Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations
•We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation stability.•MVO, GWO and MFO can assist the hyper-parameters tuning of RF.•The accuracy of the proposed models is better than the models in pre...
Gespeichert in:
| Veröffentlicht in: | Tunnelling and underground space technology Jg. 124; S. 104494 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
01.06.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0886-7798, 1878-4364 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation stability.•MVO, GWO and MFO can assist the hyper-parameters tuning of RF.•The accuracy of the proposed models is better than the models in previous studies.•The models based on RF can update the critical span graph scientifically.
The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be provided with a safe and reliable working environment and whether subsequent mining operations can be carried out normally. The design and stability assessment of entry-type excavations in current mining engineering largely relies on an empirical design method called the critical span graph, which has been widely applied in the initial span design of various cut and fill stopes. In recent years, with the wide application of various intelligent algorithms in the field of mine engineering, models based on intelligent algorithms provide new research methods and ideas for the assessment of rock stability in entry-type excavations. This study aims to introduce several hybrid models based on the random forest (RF) algorithm into the stability evaluation work to find new data-driven methods with higher accuracy to update the critical span graph. To pursue better classification performance, this paper selects three optimization strategies, namely multi-verse optimizer (MVO), grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithm, to optimize two core parameters of RF, and establishes three corresponding hybrid models, abbreviated as MVO-RF, GWO-RF and MFO-RF, based on the database containing 399 samples from seven Canada mines. There are two input parameters in the database, i.e., opening span and rock mass condition (expressed as RMR), and the output parameter is rock mass stability, which is specifically divided into three categories: stable, potentially unstable and unstable. In addition, five commonly used measurement indexes applicable to multiclassification problems were adopted to verify the classification ability of the models, i.e., the accuracy (ACC), precision calculated using macro-average (PREM), recall calculated using macro-average (RECM), F1 score calculated using macro-average (F1M) and Kappa index (Kappa). The results indicate that the three hybrid models performed well based on the test set accounting for 25 % of the original database, in which the accuracy of the MFO-RF model was the highest: ACC = 0.9300; PREM = 0.9288; RECM = 0.8983; F1M = 0.9116; Kappa = 0.8666. To evaluate whether the three optimization strategies can effectively improve the performance of RF and judge the degree of improvement, the performance of an unoptimized RF model was discussed in this study. In addition, two support vector machine (SVM) models with different kernel functions were selected as references for performance evaluation. The results indicated that compared with the RF and two SVM models, the classification accuracy of the three hybrid models was obviously more satisfactory. The classification accuracy of the three hybrid models reached 0.91, which was sufficient to explain the excellent classification ability of these models. After tuning the RF hyperparameters of each hybrid model, the critical span graph was further updated according to the optimized classification models, which was the focus of this research. By comparing the critical span graphs obtained by the three hybrid models with the single RF model and two kinds of SVM models, it is certain that the three hybrid models proposed in this paper, MVO-RF, GWO-RF and MFO-RF, are promising in the study of evaluating the stability of entry-type excavations and may be deemed auxiliary decision tools to define the stability region of the critical span graph. |
|---|---|
| AbstractList | The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be provided with a safe and reliable working environment and whether subsequent mining operations can be carried out normally. The design and stability assessment of entry-type excavations in current mining engineering largely relies on an empirical design method called the critical span graph, which has been widely applied in the initial span design of various cut and fill stopes. In recent years, with the wide application of various intelligent algorithms in the field of mine engineering, models based on intelligent algorithms provide new research methods and ideas for the assessment of rock stability in entry-type excavations. This study aims to introduce several hybrid models based on the random forest (RF) algorithm into the stability evaluation work to find new data-driven methods with higher accuracy to update the critical span graph. To pursue better classification performance, this paper selects three optimization strategies, namely multi-verse optimizer (MVO), grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithm, to optimize two core parameters of RF, and establishes three corresponding hybrid models, abbreviated as MVO-RF, GWO-RF and MFO-RF, based on the database containing 399 samples from seven Canada mines. There are two input parameters in the database, i.e., opening span and rock mass condition (expressed as RMR), and the output parameter is rock mass stability, which is specifically divided into three categories: stable, potentially unstable and unstable. In addition, five commonly used measurement indexes applicable to multiclassification problems were adopted to verify the classification ability of the models, i.e., the accuracy (ACC), precision calculated using macro-average (PREM), recall calculated using macro-average (RECM), F1 score calculated using macro-average (F1M) and Kappa index (Kappa). The results indicate that the three hybrid models performed well based on the test set accounting for 25 % of the original database, in which the accuracy of the MFO-RF model was the highest: ACC = 0.9300; PREM = 0.9288; RECM = 0.8983; F1M = 0.9116; Kappa = 0.8666. To evaluate whether the three optimization strategies can effectively improve the performance of RF and judge the degree of improvement, the performance of an unoptimized RF model was discussed in this study. In addition, two support vector machine (SVM) models with different kernel functions were selected as references for performance evaluation. The results indicated that compared with the RF and two SVM models, the classification accuracy of the three hybrid models was obviously more satisfactory. The classification accuracy of the three hybrid models reached 0.91, which was sufficient to explain the excellent classification ability of these models. After tuning the RF hyperparameters of each hybrid model, the critical span graph was further updated according to the optimized classification models, which was the focus of this research. By comparing the critical span graphs obtained by the three hybrid models with the single RF model and two kinds of SVM models, it is certain that the three hybrid models proposed in this paper, MVO-RF, GWO-RF and MFO-RF, are promising in the study of evaluating the stability of entry-type excavations and may be deemed auxiliary decision tools to define the stability region of the critical span graph. •We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation stability.•MVO, GWO and MFO can assist the hyper-parameters tuning of RF.•The accuracy of the proposed models is better than the models in previous studies.•The models based on RF can update the critical span graph scientifically. The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be provided with a safe and reliable working environment and whether subsequent mining operations can be carried out normally. The design and stability assessment of entry-type excavations in current mining engineering largely relies on an empirical design method called the critical span graph, which has been widely applied in the initial span design of various cut and fill stopes. In recent years, with the wide application of various intelligent algorithms in the field of mine engineering, models based on intelligent algorithms provide new research methods and ideas for the assessment of rock stability in entry-type excavations. This study aims to introduce several hybrid models based on the random forest (RF) algorithm into the stability evaluation work to find new data-driven methods with higher accuracy to update the critical span graph. To pursue better classification performance, this paper selects three optimization strategies, namely multi-verse optimizer (MVO), grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithm, to optimize two core parameters of RF, and establishes three corresponding hybrid models, abbreviated as MVO-RF, GWO-RF and MFO-RF, based on the database containing 399 samples from seven Canada mines. There are two input parameters in the database, i.e., opening span and rock mass condition (expressed as RMR), and the output parameter is rock mass stability, which is specifically divided into three categories: stable, potentially unstable and unstable. In addition, five commonly used measurement indexes applicable to multiclassification problems were adopted to verify the classification ability of the models, i.e., the accuracy (ACC), precision calculated using macro-average (PREM), recall calculated using macro-average (RECM), F1 score calculated using macro-average (F1M) and Kappa index (Kappa). The results indicate that the three hybrid models performed well based on the test set accounting for 25 % of the original database, in which the accuracy of the MFO-RF model was the highest: ACC = 0.9300; PREM = 0.9288; RECM = 0.8983; F1M = 0.9116; Kappa = 0.8666. To evaluate whether the three optimization strategies can effectively improve the performance of RF and judge the degree of improvement, the performance of an unoptimized RF model was discussed in this study. In addition, two support vector machine (SVM) models with different kernel functions were selected as references for performance evaluation. The results indicated that compared with the RF and two SVM models, the classification accuracy of the three hybrid models was obviously more satisfactory. The classification accuracy of the three hybrid models reached 0.91, which was sufficient to explain the excellent classification ability of these models. After tuning the RF hyperparameters of each hybrid model, the critical span graph was further updated according to the optimized classification models, which was the focus of this research. By comparing the critical span graphs obtained by the three hybrid models with the single RF model and two kinds of SVM models, it is certain that the three hybrid models proposed in this paper, MVO-RF, GWO-RF and MFO-RF, are promising in the study of evaluating the stability of entry-type excavations and may be deemed auxiliary decision tools to define the stability region of the critical span graph. |
| ArticleNumber | 104494 |
| Author | Zhou, Jian Qiu, Yingui Huang, Shuai |
| Author_xml | – sequence: 1 givenname: Jian surname: Zhou fullname: Zhou, Jian email: j.zhou@csu.edu.cn, csujzhou@hotmail.com – sequence: 2 givenname: Shuai surname: Huang fullname: Huang, Shuai email: 205511038@csu.edu.cn – sequence: 3 givenname: Yingui surname: Qiu fullname: Qiu, Yingui email: 195512085@csu.edu.cn |
| BookMark | eNp9kE9P4zAUxK0VSFvY_QJ7ssR1U2wnsR2JC0ILiwTKhT9Hy4lfiqvWLrZT0b3yxddpOXHgNNLTb-Zp5gQdOe8AoV-UzCmh_Hw5T2NMc0YYy4eqaqpvaEalkEVV8uoIzYiUvBCikd_RSYxLQkjNWDND7-0m2bX9p5P1DvsBB-2MX-PBB4gJp5fgx8VLVsBjhAm4f2p_45vnFmcQ31-32DoMW70ac4Rb7MmYdGdXNu0mfnQGwiLHZBxcCrsi7TaA4a3X2_3X-AMdD3oV4eeHnqLH6z8PV3-Lu_bm9uryrtBlTVNBqaZUmBKk4IZXvOoYE6RvzNBVhpLaNDWhXSMZ78lQl3ooh06KWtRlRiSF8hSdHXI3wb-OuZ5a-jG4_FIxzoWsGeFlptiB6oOPMcCgNsGuddgpStQ0tlqqaWw1ja0OY2eT_GTqbdq3S0Hb1dfWi4MVcvWthaBib8H1YGyAPinj7Vf2_yCjnfQ |
| CitedBy_id | crossref_primary_10_1016_j_undsp_2022_08_002 crossref_primary_10_3390_pr12040783 crossref_primary_10_1016_j_jrmge_2024_05_024 crossref_primary_10_1007_s00603_025_04760_w crossref_primary_10_1007_s11440_023_01988_0 crossref_primary_10_1016_j_trgeo_2023_101022 crossref_primary_10_1016_j_eiar_2023_107229 crossref_primary_10_1016_j_engappai_2024_108399 crossref_primary_10_1007_s13369_022_07478_x crossref_primary_10_3390_polym17182541 crossref_primary_10_3390_math11051245 crossref_primary_10_3390_math11183886 crossref_primary_10_1515_rams_2023_0179 crossref_primary_10_1016_j_cscm_2023_e02766 crossref_primary_10_1177_01423312251350754 crossref_primary_10_3390_ma16010308 crossref_primary_10_1016_j_rser_2024_115003 crossref_primary_10_1016_j_undsp_2024_01_007 crossref_primary_10_1007_s11053_023_10259_4 crossref_primary_10_1016_j_undsp_2024_01_004 crossref_primary_10_1016_j_tust_2024_105585 crossref_primary_10_3390_su14095348 crossref_primary_10_1016_j_applthermaleng_2025_126421 crossref_primary_10_1016_j_engstruct_2023_116556 crossref_primary_10_3390_info16080660 crossref_primary_10_3390_biomimetics10090561 crossref_primary_10_1016_j_undsp_2023_11_002 crossref_primary_10_1007_s00603_024_03947_x crossref_primary_10_1016_j_tust_2023_105235 crossref_primary_10_1007_s11709_024_1041_y crossref_primary_10_3390_buildings14030591 crossref_primary_10_3389_fpubh_2023_1119580 crossref_primary_10_1016_j_tust_2025_106888 crossref_primary_10_1016_j_jappgeo_2025_105929 crossref_primary_10_1016_j_envsoft_2024_106058 crossref_primary_10_3390_app132212262 crossref_primary_10_1038_s41598_022_11752_1 crossref_primary_10_1016_j_istruc_2023_01_059 crossref_primary_10_1002_nag_3972 crossref_primary_10_1007_s00603_025_04407_w crossref_primary_10_1007_s11053_024_10371_z crossref_primary_10_1016_j_jer_2025_08_001 crossref_primary_10_3389_feart_2023_1116664 crossref_primary_10_1007_s00603_023_03522_w crossref_primary_10_3390_s24041285 crossref_primary_10_1016_j_jenvman_2024_123068 crossref_primary_10_1016_j_jobe_2023_108386 crossref_primary_10_3390_app122010258 crossref_primary_10_3390_geosciences15020047 crossref_primary_10_32604_cmes_2023_025714 crossref_primary_10_1007_s11771_022_5208_1 crossref_primary_10_1109_TEM_2023_3348991 crossref_primary_10_1016_j_engappai_2025_110134 crossref_primary_10_3390_app15147972 crossref_primary_10_3390_geosciences13100294 crossref_primary_10_1016_j_ijmst_2023_06_001 crossref_primary_10_1007_s00603_023_03483_0 crossref_primary_10_1007_s00603_024_03801_0 crossref_primary_10_1515_rams_2023_0189 crossref_primary_10_1007_s11771_024_5699_z crossref_primary_10_3233_JIFS_223369 crossref_primary_10_1007_s00603_024_03928_0 crossref_primary_10_1109_ACCESS_2024_3376235 crossref_primary_10_1080_17486025_2023_2207546 crossref_primary_10_1016_j_trgeo_2022_100806 crossref_primary_10_1016_j_ijmst_2023_12_005 crossref_primary_10_1007_s11600_024_01320_8 crossref_primary_10_1016_j_renene_2023_04_003 crossref_primary_10_1016_j_rineng_2023_100892 crossref_primary_10_1016_j_fuel_2024_133953 crossref_primary_10_1007_s11069_025_07251_x crossref_primary_10_3390_ma16114034 crossref_primary_10_1016_j_trgeo_2022_100819 crossref_primary_10_1016_j_conbuildmat_2023_133911 crossref_primary_10_1016_j_compstruct_2024_117943 crossref_primary_10_1007_s11053_022_10082_3 crossref_primary_10_1007_s12145_024_01621_y crossref_primary_10_1007_s10462_024_10917_w crossref_primary_10_3390_su15075642 crossref_primary_10_1007_s42461_022_00713_x crossref_primary_10_1016_j_asoc_2024_111388 crossref_primary_10_1016_j_gsf_2023_101769 crossref_primary_10_1016_j_gsf_2024_101802 crossref_primary_10_1007_s42461_024_00945_z crossref_primary_10_1007_s41939_024_00577_2 crossref_primary_10_1016_j_tust_2024_105960 crossref_primary_10_1038_s41598_025_12758_1 crossref_primary_10_1007_s10462_024_10898_w crossref_primary_10_1007_s00603_025_04730_2 crossref_primary_10_1080_10942912_2025_2558009 crossref_primary_10_3390_en15197437 crossref_primary_10_1016_j_tust_2025_106390 crossref_primary_10_3390_eng6050088 crossref_primary_10_3390_app13042574 crossref_primary_10_1051_meca_2024010 crossref_primary_10_3390_ma16031286 crossref_primary_10_1016_j_fuel_2025_136065 crossref_primary_10_1063_5_0187668 crossref_primary_10_1007_s11440_022_01685_4 crossref_primary_10_32604_cmes_2023_030418 |
| Cites_doi | 10.1016/j.ijmst.2013.08.014 10.1016/j.ijrmms.2012.07.012 10.1007/s00521-015-1870-7 10.1016/j.gsf.2020.02.011 10.1016/j.ijrmms.2004.03.131 10.1007/s11069-021-04885-5 10.1007/s10064-020-01788-w 10.1111/brv.12036 10.1016/j.aeue.2017.05.010 10.1007/s11069-018-3246-7 10.1007/s11053-021-09929-y 10.1080/17480930.2021.1899404 10.1016/j.ijrmms.2021.104856 10.1016/j.jrmge.2021.05.010 10.1016/j.jhydrol.2019.06.065 10.1016/j.gsf.2020.11.005 10.3390/ma9070531 10.1155/2021/8821168 10.1007/s10489-016-0767-1 10.1016/j.ipm.2009.03.002 10.1016/j.tust.2017.07.013 10.1179/mnt.2002.111.1.73 10.1016/j.engappai.2020.104015 10.1016/j.asoc.2017.06.030 10.1016/j.asoc.2016.12.022 10.1590/0370-44672020730012 10.1007/s00500-018-3586-y 10.1016/j.knosys.2017.07.018 10.1007/s00366-020-01014-x 10.1007/s11069-015-1842-3 10.1016/j.knosys.2015.07.006 10.1007/s11771-021-4619-8 10.1016/j.ijrmms.2016.06.001 10.1016/j.jrmge.2021.07.013 10.4314/gm.v20i2.3 10.1007/s10064-020-01730-0 10.1179/037178405X44494 10.1007/s00521-017-2952-5 10.1016/j.undsp.2020.05.005 10.1016/j.tust.2021.104183 10.1007/s11053-020-09710-7 10.1007/s00521-016-2818-2 10.1007/s11440-020-00962-4 10.1007/s00521-017-3131-4 10.1061/(ASCE)CF.1943-5509.0001292 10.1016/j.asoc.2017.06.044 10.1061/(ASCE)CP.1943-5487.0000553 10.1023/A:1010933404324 10.1016/j.knosys.2019.105237 10.1016/j.advengsoft.2013.12.007 10.1016/j.gsf.2019.12.003 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2022 |
| DBID | AAYXX CITATION 8FD FR3 KR7 |
| DOI | 10.1016/j.tust.2022.104494 |
| DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-4364 |
| ExternalDocumentID | 10_1016_j_tust_2022_104494 S0886779822001341 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIWK ACLVX ACNNM ACRLP ACSBN ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JJJVA KOM LY3 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SEP SES SET SEW SPC SPCBC SSE SST SSZ T5K WUQ ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 8FD AFXIZ AGCQF AGRNS BNPGV FR3 KR7 SSH |
| ID | FETCH-LOGICAL-a351t-11a117d3e876d6464b2270c9dfb4d105d9501b9826c0f53af3fb8757539df81e3 |
| ISICitedReferencesCount | 111 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793657600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0886-7798 |
| IngestDate | Sun Jul 13 04:24:25 EDT 2025 Tue Nov 18 22:23:10 EST 2025 Sat Nov 29 07:14:56 EST 2025 Fri Feb 23 02:41:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Random forest Hybrid model Stability Critical span graph Entry-type excavations Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a351t-11a117d3e876d6464b2270c9dfb4d105d9501b9826c0f53af3fb8757539df81e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2667852063 |
| PQPubID | 2045384 |
| ParticipantIDs | proquest_journals_2667852063 crossref_primary_10_1016_j_tust_2022_104494 crossref_citationtrail_10_1016_j_tust_2022_104494 elsevier_sciencedirect_doi_10_1016_j_tust_2022_104494 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Tunnelling and underground space technology |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Sokolova, Lapalme (b0240) 2009; 45 Sahoo, Chandra (b0225) 2017; 52 Dehghani, Seifi, Riahi-Madvar (b0050) 2019; 576 Zhou, Li, Mitri (b0320) 2015; 79 Adoko, Yakubov, Alipov (b0015) 2019 Du, Li, Su, Tao, Lv, Luo, Zhou (b0343) 2022 Koh, P. W. & Liang, P. (2017) Understanding Black-box Predictions via Influence Functions. In Tuan Anh, Hai-Bang, Van Quan, Loi Van, Huong-Lan Thi, Hong-Anh Thi (b0250) 2020; 10 Mirjalili (b0160) 2015; 89 Zhou, Dai, Khandelwal, Monjezi, Yu, Qiu (b0346) 2021; 30 Faris, Aljarah, Mirjalili (b0065) 2016; 45 Zhou, Zhu, Qiu, Armaghani, Zhou, Yong (b0342) 2022; 1-24 Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (b0295) 2020; 11 Kuhn, Johnson (b0115) 2013 Abderazek, Yildiz, Mirjalili (b0005) 2020; 191 Wang, Zhou, Li, Armaghani, Li, Mitri (b0344) 2021; 28 Amirsadri, Mousavirad, Ebrahimpour-Komleh (b0020) 2018; 30 Wang, Milne, Pakalnis (b0260) 2002; 111 Zhou, Li, Mitri, Wang, Wei (b0340) 2013; 23 . Mirjalili, Mirjalili, Lewis (b0175) 2014; 69 