUPXiJJdvMHXkq1KNYiYsFb2G42WpBUm1bozUfwGX0SZ5I0KigIXkJgJ8mys7P7zWT2G4BDy-_6rmN3DXS8AkNwIQyphTRcRCNOLLSOzSgrNuG12_7dXXA9BSeTszA5P0QZcCPLyNZrMnAKSH-xctTUMa67wpmGGeFyz6_AzOlNs9MqHS7Lc4sYC3rNJrcLZiHK5Ckf_r4ffYLMr1A122uaS__r5TIsFhiT1fNJsQJTOlmFhfr9oODZ0Gvw0CiJmvNzmKwfsyyb7f31LUW9aRYNxpT1yFJJhyeHY0YhWxbpJ7x2x-x5JNMeCvOI9ZKXPOpGLznt1FtnV9hgMco-XYdO8-y2cW4URRcMyR3uGJFSQhGnjBl0rcDxTF8qju43xZtcRRVzLSW0L7VWtoiFVOjkepJIdbQTS875BlSSfqI3gVmeFbsa8aAXBYjTAmnidKF0V2FHcaBkFY4mQx-qgpGcCmM8hhPPBAcvzAavCgel6FNOw_GTUG2iv7CwxDREf5QwFKK8KuyXzWhD9GNEJro_SkObKpX6xCSIXcq0-ftHQtztsputv4vuwdz57VUrbF20L7dh3iZkkAVyalAZDkZ6B2bVy7CXDnaLGfwBnAf1_Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS-NAEB-0itw9qKce1j_nnvjgSyTJ7uYP-FKsxcNaRCz4FrabjRYkrU0r9O0-gp_RT-JMkkYFBcGXENhJsuzs7P5mMvsbgAMn6AWedHsWOl6hJbgQljJCWR6iEZkIYxI7zotN-J1OcHMTXs7B8ewsTMEPUQXcyDLy9ZoM3Azj5I2Vo6aOcN0Vch4WhAylqMFC86rVbVcOl-N7ZYwFvWabuyWzEGXyVA-_349eQeZbqJrvNa2V7_VyFZZLjMkaxaT4BXMmXYOfjdtRybNh1uHupCJqLs5hskHC8my25_9PGerNsHg0paxHlik6PDmeMgrZstgM8dqbsoeJyvoozGPWTx-LqBu9pNlttE8vsMFhlH26Ad3W6fXJmVUWXbAUl1xasdZCE6eMHfacUPp2oDRH95viTZ6mirmOFiZQxmhXJEJpdHJ9RaQ6RiaKc_4baukgNZvAHN9JPIN40I9DxGmhsnG6ULqrcOMk1KoOh7Ohj3TJSE6FMe6jmWeCgxflg1eH_Up0WNBwfCS0M9NfVFpiFqE_ShgKUV4d_lbNaEP0Y0SlZjDJIpcqlQbEJIhdyrX5-Uci3O3ym62vi-7B0mWzFbX_dc634YdLwCCP4-xAbTyamF1Y1I_jfjb6U07gFzbG9Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+field%E2%80%90scale+dryland+salinity+with+depth+by+quasi%E2%80%903d+inversion+of+DUALEM%E2%80%901+data&rft.jtitle=Soil+use+and+management&rft.au=Huang%2C+J&rft.au=Kilminster%2C+T&rft.au=Barrett%E2%80%90Lennard%2C+E.+G.&rft.au=Triantafilis%2C+J&rft.date=2017-06-01&rft.issn=0266-0032&rft.volume=33&rft.issue=2+p.205-215&rft.spage=205&rft.epage=215&rft_id=info:doi/10.1111%2Fsum.12345&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon