Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations

•We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation stability.•MVO, GWO and MFO can assist the hyper-parameters tuning of RF.•The accuracy of the proposed models is better than the models in pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tunnelling and underground space technology Jg. 124; S. 104494
Hauptverfasser: Zhou, Jian, Huang, Shuai, Qiu, Yingui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.06.2022
Elsevier BV
Schlagworte:
ISSN:0886-7798, 1878-4364
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation stability.•MVO, GWO and MFO can assist the hyper-parameters tuning of RF.•The accuracy of the proposed models is better than the models in previous studies.•The models based on RF can update the critical span graph scientifically. The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be provided with a safe and reliable working environment and whether subsequent mining operations can be carried out normally. The design and stability assessment of entry-type excavations in current mining engineering largely relies on an empirical design method called the critical span graph, which has been widely applied in the initial span design of various cut and fill stopes. In recent years, with the wide application of various intelligent algorithms in the field of mine engineering, models based on intelligent algorithms provide new research methods and ideas for the assessment of rock stability in entry-type excavations. This study aims to introduce several hybrid models based on the random forest (RF) algorithm into the stability evaluation work to find new data-driven methods with higher accuracy to update the critical span graph. To pursue better classification performance, this paper selects three optimization strategies, namely multi-verse optimizer (MVO), grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithm, to optimize two core parameters of RF, and establishes three corresponding hybrid models, abbreviated as MVO-RF, GWO-RF and MFO-RF, based on the database containing 399 samples from seven Canada mines. There are two input parameters in the database, i.e., opening span and rock mass condition (expressed as RMR), and the output parameter is rock mass stability, which is specifically divided into three categories: stable, potentially unstable and unstable. In addition, five commonly used measurement indexes applicable to multiclassification problems were adopted to verify the classification ability of the models, i.e., the accuracy (ACC), precision calculated using macro-average (PREM), recall calculated using macro-average (RECM), F1 score calculated using macro-average (F1M) and Kappa index (Kappa). The results indicate that the three hybrid models performed well based on the test set accounting for 25 % of the original database, in which the accuracy of the MFO-RF model was the highest: ACC = 0.9300; PREM = 0.9288; RECM = 0.8983; F1M = 0.9116; Kappa = 0.8666. To evaluate whether the three optimization strategies can effectively improve the performance of RF and judge the degree of improvement, the performance of an unoptimized RF model was discussed in this study. In addition, two support vector machine (SVM) models with different kernel functions were selected as references for performance evaluation. The results indicated that compared with the RF and two SVM models, the classification accuracy of the three hybrid models was obviously more satisfactory. The classification accuracy of the three hybrid models reached 0.91, which was sufficient to explain the excellent classification ability of these models. After tuning the RF hyperparameters of each hybrid model, the critical span graph was further updated according to the optimized classification models, which was the focus of this research. By comparing the critical span graphs obtained by the three hybrid models with the single RF model and two kinds of SVM models, it is certain that the three hybrid models proposed in this paper, MVO-RF, GWO-RF and MFO-RF, are promising in the study of evaluating the stability of entry-type excavations and may be deemed auxiliary decision tools to define the stability region of the critical span graph.
AbstractList The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be provided with a safe and reliable working environment and whether subsequent mining operations can be carried out normally. The design and stability assessment of entry-type excavations in current mining engineering largely relies on an empirical design method called the critical span graph, which has been widely applied in the initial span design of various cut and fill stopes. In recent years, with the wide application of various intelligent algorithms in the field of mine engineering, models based on intelligent algorithms provide new research methods and ideas for the assessment of rock stability in entry-type excavations. This study aims to introduce several hybrid models based on the random forest (RF) algorithm into the stability evaluation work to find new data-driven methods with higher accuracy to update the critical span graph. To pursue better classification performance, this paper selects three optimization strategies, namely multi-verse optimizer (MVO), grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithm, to optimize two core parameters of RF, and establishes three corresponding hybrid models, abbreviated as MVO-RF, GWO-RF and MFO-RF, based on the database containing 399 samples from seven Canada mines. There are two input parameters in the database, i.e., opening span and rock mass condition (expressed as RMR), and the output parameter is rock mass stability, which is specifically divided into three categories: stable, potentially unstable and unstable. In addition, five commonly used measurement indexes applicable to multiclassification problems were adopted to verify the classification ability of the models, i.e., the accuracy (ACC), precision calculated using macro-average (PREM), recall calculated using macro-average (RECM), F1 score calculated using macro-average (F1M) and Kappa index (Kappa). The results indicate that the three hybrid models performed well based on the test set accounting for 25 % of the original database, in which the accuracy of the MFO-RF model was the highest: ACC = 0.9300; PREM = 0.9288; RECM = 0.8983; F1M = 0.9116; Kappa = 0.8666. To evaluate whether the three optimization strategies can effectively improve the performance of RF and judge the degree of improvement, the performance of an unoptimized RF model was discussed in this study. In addition, two support vector machine (SVM) models with different kernel functions were selected as references for performance evaluation. The results indicated that compared with the RF and two SVM models, the classification accuracy of the three hybrid models was obviously more satisfactory. The classification accuracy of the three hybrid models reached 0.91, which was sufficient to explain the excellent classification ability of these models. After tuning the RF hyperparameters of each hybrid model, the critical span graph was further updated according to the optimized classification models, which was the focus of this research. By comparing the critical span graphs obtained by the three hybrid models with the single RF model and two kinds of SVM models, it is certain that the three hybrid models proposed in this paper, MVO-RF, GWO-RF and MFO-RF, are promising in the study of evaluating the stability of entry-type excavations and may be deemed auxiliary decision tools to define the stability region of the critical span graph.
•We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation stability.•MVO, GWO and MFO can assist the hyper-parameters tuning of RF.•The accuracy of the proposed models is better than the models in previous studies.•The models based on RF can update the critical span graph scientifically. The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be provided with a safe and reliable working environment and whether subsequent mining operations can be carried out normally. The design and stability assessment of entry-type excavations in current mining engineering largely relies on an empirical design method called the critical span graph, which has been widely applied in the initial span design of various cut and fill stopes. In recent years, with the wide application of various intelligent algorithms in the field of mine engineering, models based on intelligent algorithms provide new research methods and ideas for the assessment of rock stability in entry-type excavations. This study aims to introduce several hybrid models based on the random forest (RF) algorithm into the stability evaluation work to find new data-driven methods with higher accuracy to update the critical span graph. To pursue better classification performance, this paper selects three optimization strategies, namely multi-verse optimizer (MVO), grey wolf optimizer (GWO) and moth-flame optimization (MFO) algorithm, to optimize two core parameters of RF, and establishes three corresponding hybrid models, abbreviated as MVO-RF, GWO-RF and MFO-RF, based on the database containing 399 samples from seven Canada mines. There are two input parameters in the database, i.e., opening span and rock mass condition (expressed as RMR), and the output parameter is rock mass stability, which is specifically divided into three categories: stable, potentially unstable and unstable. In addition, five commonly used measurement indexes applicable to multiclassification problems were adopted to verify the classification ability of the models, i.e., the accuracy (ACC), precision calculated using macro-average (PREM), recall calculated using macro-average (RECM), F1 score calculated using macro-average (F1M) and Kappa index (Kappa). The results indicate that the three hybrid models performed well based on the test set accounting for 25 % of the original database, in which the accuracy of the MFO-RF model was the highest: ACC = 0.9300; PREM = 0.9288; RECM = 0.8983; F1M = 0.9116; Kappa = 0.8666. To evaluate whether the three optimization strategies can effectively improve the performance of RF and judge the degree of improvement, the performance of an unoptimized RF model was discussed in this study. In addition, two support vector machine (SVM) models with different kernel functions were selected as references for performance evaluation. The results indicated that compared with the RF and two SVM models, the classification accuracy of the three hybrid models was obviously more satisfactory. The classification accuracy of the three hybrid models reached 0.91, which was sufficient to explain the excellent classification ability of these models. After tuning the RF hyperparameters of each hybrid model, the critical span graph was further updated according to the optimized classification models, which was the focus of this research. By comparing the critical span graphs obtained by the three hybrid models with the single RF model and two kinds of SVM models, it is certain that the three hybrid models proposed in this paper, MVO-RF, GWO-RF and MFO-RF, are promising in the study of evaluating the stability of entry-type excavations and may be deemed auxiliary decision tools to define the stability region of the critical span graph.
ArticleNumber 104494
Author Zhou, Jian
Qiu, Yingui
Huang, Shuai
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: j.zhou@csu.edu.cn, csujzhou@hotmail.com
– sequence: 2
  givenname: Shuai
  surname: Huang
  fullname: Huang, Shuai
  email: 205511038@csu.edu.cn
– sequence: 3
  givenname: Yingui
  surname: Qiu
  fullname: Qiu, Yingui
  email: 195512085@csu.edu.cn
BookMark eNp9kE9P4zAUxK0VSFvY_QJ7ssR1U2wnsR2JC0ILiwTKhT9Hy4lfiqvWLrZT0b3yxddpOXHgNNLTb-Zp5gQdOe8AoV-UzCmh_Hw5T2NMc0YYy4eqaqpvaEalkEVV8uoIzYiUvBCikd_RSYxLQkjNWDND7-0m2bX9p5P1DvsBB-2MX-PBB4gJp5fgx8VLVsBjhAm4f2p_45vnFmcQ31-32DoMW70ac4Rb7MmYdGdXNu0mfnQGwiLHZBxcCrsi7TaA4a3X2_3X-AMdD3oV4eeHnqLH6z8PV3-Lu_bm9uryrtBlTVNBqaZUmBKk4IZXvOoYE6RvzNBVhpLaNDWhXSMZ78lQl3ooh06KWtRlRiSF8hSdHXI3wb-OuZ5a-jG4_FIxzoWsGeFlptiB6oOPMcCgNsGuddgpStQ0tlqqaWw1ja0OY2eT_GTqbdq3S0Hb1dfWi4MVcvWthaBib8H1YGyAPinj7Vf2_yCjnfQ
CitedBy_id crossref_primary_10_1016_j_undsp_2022_08_002
crossref_primary_10_3390_pr12040783
crossref_primary_10_1016_j_jrmge_2024_05_024
crossref_primary_10_1007_s00603_025_04760_w
crossref_primary_10_1007_s11440_023_01988_0
crossref_primary_10_1016_j_trgeo_2023_101022
crossref_primary_10_1016_j_eiar_2023_107229
crossref_primary_10_1016_j_engappai_2024_108399
crossref_primary_10_1007_s13369_022_07478_x
crossref_primary_10_3390_polym17182541
crossref_primary_10_3390_math11051245
crossref_primary_10_3390_math11183886
crossref_primary_10_1515_rams_2023_0179
crossref_primary_10_1016_j_cscm_2023_e02766
crossref_primary_10_1177_01423312251350754
crossref_primary_10_3390_ma16010308
crossref_primary_10_1016_j_rser_2024_115003
crossref_primary_10_1016_j_undsp_2024_01_007
crossref_primary_10_1007_s11053_023_10259_4
crossref_primary_10_1016_j_undsp_2024_01_004
crossref_primary_10_1016_j_tust_2024_105585
crossref_primary_10_3390_su14095348
crossref_primary_10_1016_j_applthermaleng_2025_126421
crossref_primary_10_1016_j_engstruct_2023_116556
crossref_primary_10_3390_info16080660
crossref_primary_10_3390_biomimetics10090561
crossref_primary_10_1016_j_undsp_2023_11_002
crossref_primary_10_1007_s00603_024_03947_x
crossref_primary_10_1016_j_tust_2023_105235
crossref_primary_10_1007_s11709_024_1041_y
crossref_primary_10_3390_buildings14030591
crossref_primary_10_3389_fpubh_2023_1119580
crossref_primary_10_1016_j_tust_2025_106888
crossref_primary_10_1016_j_jappgeo_2025_105929
crossref_primary_10_1016_j_envsoft_2024_106058
crossref_primary_10_3390_app132212262
crossref_primary_10_1038_s41598_022_11752_1
crossref_primary_10_1016_j_istruc_2023_01_059
crossref_primary_10_1002_nag_3972
crossref_primary_10_1007_s00603_025_04407_w
crossref_primary_10_1007_s11053_024_10371_z
crossref_primary_10_1016_j_jer_2025_08_001
crossref_primary_10_3389_feart_2023_1116664
crossref_primary_10_1007_s00603_023_03522_w
crossref_primary_10_3390_s24041285
crossref_primary_10_1016_j_jenvman_2024_123068
crossref_primary_10_1016_j_jobe_2023_108386
crossref_primary_10_3390_app122010258
crossref_primary_10_3390_geosciences15020047
crossref_primary_10_32604_cmes_2023_025714
crossref_primary_10_1007_s11771_022_5208_1
crossref_primary_10_1109_TEM_2023_3348991
crossref_primary_10_1016_j_engappai_2025_110134
crossref_primary_10_3390_app15147972
crossref_primary_10_3390_geosciences13100294
crossref_primary_10_1016_j_ijmst_2023_06_001
crossref_primary_10_1007_s00603_023_03483_0
crossref_primary_10_1007_s00603_024_03801_0
crossref_primary_10_1515_rams_2023_0189
crossref_primary_10_1007_s11771_024_5699_z
crossref_primary_10_3233_JIFS_223369
crossref_primary_10_1007_s00603_024_03928_0
crossref_primary_10_1109_ACCESS_2024_3376235
crossref_primary_10_1080_17486025_2023_2207546
crossref_primary_10_1016_j_trgeo_2022_100806
crossref_primary_10_1016_j_ijmst_2023_12_005
crossref_primary_10_1007_s11600_024_01320_8
crossref_primary_10_1016_j_renene_2023_04_003
crossref_primary_10_1016_j_rineng_2023_100892
crossref_primary_10_1016_j_fuel_2024_133953
crossref_primary_10_1007_s11069_025_07251_x
crossref_primary_10_3390_ma16114034
crossref_primary_10_1016_j_trgeo_2022_100819
crossref_primary_10_1016_j_conbuildmat_2023_133911
crossref_primary_10_1016_j_compstruct_2024_117943
crossref_primary_10_1007_s11053_022_10082_3
crossref_primary_10_1007_s12145_024_01621_y
crossref_primary_10_1007_s10462_024_10917_w
crossref_primary_10_3390_su15075642
crossref_primary_10_1007_s42461_022_00713_x
crossref_primary_10_1016_j_asoc_2024_111388
crossref_primary_10_1016_j_gsf_2023_101769
crossref_primary_10_1016_j_gsf_2024_101802
crossref_primary_10_1007_s42461_024_00945_z
crossref_primary_10_1007_s41939_024_00577_2
crossref_primary_10_1016_j_tust_2024_105960
crossref_primary_10_1038_s41598_025_12758_1
crossref_primary_10_1007_s10462_024_10898_w
crossref_primary_10_1007_s00603_025_04730_2
crossref_primary_10_1080_10942912_2025_2558009
crossref_primary_10_3390_en15197437
crossref_primary_10_1016_j_tust_2025_106390
crossref_primary_10_3390_eng6050088
crossref_primary_10_3390_app13042574
crossref_primary_10_1051_meca_2024010
crossref_primary_10_3390_ma16031286
crossref_primary_10_1016_j_fuel_2025_136065
crossref_primary_10_1063_5_0187668
crossref_primary_10_1007_s11440_022_01685_4
crossref_primary_10_32604_cmes_2023_030418
Cites_doi 10.1016/j.ijmst.2013.08.014
10.1016/j.ijrmms.2012.07.012
10.1007/s00521-015-1870-7
10.1016/j.gsf.2020.02.011
10.1016/j.ijrmms.2004.03.131
10.1007/s11069-021-04885-5
10.1007/s10064-020-01788-w
10.1111/brv.12036
10.1016/j.aeue.2017.05.010
10.1007/s11069-018-3246-7
10.1007/s11053-021-09929-y
10.1080/17480930.2021.1899404
10.1016/j.ijrmms.2021.104856
10.1016/j.jrmge.2021.05.010
10.1016/j.jhydrol.2019.06.065
10.1016/j.gsf.2020.11.005
10.3390/ma9070531
10.1155/2021/8821168
10.1007/s10489-016-0767-1
10.1016/j.ipm.2009.03.002
10.1016/j.tust.2017.07.013
10.1179/mnt.2002.111.1.73
10.1016/j.engappai.2020.104015
10.1016/j.asoc.2017.06.030
10.1016/j.asoc.2016.12.022
10.1590/0370-44672020730012
10.1007/s00500-018-3586-y
10.1016/j.knosys.2017.07.018
10.1007/s00366-020-01014-x
10.1007/s11069-015-1842-3
10.1016/j.knosys.2015.07.006
10.1007/s11771-021-4619-8
10.1016/j.ijrmms.2016.06.001
10.1016/j.jrmge.2021.07.013
10.4314/gm.v20i2.3
10.1007/s10064-020-01730-0
10.1179/037178405X44494
10.1007/s00521-017-2952-5
10.1016/j.undsp.2020.05.005
10.1016/j.tust.2021.104183
10.1007/s11053-020-09710-7
10.1007/s00521-016-2818-2
10.1007/s11440-020-00962-4
10.1007/s00521-017-3131-4
10.1061/(ASCE)CF.1943-5509.0001292
10.1016/j.asoc.2017.06.044
10.1061/(ASCE)CP.1943-5487.0000553
10.1023/A:1010933404324
10.1016/j.knosys.2019.105237
10.1016/j.advengsoft.2013.12.007
10.1016/j.gsf.2019.12.003
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2022
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1016/j.tust.2022.104494
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-4364
ExternalDocumentID 10_1016_j_tust_2022_104494
S0886779822001341
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LY3
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSZ
T5K
WUQ
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
KR7
SSH
ID FETCH-LOGICAL-a351t-11a117d3e876d6464b2270c9dfb4d105d9501b9826c0f53af3fb8757539df81e3
ISICitedReferencesCount 111
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793657600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0886-7798
IngestDate Sun Jul 13 04:24:25 EDT 2025
Tue Nov 18 22:23:10 EST 2025
Sat Nov 29 07:14:56 EST 2025
Fri Feb 23 02:41:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Random forest
Hybrid model
Stability
Critical span graph
Entry-type excavations
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a351t-11a117d3e876d6464b2270c9dfb4d105d9501b9826c0f53af3fb8757539df81e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2667852063
PQPubID 2045384
ParticipantIDs proquest_journals_2667852063
crossref_primary_10_1016_j_tust_2022_104494
crossref_citationtrail_10_1016_j_tust_2022_104494
elsevier_sciencedirect_doi_10_1016_j_tust_2022_104494
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Tunnelling and underground space technology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sokolova, Lapalme (b0240) 2009; 45
Sahoo, Chandra (b0225) 2017; 52
Dehghani, Seifi, Riahi-Madvar (b0050) 2019; 576
Zhou, Li, Mitri (b0320) 2015; 79
Adoko, Yakubov, Alipov (b0015) 2019
Du, Li, Su, Tao, Lv, Luo, Zhou (b0343) 2022
Koh, P. W. & Liang, P. (2017) Understanding Black-box Predictions via Influence Functions. In
Tuan Anh, Hai-Bang, Van Quan, Loi Van, Huong-Lan Thi, Hong-Anh Thi (b0250) 2020; 10
Mirjalili (b0160) 2015; 89
Zhou, Dai, Khandelwal, Monjezi, Yu, Qiu (b0346) 2021; 30
Faris, Aljarah, Mirjalili (b0065) 2016; 45
Zhou, Zhu, Qiu, Armaghani, Zhou, Yong (b0342) 2022; 1-24
Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (b0295) 2020; 11
Kuhn, Johnson (b0115) 2013
Abderazek, Yildiz, Mirjalili (b0005) 2020; 191
Wang, Zhou, Li, Armaghani, Li, Mitri (b0344) 2021; 28
Amirsadri, Mousavirad, Ebrahimpour-Komleh (b0020) 2018; 30
Wang, Milne, Pakalnis (b0260) 2002; 111
Zhou, Li, Mitri, Wang, Wei (b0340) 2013; 23
.
Mirjalili, Mirjalili, Lewis (b0175) 2014; 69
Zhou, Huang, Zhou, Armaghani, Qiu (b0341) 2022; 1-33
Li, Yang, Ren, Zhang, Zhou, Khandelwal (b0135) 2021; 13
Zhang, Li, Li, Liu, Chen, Ding (b0290) 2021
Garcia-Gonzalo, Fernandez-Muniz, Garcia Nieto, Bernardo Sanchez, Menendez Fernandez (b0080) 2016; 9
pp. 455–467.
Sunwoo, Rao Karanam (b0245) 2006; 21
Li, Li, Guo, Li, Chen (b0145) 2021; 12
Adoko, Saadaari, Mireku-Gyimah, Imashev (b0010) 2021
Kumar (b0120) 2003
Ouchi, Pakalnis, Brady (b0185) 2004
Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, C., Hoang, N. & Yagiz, S. (2021c) Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate.
Kang, Wang, Zhang, Pu, Zhang (b0105) 2021
Zhou, Li, Wei, Li, Qiao, Armaghani (b0315) 2019; 9
Santos, Amaral, Mendonça, Silva (b0230) 2020; 73
Matin, Farahzadi, Makaremi, Chelgani, Sattari (b0150) 2018; 70
Zhou, Li, Mitri (b0325) 2016; 30
Goh, Zhang, Zhang, Zhang, Xiao (b0095) 2017; 70
Lang (b0125) 1994
Li, Zhou, Shi, Jahed Armaghani, Yu, Chen, Huang (b0140) 2021; 37
Zhou, Koopialipoor, Li, Armaghani (b0305) 2020; 79
Omnipress, San Francisco, CA, United states.
Armaghani, Harandizadeh, Momeni, Maizir, Zhou (b0025) 2021
Zhou, Li, Wang, Chen, Shi, Jiang (b0310) 2019; 33
Faris, Hassonah, Al-Zoubi, Mirjalili, Aljarah (b0070) 2018; 30
Mirjalili, Jangir, Mirjalili, Saremi, Trivedi (b0165) 2017; 134
Wang, Pakalnis, Milne, Lang (b0265) 2000
Armaghani, Yagiz, Mohamad, Zhou (b0030) 2021; 118
Vallejos, Delonca, Fuenzalida, Burgos (b0255) 2016; 87
Qi, Fourie, Du, Tang (b0210) 2018; 92
Parsajoo, Mohammed, Yagiz, Armaghani, Khandelwal (b0200) 2021
Xie, Hoang, Xuan-Nam, Choi, Zhou, Thao (b0280) 2021; 12
Breiman (b0040) 2001; 45
Potvin (b0205) 1988
Zhou, Huang, Wang, Qiu (b0300) 2021
Yousri, Abdelaty, Said, Abobakr, Radwan (b0285) 2017; 78
Frank, K. D., Rich, C. & Longcore, T. (2006) Effects of artificial night lighting on moths. Ecol. Conseq. Artificial Night Lighting: 305–344.
Mirjalili, Mirjalili, Hatamlou (b0170) 2016; 27
Dai, Khandelwal, Qiu, Zhou, Monjezi, Yang (b0345) 2022
Chen, Zhou, Zhou, Yong (b0045) 2021; 109
Ouchi, A. M., Pakalnis, R. & Brady, T. M. (2008) Empirical design of span openings in weak rock based upon support type employed. In
Goh, Zhang (b0090) 2012; 55
Li, Zhou, Armaghani, Li (b0130) 2021; 6
Zhou, Qiu, Khandelwal, Zhu, Zhang (b0330) 2021; 145
Brady, Martin, Pakalnis (b0035) 2005; 114
Heidari, Pahlavani (b0100) 2017; 60
Sydney, AUSTRALIA, vol. 70.
Mawdesley (b0155) 2004; 41
Gaston, Bennie, Davies, Hopkins (b0085) 2013; 88
Wang, Wu, Tang, Zhang, Lacasse, Liu, Gao (b0275) 2020; 15
Wang, Wu, Gu, Liu, Mei, Zhang (b0270) 2020; 79
Erdogan Erten, Bozkurt Keser, Yavuz (b0055) 2021
Nguyen, Bui, Choi, Lee, Armaghani (b0180) 2021; 30
Pakalnis, R. & Vongpaisal, S. (1993) Mine design: an empirical approach. In
Ewees, Abd El Aziz, Hassanien (b0060) 2019; 31
Saadaari, Mireku-Gyimah, Olaleye (b0220) 2020; 20
Qiu, Zhou, Khandelwal, Yang, Yang, Li (b0215) 2021
Sapre, Mini (b0235) 2019; 23
10.1016/j.tust.2022.104494_b0075
10.1016/j.tust.2022.104494_b0195
Zhou (10.1016/j.tust.2022.104494_b0346) 2021; 30
10.1016/j.tust.2022.104494_b0190
Heidari (10.1016/j.tust.2022.104494_b0100) 2017; 60
Nguyen (10.1016/j.tust.2022.104494_b0180) 2021; 30
Zhou (10.1016/j.tust.2022.104494_b0310) 2019; 33
Matin (10.1016/j.tust.2022.104494_b0150) 2018; 70
Zhang (10.1016/j.tust.2022.104494_b0290) 2021
Armaghani (10.1016/j.tust.2022.104494_b0030) 2021; 118
Zhou (10.1016/j.tust.2022.104494_b0342) 2022; 1-24
Mirjalili (10.1016/j.tust.2022.104494_b0170) 2016; 27
Sapre (10.1016/j.tust.2022.104494_b0235) 2019; 23
Mawdesley (10.1016/j.tust.2022.104494_b0155) 2004; 41
Zhou (10.1016/j.tust.2022.104494_b0325) 2016; 30
Faris (10.1016/j.tust.2022.104494_b0070) 2018; 30
Sunwoo (10.1016/j.tust.2022.104494_b0245) 2006; 21
Li (10.1016/j.tust.2022.104494_b0130) 2021; 6
Goh (10.1016/j.tust.2022.104494_b0095) 2017; 70
Dai (10.1016/j.tust.2022.104494_b0345) 2022
Potvin (10.1016/j.tust.2022.104494_b0205) 1988
Vallejos (10.1016/j.tust.2022.104494_b0255) 2016; 87
Kuhn (10.1016/j.tust.2022.104494_b0115) 2013
Qiu (10.1016/j.tust.2022.104494_b0215) 2021
Mirjalili (10.1016/j.tust.2022.104494_b0165) 2017; 134
Yousri (10.1016/j.tust.2022.104494_b0285) 2017; 78
Zhou (10.1016/j.tust.2022.104494_b0341) 2022; 1-33
Amirsadri (10.1016/j.tust.2022.104494_b0020) 2018; 30
Wang (10.1016/j.tust.2022.104494_b0265) 2000
Saadaari (10.1016/j.tust.2022.104494_b0220) 2020; 20
Armaghani (10.1016/j.tust.2022.104494_b0025) 2021
Lang (10.1016/j.tust.2022.104494_b0125) 1994
Sokolova (10.1016/j.tust.2022.104494_b0240) 2009; 45
Gaston (10.1016/j.tust.2022.104494_b0085) 2013; 88
Wang (10.1016/j.tust.2022.104494_b0344) 2021; 28
10.1016/j.tust.2022.104494_b0335
Kumar (10.1016/j.tust.2022.104494_b0120) 2003
Zhou (10.1016/j.tust.2022.104494_b0300) 2021
Zhou (10.1016/j.tust.2022.104494_b0305) 2020; 79
Ewees (10.1016/j.tust.2022.104494_b0060) 2019; 31
Kang (10.1016/j.tust.2022.104494_b0105) 2021
Chen (10.1016/j.tust.2022.104494_b0045) 2021; 109
Garcia-Gonzalo (10.1016/j.tust.2022.104494_b0080) 2016; 9
Abderazek (10.1016/j.tust.2022.104494_b0005) 2020; 191
Faris (10.1016/j.tust.2022.104494_b0065) 2016; 45
Adoko (10.1016/j.tust.2022.104494_b0010) 2021
Breiman (10.1016/j.tust.2022.104494_b0040) 2001; 45
Parsajoo (10.1016/j.tust.2022.104494_b0200) 2021
Goh (10.1016/j.tust.2022.104494_b0090) 2012; 55
Ouchi (10.1016/j.tust.2022.104494_b0185) 2004
Xie (10.1016/j.tust.2022.104494_b0280) 2021; 12
Zhou (10.1016/j.tust.2022.104494_b0320) 2015; 79
Li (10.1016/j.tust.2022.104494_b0135) 2021; 13
Zhou (10.1016/j.tust.2022.104494_b0315) 2019; 9
Adoko (10.1016/j.tust.2022.104494_b0015) 2019
Brady (10.1016/j.tust.2022.104494_b0035) 2005; 114
Wang (10.1016/j.tust.2022.104494_b0275) 2020; 15
Wang (10.1016/j.tust.2022.104494_b0270) 2020; 79
Dehghani (10.1016/j.tust.2022.104494_b0050) 2019; 576
Tuan Anh (10.1016/j.tust.2022.104494_b0250) 2020; 10
Li (10.1016/j.tust.2022.104494_b0145) 2021; 12
Qi (10.1016/j.tust.2022.104494_b0210) 2018; 92
Zhang (10.1016/j.tust.2022.104494_b0295) 2020; 11
Erdogan Erten (10.1016/j.tust.2022.104494_b0055) 2021
Zhou (10.1016/j.tust.2022.104494_b0330) 2021; 145
Mirjalili (10.1016/j.tust.2022.104494_b0160) 2015; 89
Mirjalili (10.1016/j.tust.2022.104494_b0175) 2014; 69
Sahoo (10.1016/j.tust.2022.104494_b0225) 2017; 52
Santos (10.1016/j.tust.2022.104494_b0230) 2020; 73
Wang (10.1016/j.tust.2022.104494_b0260) 2002; 111
Li (10.1016/j.tust.2022.104494_b0140) 2021; 37
10.1016/j.tust.2022.104494_b0110
Du (10.1016/j.tust.2022.104494_b0343) 2022
Zhou (10.1016/j.tust.2022.104494_b0340) 2013; 23
References_xml – volume: 30
  start-page: 3707
  year: 2018
  end-page: 3720
  ident: b0020
  article-title: A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training
  publication-title: Neural Comput. Appl.
– volume: 70
  start-page: 980
  year: 2018
  end-page: 987
  ident: b0150
  article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2021
  end-page: 41
  ident: b0290
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artif. Intell. Rev.
– volume: 1-24
  year: 2022
  ident: b0342
  article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
  publication-title: Acta Geotechnica
– reference: .) Omnipress, San Francisco, CA, United states.
– volume: 13
  start-page: 1380
  year: 2021
  end-page: 1397
  ident: b0135
  article-title: Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 12
  start-page: 331
  year: 2021
  end-page: 338
  ident: b0145
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geosci. Front.
– volume: 9
  year: 2016
  ident: b0080
  article-title: Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers
  publication-title: Materials
– volume: 37
  start-page: 3519
  year: 2021
  end-page: 3540
  ident: b0140
  article-title: Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill
  publication-title: Eng. Comput.
– volume: 73
  start-page: 395
  year: 2020
  end-page: 401
  ident: b0230
  article-title: Open stope stability assessment through artificial intelligence
  publication-title: REM-Int. Eng. J.
– volume: 109
  start-page: 1457
  year: 2021
  end-page: 1479
  ident: b0045
  article-title: Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory
  publication-title: Nat. Hazards
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0040
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 576
  start-page: 698
  year: 2019
  end-page: 725
  ident: b0050
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: J. Hydrol.
– volume: 20
  start-page: 18
  year: 2020
  end-page: 26
  ident: b0220
  article-title: Development of a Stope Stability Prediction Model Using Ensemble Learning Techniques-A Case Study
  publication-title: Ghana Mining Journal
– year: 2019
  ident: b0015
  article-title: Mine stope performance assessment in unfavorable rock mass conditions using neural network-based classifiers
  publication-title: In
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0175
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 30
  year: 2016
  ident: b0325
  article-title: Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods
  publication-title: J. Comput. Civil Eng.
– year: 2000
  ident: b0265
  article-title: Empirical underground entry type excavation span design modification.
  publication-title: Society.
– year: 2021
  ident: b0300
  article-title: Performance evaluation of hybrid GA-SVM and GWO-SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation
  publication-title: Eng. Comput.
– reference: Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, C., Hoang, N. & Yagiz, S. (2021c) Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate.
– volume: 52
  start-page: 64
  year: 2017
  end-page: 80
  ident: b0225
  article-title: Multi-objective Grey Wolf Optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
– volume: 6
  start-page: 379
  year: 2021
  end-page: 395
  ident: b0130
  article-title: Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques
  publication-title: Underground Space
– start-page: 1
  year: 2022
  end-page: 16
  ident: b0345
  article-title: A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting
  publication-title: Neural Computing and Applications
– year: 2013
  ident: b0115
  article-title: Applied predictive modeling
– volume: 92
  start-page: 1179
  year: 2018
  end-page: 1197
  ident: b0210
  article-title: Prediction of open stope hangingwall stability using random forests
  publication-title: Nat. Hazards
– volume: 27
  start-page: 495
  year: 2016
  end-page: 513
  ident: b0170
  article-title: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
– year: 2021
  ident: b0010
  article-title: A Feasibility Study on The Implementation of Neural Network Classifiers for Open Stope Design
  publication-title: Geotech. Geol. Eng.
– volume: 11
  start-page: 1095
  year: 2020
  end-page: 1106
  ident: b0295
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci. Front.
– year: 2003
  ident: b0120
  article-title: Development of Empirical and Numerical Design Techniques in Burst Prone Ground at the Red Lake Mine
– year: 2021
  ident: b0055
  article-title: Grid Search Optimised Artificial Neural Network for Open Stope Stability Prediction
  publication-title: Int. J. Min. Reclam. Environ.
– year: 1994
  ident: b0125
  article-title: Span design for entry-type excavations
– reference: Ouchi, A. M., Pakalnis, R. & Brady, T. M. (2008) Empirical design of span openings in weak rock based upon support type employed. In
– start-page: 1
  year: 2021
  end-page: 18
  ident: b0215
  article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
  publication-title: Eng. Comput.
– year: 2021
  ident: b0200
  article-title: An evolutionary adaptive neuro-fuzzy inference system for estimating field penetration index of tunnel boring machine in rock mass
  publication-title: J. Rock Mech. Geotech. Eng.
– year: 1988
  ident: b0205
  article-title: Empirical open stope design in Canada.)
– start-page: 1
  year: 2021
  end-page: 38
  ident: b0025
  article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity
  publication-title: Artif. Intell. Rev.
– volume: 41
  start-page: 756
  year: 2004
  end-page: 761
  ident: b0155
  article-title: Using logistic regression to investigate and improve an empirical design method
  publication-title: Int. J. Rock Mech. Min. Sci.
– year: 2004
  ident: b0185
  article-title: Update of span design curve for weak rock masses
  publication-title: Proceedings of the 99th annual AGM-CIM conference
– volume: 111
  start-page: A73
  year: 2002
  end-page: A81
  ident: b0260
  article-title: Application of a neural network in the empirical design of underground excavation spans
  publication-title: Trans. Inst. Mining Metall. Section a-Mining Technol.
– volume: 30
  start-page: 4753
  year: 2021
  end-page: 4771
  ident: b0346
  article-title: Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations
  publication-title: Natural Resources Research
– volume: 12
  year: 2021
  ident: b0280
  article-title: Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms
  publication-title: Geosci. Front.
– volume: 15
  start-page: 3135
  year: 2020
  end-page: 3150
  ident: b0275
  article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method
  publication-title: Acta Geotech.
– reference: Frank, K. D., Rich, C. & Longcore, T. (2006) Effects of artificial night lighting on moths. Ecol. Conseq. Artificial Night Lighting: 305–344.
– volume: 45
  start-page: 322
  year: 2016
  end-page: 332
  ident: b0065
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Appl. Intell.
– volume: 28
  start-page: 527
  year: 2021
  end-page: 542
  ident: b0344
  article-title: Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques
  publication-title: Journal of Central South University
– reference: Koh, P. W. & Liang, P. (2017) Understanding Black-box Predictions via Influence Functions. In
– volume: 1-33
  year: 2022
  ident: b0341
  article-title: Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential
  publication-title: Artificial Intelligence Review
– volume: 10
  year: 2020
  ident: b0250
  article-title: Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest
  publication-title: Appl. Sci. Basel
– volume: 134
  start-page: 50
  year: 2017
  end-page: 71
  ident: b0165
  article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm
  publication-title: Knowl.-Based Syst.
– reference: Pakalnis, R. & Vongpaisal, S. (1993) Mine design: an empirical approach. In
– volume: 30
  start-page: 191
  year: 2021
  end-page: 207
  ident: b0180
  article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines
  publication-title: Nat. Resour. Res.
– volume: 31
  start-page: 991
  year: 2019
  end-page: 1006
  ident: b0060
  article-title: Chaotic multi-verse optimizer-based feature selection
  publication-title: Neural Comput. Appl.
– reference: .), Sydney, AUSTRALIA, vol. 70.
– volume: 79
  start-page: 2763
  year: 2020
  end-page: 2775
  ident: b0270
  article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines
  publication-title: Bull. Eng. Geol. Environ.
– volume: 118
  year: 2021
  ident: b0030
  article-title: Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches
  publication-title: Tunn. Undergr. Space Technol.
– volume: 79
  start-page: 291
  year: 2015
  end-page: 316
  ident: b0320
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat. Hazards
– volume: 88
  start-page: 912
  year: 2013
  end-page: 927
  ident: b0085
  article-title: The ecological impacts of nighttime light pollution: a mechanistic appraisal
  publication-title: Biol. Rev.
– year: 2021
  ident: b0105
  article-title: (2021) Prediction of Stope Stability Using Variable Weight and Unascertained Measurement Technique
  publication-title: Geofluids
– volume: 23
  start-page: 6023
  year: 2019
  end-page: 6041
  ident: b0235
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft. Comput.
– volume: 78
  start-page: 79
  year: 2017
  end-page: 89
  ident: b0285
  article-title: Biological inspired optimization algorithms for cole-impedance parameters identification
  publication-title: Aeu-Int. J. Electron. Commun.
– volume: 145
  year: 2021
  ident: b0330
  article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 55
  start-page: 157
  year: 2012
  end-page: 163
  ident: b0090
  article-title: Reliability assessment of stability of underground rock caverns
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 60
  start-page: 115
  year: 2017
  end-page: 134
  ident: b0100
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2022
  end-page: 17
  ident: b0343
  article-title: Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression
  publication-title: International Journal of Mining Science and Technology
– volume: 79
  start-page: 4265
  year: 2020
  end-page: 4279
  ident: b0305
  article-title: Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system
  publication-title: Bull. Eng. Geol. Environ.
– volume: 70
  start-page: 148
  year: 2017
  end-page: 154
  ident: b0095
  article-title: Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression
  publication-title: Tunn. Undergr. Space Technol.
– volume: 9
  year: 2019
  ident: b0315
  article-title: Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials
  publication-title: Appl. Sci. Basel
– reference: .
– volume: 89
  start-page: 228
  year: 2015
  end-page: 249
  ident: b0160
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: b0240
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
– volume: 30
  start-page: 2355
  year: 2018
  end-page: 2369
  ident: b0070
  article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture
  publication-title: Neural Comput. Appl.
– volume: 87
  start-page: 104
  year: 2016
  end-page: 112
  ident: b0255
  article-title: Statistical analysis of the stability number adjustment factors and implications for underground mine design
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 114
  start-page: 13
  year: 2005
  end-page: 20
  ident: b0035
  article-title: Empirical approaches for opening design in weak rock masses
  publication-title: Mining Technology
– reference: .), pp. 455–467.
– volume: 33
  year: 2019
  ident: b0310
  article-title: Feasibility of Stochastic Gradient Boosting Approach for Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories
  publication-title: J. Perform. Constr. Facil
– volume: 23
  start-page: 701
  year: 2013
  end-page: 707
  ident: b0340
  article-title: Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine
  publication-title: Int. J. Min. Sci. Technol.
– volume: 21
  year: 2006
  ident: b0245
  article-title: Stability assessment in wide underground mine openings by