Zhou, Huang, Zhou, Armaghani, Qiu (b0341) 2022; 1-33 Li, Yang, Ren, Zhang, Zhou, Khandelwal (b0135) 2021; 13 Zhang, Li, Li, Liu, Chen, Ding (b0290) 2021 Garcia-Gonzalo, Fernandez-Muniz, Garcia Nieto, Bernardo Sanchez, Menendez Fernandez (b0080) 2016; 9 pp. 455–467. Sunwoo, Rao Karanam (b0245) 2006; 21 Li, Li, Guo, Li, Chen (b0145) 2021; 12 Adoko, Saadaari, Mireku-Gyimah, Imashev (b0010) 2021 Kumar (b0120) 2003 Ouchi, Pakalnis, Brady (b0185) 2004 Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, C., Hoang, N. & Yagiz, S. (2021c) Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. Kang, Wang, Zhang, Pu, Zhang (b0105) 2021 Zhou, Li, Wei, Li, Qiao, Armaghani (b0315) 2019; 9 Santos, Amaral, Mendonça, Silva (b0230) 2020; 73 Matin, Farahzadi, Makaremi, Chelgani, Sattari (b0150) 2018; 70 Zhou, Li, Mitri (b0325) 2016; 30 Goh, Zhang, Zhang, Zhang, Xiao (b0095) 2017; 70 Lang (b0125) 1994 Li, Zhou, Shi, Jahed Armaghani, Yu, Chen, Huang (b0140) 2021; 37 Zhou, Koopialipoor, Li, Armaghani (b0305) 2020; 79 Omnipress, San Francisco, CA, United states. Armaghani, Harandizadeh, Momeni, Maizir, Zhou (b0025) 2021 Zhou, Li, Wang, Chen, Shi, Jiang (b0310) 2019; 33 Faris, Hassonah, Al-Zoubi, Mirjalili, Aljarah (b0070) 2018; 30 Mirjalili, Jangir, Mirjalili, Saremi, Trivedi (b0165) 2017; 134 Wang, Pakalnis, Milne, Lang (b0265) 2000 Armaghani, Yagiz, Mohamad, Zhou (b0030) 2021; 118 Vallejos, Delonca, Fuenzalida, Burgos (b0255) 2016; 87 Qi, Fourie, Du, Tang (b0210) 2018; 92 Parsajoo, Mohammed, Yagiz, Armaghani, Khandelwal (b0200) 2021 Xie, Hoang, Xuan-Nam, Choi, Zhou, Thao (b0280) 2021; 12 Breiman (b0040) 2001; 45 Potvin (b0205) 1988 Zhou, Huang, Wang, Qiu (b0300) 2021 Yousri, Abdelaty, Said, Abobakr, Radwan (b0285) 2017; 78 Frank, K. D., Rich, C. & Longcore, T. (2006) Effects of artificial night lighting on moths. Ecol. Conseq. Artificial Night Lighting: 305–344. Mirjalili, Mirjalili, Hatamlou (b0170) 2016; 27 Dai, Khandelwal, Qiu, Zhou, Monjezi, Yang (b0345) 2022 Chen, Zhou, Zhou, Yong (b0045) 2021; 109 Ouchi, A. M., Pakalnis, R. & Brady, T. M. (2008) Empirical design of span openings in weak rock based upon support type employed. In Goh, Zhang (b0090) 2012; 55 Li, Zhou, Armaghani, Li (b0130) 2021; 6 Zhou, Qiu, Khandelwal, Zhu, Zhang (b0330) 2021; 145 Brady, Martin, Pakalnis (b0035) 2005; 114 Heidari, Pahlavani (b0100) 2017; 60 Sydney, AUSTRALIA, vol. 70. Mawdesley (b0155) 2004; 41 Gaston, Bennie, Davies, Hopkins (b0085) 2013; 88 Wang, Wu, Tang, Zhang, Lacasse, Liu, Gao (b0275) 2020; 15 Wang, Wu, Gu, Liu, Mei, Zhang (b0270) 2020; 79 Erdogan Erten, Bozkurt Keser, Yavuz (b0055) 2021 Nguyen, Bui, Choi, Lee, Armaghani (b0180) 2021; 30 Pakalnis, R. & Vongpaisal, S. (1993) Mine design: an empirical approach. In Ewees, Abd El Aziz, Hassanien (b0060) 2019; 31 Saadaari, Mireku-Gyimah, Olaleye (b0220) 2020; 20 Qiu, Zhou, Khandelwal, Yang, Yang, Li (b0215) 2021 Sapre, Mini (b0235) 2019; 23 10.1016/j.tust.2022.104494_b0075 10.1016/j.tust.2022.104494_b0195 Zhou (10.1016/j.tust.2022.104494_b0346) 2021; 30 10.1016/j.tust.2022.104494_b0190 Heidari (10.1016/j.tust.2022.104494_b0100) 2017; 60 Nguyen (10.1016/j.tust.2022.104494_b0180) 2021; 30 Zhou (10.1016/j.tust.2022.104494_b0310) 2019; 33 Matin (10.1016/j.tust.2022.104494_b0150) 2018; 70 Zhang (10.1016/j.tust.2022.104494_b0290) 2021 Armaghani (10.1016/j.tust.2022.104494_b0030) 2021; 118 Zhou (10.1016/j.tust.2022.104494_b0342) 2022; 1-24 Mirjalili (10.1016/j.tust.2022.104494_b0170) 2016; 27 Sapre (10.1016/j.tust.2022.104494_b0235) 2019; 23 Mawdesley (10.1016/j.tust.2022.104494_b0155) 2004; 41 Zhou (10.1016/j.tust.2022.104494_b0325) 2016; 30 Faris (10.1016/j.tust.2022.104494_b0070) 2018; 30 Sunwoo (10.1016/j.tust.2022.104494_b0245) 2006; 21 Li (10.1016/j.tust.2022.104494_b0130) 2021; 6 Goh (10.1016/j.tust.2022.104494_b0095) 2017; 70 Dai (10.1016/j.tust.2022.104494_b0345) 2022 Potvin (10.1016/j.tust.2022.104494_b0205) 1988 Vallejos (10.1016/j.tust.2022.104494_b0255) 2016; 87 Kuhn (10.1016/j.tust.2022.104494_b0115) 2013 Qiu (10.1016/j.tust.2022.104494_b0215) 2021 Mirjalili (10.1016/j.tust.2022.104494_b0165) 2017; 134 Yousri (10.1016/j.tust.2022.104494_b0285) 2017; 78 Zhou (10.1016/j.tust.2022.104494_b0341) 2022; 1-33 Amirsadri (10.1016/j.tust.2022.104494_b0020) 2018; 30 Wang (10.1016/j.tust.2022.104494_b0265) 2000 Saadaari (10.1016/j.tust.2022.104494_b0220) 2020; 20 Armaghani (10.1016/j.tust.2022.104494_b0025) 2021 Lang (10.1016/j.tust.2022.104494_b0125) 1994 Sokolova (10.1016/j.tust.2022.104494_b0240) 2009; 45 Gaston (10.1016/j.tust.2022.104494_b0085) 2013; 88 Wang (10.1016/j.tust.2022.104494_b0344) 2021; 28 10.1016/j.tust.2022.104494_b0335 Kumar (10.1016/j.tust.2022.104494_b0120) 2003 Zhou (10.1016/j.tust.2022.104494_b0300) 2021 Zhou (10.1016/j.tust.2022.104494_b0305) 2020; 79 Ewees (10.1016/j.tust.2022.104494_b0060) 2019; 31 Kang (10.1016/j.tust.2022.104494_b0105) 2021 Chen (10.1016/j.tust.2022.104494_b0045) 2021; 109 Garcia-Gonzalo (10.1016/j.tust.2022.104494_b0080) 2016; 9 Abderazek (10.1016/j.tust.2022.104494_b0005) 2020; 191 Faris (10.1016/j.tust.2022.104494_b0065) 2016; 45 Adoko (10.1016/j.tust.2022.104494_b0010) 2021 Breiman (10.1016/j.tust.2022.104494_b0040) 2001; 45 Parsajoo (10.1016/j.tust.2022.104494_b0200) 2021 Goh (10.1016/j.tust.2022.104494_b0090) 2012; 55 Ouchi (10.1016/j.tust.2022.104494_b0185) 2004 Xie (10.1016/j.tust.2022.104494_b0280) 2021; 12 Zhou (10.1016/j.tust.2022.104494_b0320) 2015; 79 Li (10.1016/j.tust.2022.104494_b0135) 2021; 13 Zhou (10.1016/j.tust.2022.104494_b0315) 2019; 9 Adoko (10.1016/j.tust.2022.104494_b0015) 2019 Brady (10.1016/j.tust.2022.104494_b0035) 2005; 114 Wang (10.1016/j.tust.2022.104494_b0275) 2020; 15 Wang (10.1016/j.tust.2022.104494_b0270) 2020; 79 Dehghani (10.1016/j.tust.2022.104494_b0050) 2019; 576 Tuan Anh (10.1016/j.tust.2022.104494_b0250) 2020; 10 Li (10.1016/j.tust.2022.104494_b0145) 2021; 12 Qi (10.1016/j.tust.2022.104494_b0210) 2018; 92 Zhang (10.1016/j.tust.2022.104494_b0295) 2020; 11 Erdogan Erten (10.1016/j.tust.2022.104494_b0055) 2021 Zhou (10.1016/j.tust.2022.104494_b0330) 2021; 145 Mirjalili (10.1016/j.tust.2022.104494_b0160) 2015; 89 Mirjalili (10.1016/j.tust.2022.104494_b0175) 2014; 69 Sahoo (10.1016/j.tust.2022.104494_b0225) 2017; 52 Santos (10.1016/j.tust.2022.104494_b0230) 2020; 73 Wang (10.1016/j.tust.2022.104494_b0260) 2002; 111 Li (10.1016/j.tust.2022.104494_b0140) 2021; 37 10.1016/j.tust.2022.104494_b0110 Du (10.1016/j.tust.2022.104494_b0343) 2022 Zhou (10.1016/j.tust.2022.104494_b0340) 2013; 23 |
| References_xml | – volume: 30 start-page: 3707 year: 2018 end-page: 3720 ident: b0020 article-title: A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training publication-title: Neural Comput. Appl. – volume: 70 start-page: 980 year: 2018 end-page: 987 ident: b0150 article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest publication-title: Appl. Soft Comput. – start-page: 1 year: 2021 end-page: 41 ident: b0290 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Artif. Intell. Rev. – volume: 1-24 year: 2022 ident: b0342 article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm publication-title: Acta Geotechnica – reference: .) Omnipress, San Francisco, CA, United states. – volume: 13 start-page: 1380 year: 2021 end-page: 1397 ident: b0135 article-title: Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms publication-title: J. Rock Mech. Geotech. Eng. – volume: 12 start-page: 331 year: 2021 end-page: 338 ident: b0145 article-title: Advanced prediction of tunnel boring machine performance based on big data publication-title: Geosci. Front. – volume: 9 year: 2016 ident: b0080 article-title: Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers publication-title: Materials – volume: 37 start-page: 3519 year: 2021 end-page: 3540 ident: b0140 article-title: Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill publication-title: Eng. Comput. – volume: 73 start-page: 395 year: 2020 end-page: 401 ident: b0230 article-title: Open stope stability assessment through artificial intelligence publication-title: REM-Int. Eng. J. – volume: 109 start-page: 1457 year: 2021 end-page: 1479 ident: b0045 article-title: Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory publication-title: Nat. Hazards – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0040 article-title: Random forests publication-title: Mach. Learn. – volume: 576 start-page: 698 year: 2019 end-page: 725 ident: b0050 article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization publication-title: J. Hydrol. – volume: 20 start-page: 18 year: 2020 end-page: 26 ident: b0220 article-title: Development of a Stope Stability Prediction Model Using Ensemble Learning Techniques-A Case Study publication-title: Ghana Mining Journal – year: 2019 ident: b0015 article-title: Mine stope performance assessment in unfavorable rock mass conditions using neural network-based classifiers publication-title: In – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0175 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. – volume: 30 year: 2016 ident: b0325 article-title: Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods publication-title: J. Comput. Civil Eng. – year: 2000 ident: b0265 article-title: Empirical underground entry type excavation span design modification. publication-title: Society. – year: 2021 ident: b0300 article-title: Performance evaluation of hybrid GA-SVM and GWO-SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation publication-title: Eng. Comput. – reference: Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, C., Hoang, N. & Yagiz, S. (2021c) Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate. – volume: 52 start-page: 64 year: 2017 end-page: 80 ident: b0225 article-title: Multi-objective Grey Wolf Optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. – volume: 6 start-page: 379 year: 2021 end-page: 395 ident: b0130 article-title: Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques publication-title: Underground Space – start-page: 1 year: 2022 end-page: 16 ident: b0345 article-title: A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting publication-title: Neural Computing and Applications – year: 2013 ident: b0115 article-title: Applied predictive modeling – volume: 92 start-page: 1179 year: 2018 end-page: 1197 ident: b0210 article-title: Prediction of open stope hangingwall stability using random forests publication-title: Nat. Hazards – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: b0170 article-title: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. – year: 2021 ident: b0010 article-title: A Feasibility Study on The Implementation of Neural Network Classifiers for Open Stope Design publication-title: Geotech. Geol. Eng. – volume: 11 start-page: 1095 year: 2020 end-page: 1106 ident: b0295 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci. Front. – year: 2003 ident: b0120 article-title: Development of Empirical and Numerical Design Techniques in Burst Prone Ground at the Red Lake Mine – year: 2021 ident: b0055 article-title: Grid Search Optimised Artificial Neural Network for Open Stope Stability Prediction publication-title: Int. J. Min. Reclam. Environ. – year: 1994 ident: b0125 article-title: Span design for entry-type excavations – reference: Ouchi, A. M., Pakalnis, R. & Brady, T. M. (2008) Empirical design of span openings in weak rock based upon support type employed. In – start-page: 1 year: 2021 end-page: 18 ident: b0215 article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration publication-title: Eng. Comput. – year: 2021 ident: b0200 article-title: An evolutionary adaptive neuro-fuzzy inference system for estimating field penetration index of tunnel boring machine in rock mass publication-title: J. Rock Mech. Geotech. Eng. – year: 1988 ident: b0205 article-title: Empirical open stope design in Canada.) – start-page: 1 year: 2021 end-page: 38 ident: b0025 article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity publication-title: Artif. Intell. Rev. – volume: 41 start-page: 756 year: 2004 end-page: 761 ident: b0155 article-title: Using logistic regression to investigate and improve an empirical design method publication-title: Int. J. Rock Mech. Min. Sci. – year: 2004 ident: b0185 article-title: Update of span design curve for weak rock masses publication-title: Proceedings of the 99th annual AGM-CIM conference – volume: 111 start-page: A73 year: 2002 end-page: A81 ident: b0260 article-title: Application of a neural network in the empirical design of underground excavation spans publication-title: Trans. Inst. Mining Metall. Section a-Mining Technol. – volume: 30 start-page: 4753 year: 2021 end-page: 4771 ident: b0346 article-title: Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations publication-title: Natural Resources Research – volume: 12 year: 2021 ident: b0280 article-title: Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms publication-title: Geosci. Front. – volume: 15 start-page: 3135 year: 2020 end-page: 3150 ident: b0275 article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method publication-title: Acta Geotech. – reference: Frank, K. D., Rich, C. & Longcore, T. (2006) Effects of artificial night lighting on moths. Ecol. Conseq. Artificial Night Lighting: 305–344. – volume: 45 start-page: 322 year: 2016 end-page: 332 ident: b0065 article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems publication-title: Appl. Intell. – volume: 28 start-page: 527 year: 2021 end-page: 542 ident: b0344 article-title: Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques publication-title: Journal of Central South University – reference: Koh, P. W. & Liang, P. (2017) Understanding Black-box Predictions via Influence Functions. In – volume: 1-33 year: 2022 ident: b0341 article-title: Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential publication-title: Artificial Intelligence Review – volume: 10 year: 2020 ident: b0250 article-title: Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest publication-title: Appl. Sci. Basel – volume: 134 start-page: 50 year: 2017 end-page: 71 ident: b0165 article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm publication-title: Knowl.-Based Syst. – reference: Pakalnis, R. & Vongpaisal, S. (1993) Mine design: an empirical approach. In – volume: 30 start-page: 191 year: 2021 end-page: 207 ident: b0180 article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines publication-title: Nat. Resour. Res. – volume: 31 start-page: 991 year: 2019 end-page: 1006 ident: b0060 article-title: Chaotic multi-verse optimizer-based feature selection publication-title: Neural Comput. Appl. – reference: .), Sydney, AUSTRALIA, vol. 70. – volume: 79 start-page: 2763 year: 2020 end-page: 2775 ident: b0270 article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines publication-title: Bull. Eng. Geol. Environ. – volume: 118 year: 2021 ident: b0030 article-title: Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches publication-title: Tunn. Undergr. Space Technol. – volume: 79 start-page: 291 year: 2015 end-page: 316 ident: b0320 article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction publication-title: Nat. Hazards – volume: 88 start-page: 912 year: 2013 end-page: 927 ident: b0085 article-title: The ecological impacts of nighttime light pollution: a mechanistic appraisal publication-title: Biol. Rev. – year: 2021 ident: b0105 article-title: (2021) Prediction of Stope Stability Using Variable Weight and Unascertained Measurement Technique publication-title: Geofluids – volume: 23 start-page: 6023 year: 2019 end-page: 6041 ident: b0235 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft. Comput. – volume: 78 start-page: 79 year: 2017 end-page: 89 ident: b0285 article-title: Biological inspired optimization algorithms for cole-impedance parameters identification publication-title: Aeu-Int. J. Electron. Commun. – volume: 145 year: 2021 ident: b0330 article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations publication-title: Int. J. Rock Mech. Min. Sci. – volume: 55 start-page: 157 year: 2012 end-page: 163 ident: b0090 article-title: Reliability assessment of stability of underground rock caverns publication-title: Int. J. Rock Mech. Min. Sci. – volume: 60 start-page: 115 year: 2017 end-page: 134 ident: b0100 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. – start-page: 1 year: 2022 end-page: 17 ident: b0343 article-title: Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression publication-title: International Journal of Mining Science and Technology – volume: 79 start-page: 4265 year: 2020 end-page: 4279 ident: b0305 article-title: Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system publication-title: Bull. Eng. Geol. Environ. – volume: 70 start-page: 148 year: 2017 end-page: 154 ident: b0095 article-title: Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression publication-title: Tunn. Undergr. Space Technol. – volume: 9 year: 2019 ident: b0315 article-title: Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials publication-title: Appl. Sci. Basel – reference: . – volume: 89 start-page: 228 year: 2015 end-page: 249 ident: b0160 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. – volume: 45 start-page: 427 year: 2009 end-page: 437 ident: b0240 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. – volume: 30 start-page: 2355 year: 2018 end-page: 2369 ident: b0070 article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture publication-title: Neural Comput. Appl. – volume: 87 start-page: 104 year: 2016 end-page: 112 ident: b0255 article-title: Statistical analysis of the stability number adjustment factors and implications for underground mine design publication-title: Int. J. Rock Mech. Min. Sci. – volume: 114 start-page: 13 year: 2005 end-page: 20 ident: b0035 article-title: Empirical approaches for opening design in weak rock masses publication-title: Mining Technology – reference: .), pp. 455–467. – volume: 33 year: 2019 ident: b0310 article-title: Feasibility of Stochastic Gradient Boosting Approach for Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories publication-title: J. Perform. Constr. Facil – volume: 23 start-page: 701 year: 2013 end-page: 707 ident: b0340 article-title: Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine publication-title: Int. J. Min. Sci. Technol. – volume: 21 year: 2006 ident: b0245 article-title: Stability assessment in wide underground mine openings by Mathews’ stability graph method publication-title: Tunn. Undergr. Space Technol. – volume: 191 year: 2020 ident: b0005 article-title: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism publication-title: Knowl.-Based Syst. – volume: 10 issue: 5 year: 2020 ident: 10.1016/j.tust.2022.104494_b0250 article-title: Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest publication-title: Appl. Sci. Basel – year: 2003 ident: 10.1016/j.tust.2022.104494_b0120 – volume: 23 start-page: 701 issue: 5 year: 2013 ident: 10.1016/j.tust.2022.104494_b0340 article-title: Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2013.08.014 – volume: 55 start-page: 157 year: 2012 ident: 10.1016/j.tust.2022.104494_b0090 article-title: Reliability assessment of stability of underground rock caverns publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2012.07.012 – volume: 27 start-page: 495 issue: 2 year: 2016 ident: 10.1016/j.tust.2022.104494_b0170 article-title: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – year: 2013 ident: 10.1016/j.tust.2022.104494_b0115 – year: 2000 ident: 10.1016/j.tust.2022.104494_b0265 article-title: Empirical underground entry type excavation span design modification. Proceedings, 53rd Annual Conference, Canadian Geotechnical publication-title: Society. – volume: 12 start-page: 331 issue: 1 year: 2021 ident: 10.1016/j.tust.2022.104494_b0145 article-title: Advanced prediction of tunnel boring machine performance based on big data publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.02.011 – volume: 41 start-page: 756 year: 2004 ident: 10.1016/j.tust.2022.104494_b0155 article-title: Using logistic regression to investigate and improve an empirical design method publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2004.03.131 – ident: 10.1016/j.tust.2022.104494_b0195 – volume: 109 start-page: 1457 issue: 2 year: 2021 ident: 10.1016/j.tust.2022.104494_b0045 article-title: Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory publication-title: Nat. Hazards doi: 10.1007/s11069-021-04885-5 – volume: 1-33 year: 2022 ident: 10.1016/j.tust.2022.104494_b0341 article-title: Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential publication-title: Artificial Intelligence Review – volume: 79 start-page: 4265 issue: 8 year: 2020 ident: 10.1016/j.tust.2022.104494_b0305 article-title: Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01788-w – volume: 88 start-page: 912 issue: 4 year: 2013 ident: 10.1016/j.tust.2022.104494_b0085 article-title: The ecological impacts of nighttime light pollution: a mechanistic appraisal publication-title: Biol. Rev. doi: 10.1111/brv.12036 – volume: 78 start-page: 79 year: 2017 ident: 10.1016/j.tust.2022.104494_b0285 article-title: Biological inspired optimization algorithms for cole-impedance parameters identification publication-title: Aeu-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2017.05.010 – volume: 92 start-page: 1179 issue: 2 year: 2018 ident: 10.1016/j.tust.2022.104494_b0210 article-title: Prediction of open stope hangingwall stability using random forests publication-title: Nat. Hazards doi: 10.1007/s11069-018-3246-7 – volume: 30 start-page: 4753 issue: 6 year: 2021 ident: 10.1016/j.tust.2022.104494_b0346 article-title: Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations publication-title: Natural Resources Research doi: 10.1007/s11053-021-09929-y – year: 2021 ident: 10.1016/j.tust.2022.104494_b0055 article-title: Grid Search Optimised Artificial Neural Network for Open Stope Stability Prediction publication-title: Int. J. Min. Reclam. Environ. doi: 10.1080/17480930.2021.1899404 – volume: 145 year: 2021 ident: 10.1016/j.tust.2022.104494_b0330 article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2021.104856 – year: 2021 ident: 10.1016/j.tust.2022.104494_b0200 article-title: An evolutionary adaptive neuro-fuzzy inference system for estimating field penetration index of tunnel boring machine in rock mass publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.05.010 – volume: 576 start-page: 698 year: 2019 ident: 10.1016/j.tust.2022.104494_b0050 article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.06.065 – year: 2004 ident: 10.1016/j.tust.2022.104494_b0185 article-title: Update of span design curve for weak rock masses – volume: 12 issue: 3 year: 2021 ident: 10.1016/j.tust.2022.104494_b0280 article-title: Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms publication-title: Geosci. Front. doi: 10.1016/j.gsf.2020.11.005 – volume: 9 issue: 7 year: 2016 ident: 10.1016/j.tust.2022.104494_b0080 article-title: Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers publication-title: Materials doi: 10.3390/ma9070531 – year: 2021 ident: 10.1016/j.tust.2022.104494_b0105 article-title: (2021) Prediction of Stope Stability Using Variable Weight and Unascertained Measurement Technique publication-title: Geofluids doi: 10.1155/2021/8821168 – volume: 45 start-page: 322 issue: 2 year: 2016 ident: 10.1016/j.tust.2022.104494_b0065 article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems publication-title: Appl. Intell. doi: 10.1007/s10489-016-0767-1 – year: 1994 ident: 10.1016/j.tust.2022.104494_b0125 – start-page: 1 year: 2021 ident: 10.1016/j.tust.2022.104494_b0025 article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity publication-title: Artif. Intell. Rev. – volume: 45 start-page: 427 issue: 4 year: 2009 ident: 10.1016/j.tust.2022.104494_b0240 article-title: A systematic analysis of performance measures for classification tasks publication-title: Inf. Process. Manage. doi: 10.1016/j.ipm.2009.03.002 – volume: 70 start-page: 148 year: 2017 ident: 10.1016/j.tust.2022.104494_b0095 article-title: Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2017.07.013 – volume: 111 start-page: A73 year: 2002 ident: 10.1016/j.tust.2022.104494_b0260 article-title: Application of a neural network in the empirical design of underground excavation spans publication-title: Trans. Inst. Mining Metall. Section a-Mining Technol. doi: 10.1179/mnt.2002.111.1.73 – volume: 9 issue: 8 year: 2019 ident: 10.1016/j.tust.2022.104494_b0315 article-title: Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials publication-title: Appl. Sci. Basel – ident: 10.1016/j.tust.2022.104494_b0335 doi: 10.1016/j.engappai.2020.104015 – volume: 70 start-page: 980 year: 2018 ident: 10.1016/j.tust.2022.104494_b0150 article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.030 – year: 1988 ident: 10.1016/j.tust.2022.104494_b0205 – year: 2019 ident: 10.1016/j.tust.2022.104494_b0015 article-title: Mine stope performance assessment in unfavorable rock mass conditions using neural network-based classifiers – volume: 52 start-page: 64 year: 2017 ident: 10.1016/j.tust.2022.104494_b0225 article-title: Multi-objective Grey Wolf Optimizer for improved cervix lesion classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.022 – volume: 73 start-page: 395 year: 2020 ident: 10.1016/j.tust.2022.104494_b0230 article-title: Open stope stability assessment through artificial intelligence publication-title: REM-Int. Eng. J. doi: 10.1590/0370-44672020730012 – volume: 23 start-page: 6023 issue: 15 year: 2019 ident: 10.1016/j.tust.2022.104494_b0235 article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization publication-title: Soft. Comput. doi: 10.1007/s00500-018-3586-y – start-page: 1 year: 2022 ident: 10.1016/j.tust.2022.104494_b0343 article-title: Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression publication-title: International Journal of Mining Science and Technology – volume: 134 start-page: 50 year: 2017 ident: 10.1016/j.tust.2022.104494_b0165 article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.07.018 – volume: 37 start-page: 3519 issue: 4 year: 2021 ident: 10.1016/j.tust.2022.104494_b0140 article-title: Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill publication-title: Eng. Comput. doi: 10.1007/s00366-020-01014-x – volume: 79 start-page: 291 issue: 1 year: 2015 ident: 10.1016/j.tust.2022.104494_b0320 article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction publication-title: Nat. Hazards doi: 10.1007/s11069-015-1842-3 – volume: 89 start-page: 228 year: 2015 ident: 10.1016/j.tust.2022.104494_b0160 article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.07.006 – volume: 28 start-page: 527 issue: 2 year: 2021 ident: 10.1016/j.tust.2022.104494_b0344 article-title: Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques publication-title: Journal of Central South University doi: 10.1007/s11771-021-4619-8 – volume: 87 start-page: 104 year: 2016 ident: 10.1016/j.tust.2022.104494_b0255 article-title: Statistical analysis of the stability number adjustment factors and implications for underground mine design publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2016.06.001 – volume: 13 start-page: 1380 issue: 6 year: 2021 ident: 10.1016/j.tust.2022.104494_b0135 article-title: Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2021.07.013 – year: 2021 ident: 10.1016/j.tust.2022.104494_b0300 article-title: Performance evaluation of hybrid GA-SVM and GWO-SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation publication-title: Eng. Comput. – volume: 20 start-page: 18 issue: 2 year: 2020 ident: 10.1016/j.tust.2022.104494_b0220 article-title: Development of a Stope Stability Prediction Model Using Ensemble Learning Techniques-A Case Study publication-title: Ghana Mining Journal doi: 10.4314/gm.v20i2.3 – volume: 79 start-page: 2763 issue: 6 year: 2020 ident: 10.1016/j.tust.2022.104494_b0270 article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-020-01730-0 – volume: 114 start-page: 13 issue: 1 year: 2005 ident: 10.1016/j.tust.2022.104494_b0035 article-title: Empirical approaches for opening design in weak rock masses publication-title: Mining Technology doi: 10.1179/037178405X44494 – volume: 30 start-page: 3707 issue: 12 year: 2018 ident: 10.1016/j.tust.2022.104494_b0020 article-title: A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2952-5 – volume: 1-24 year: 2022 ident: 10.1016/j.tust.2022.104494_b0342 article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm publication-title: Acta Geotechnica – volume: 6 start-page: 379 issue: 4 year: 2021 ident: 10.1016/j.tust.2022.104494_b0130 article-title: Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques publication-title: Underground Space doi: 10.1016/j.undsp.2020.05.005 – ident: 10.1016/j.tust.2022.104494_b0075 – volume: 118 year: 2021 ident: 10.1016/j.tust.2022.104494_b0030 article-title: Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104183 – start-page: 1 year: 2021 ident: 10.1016/j.tust.2022.104494_b0290 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Artif. Intell. Rev. – volume: 30 start-page: 191 issue: 1 year: 2021 ident: 10.1016/j.tust.2022.104494_b0180 article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09710-7 – volume: 21 issue: 3–4 year: 2006 ident: 10.1016/j.tust.2022.104494_b0245 article-title: Stability assessment in wide underground mine openings by Mathews’ stability graph method publication-title: Tunn. Undergr. Space Technol. – ident: 10.1016/j.tust.2022.104494_b0110 – year: 2021 ident: 10.1016/j.tust.2022.104494_b0010 article-title: A Feasibility Study on The Implementation of Neural Network Classifiers for Open Stope Design publication-title: Geotech. Geol. Eng. – volume: 30 start-page: 2355 issue: 8 year: 2018 ident: 10.1016/j.tust.2022.104494_b0070 article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2818-2 – volume: 15 start-page: 3135 issue: 11 year: 2020 ident: 10.1016/j.tust.2022.104494_b0275 article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method publication-title: Acta Geotech. doi: 10.1007/s11440-020-00962-4 – volume: 31 start-page: 991 issue: 4 year: 2019 ident: 10.1016/j.tust.2022.104494_b0060 article-title: Chaotic multi-verse optimizer-based feature selection publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3131-4 – volume: 33 issue: 3 year: 2019 ident: 10.1016/j.tust.2022.104494_b0310 article-title: Feasibility of Stochastic Gradient Boosting Approach for Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories publication-title: J. Perform. Constr. Facil doi: 10.1061/(ASCE)CF.1943-5509.0001292 – volume: 60 start-page: 115 year: 2017 ident: 10.1016/j.tust.2022.104494_b0100 article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.06.044 – volume: 30 issue: 5 year: 2016 ident: 10.1016/j.tust.2022.104494_b0325 article-title: Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods publication-title: J. Comput. Civil Eng. doi: 10.1061/(ASCE)CP.1943-5487.0000553 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.tust.2022.104494_b0040 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 1 year: 2021 ident: 10.1016/j.tust.2022.104494_b0215 article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration publication-title: Eng. Comput. – volume: 191 year: 2020 ident: 10.1016/j.tust.2022.104494_b0005 article-title: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2019.105237 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.tust.2022.104494_b0175 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: 10.1016/j.tust.2022.104494_b0190 – start-page: 1 year: 2022 ident: 10.1016/j.tust.2022.104494_b0345 article-title: A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting publication-title: Neural Computing and Applications – volume: 11 start-page: 1095 issue: 4 year: 2020 ident: 10.1016/j.tust.2022.104494_b0295 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci. Front. doi: 10.1016/j.gsf.2019.12.003 |
| SSID | ssj0005229 |
| Score | 2.6053987 |
| Snippet | •We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation... The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104494 |
| SubjectTerms | Algorithms Classification Construction accidents & safety Critical span graph Decision trees Entry-type excavations Excavation Hybrid model Kernel functions Machine learning Mathematical models Mining engineering Optimization Parameters Performance enhancement Performance evaluation Performance indices Random forest Rock masses Stability Stability analysis Support vector machines Systems stability Underground construction Working conditions |
| Title | Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations |
| URI | https://dx.doi.org/10.1016/j.tust.2022.104494 https://www.proquest.com/docview/2667852063 |
| Volume | 124 |
| WOSCitedRecordID | wos000793657600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-4364 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005229 issn: 0886-7798 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1tCAfuEGqPOw8jhVqVRB0OSxl4RLZsaOmarPVNlntvT-Cv8v4Ea_ZqhU9cMmuooll7Xw7_mYyD4TecRLljIkwkJzwgMR1EjCeskDQvCI5K0Kq67hPvmTHx_l0WnwbjX4PtTCL86xt8-WyuPyvqoZ7oGxVOnsPdbtF4QZ8B6XDFdQO139S_BiMwIWtrlRUEA4jMbtQ6YRwALi5PIpv9iaO__VkrKPjP8Ym6-JwrPuI2DbgtpoKSKROo9Uv5FXh2VzVg4C4nkwS6EiuXFZs4UUALeed9DqXZqiG9B8GcwZ2pbsR3v91Ous1vjzwHvVDaPu0Z40L2DZa8Ces3jd-CAO8X5dq5SxdCjTfjKN2ZjkmnmEFr5GYacg3bL4JP5ztdapGRS2_txL-u8H22sHn0hGHTLezUq1RqjVKs8YDtBlntACLv7n_6WD62cse0gPw3M5tPZZJHVzfyW2cZ-3015Rm8hQ9sb4I3jcYeoZGsn2OHnsdKl-gax9NeFZjgyZs0IQtmuBTYkCTEgA0fcCAJQyCGLCEmxavsKQlHZaUvAcHvMIS9rD0En0_PJh8PArs3I6AJTTqgihiUZSJRMJJK1KSEh7HWVgVouZEAJ8XBQ0jXoBjW4U1TVid1FzNVaAJiOSRTF6hjXbWyi2EeSIoZSAHfjARaZ3Lus5CngIpzSWPk20UDb9sWdmm9mq2ynl5u0630Xv3zKVp6XKnNB0UVlpSashmCfi787ndQbultQ5XJbDhLKcxuAWv77WJHfRo9b_ZRRvdvJdv0MNq0TVX87cWm38AUoS8cQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+random+forest+through+the+use+of+MVO%2C+GWO+and+MFO+in+evaluating+the+stability+of+underground+entry-type+excavations&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhou%2C+Jian&rft.au=Huang%2C+Shuai&rft.au=Qiu%2C+Yingui&rft.date=2022-06-01&rft.issn=0886-7798&rft.volume=124&rft.spage=104494&rft_id=info:doi/10.1016%2Fj.tust.2022.104494&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tust_2022_104494 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon |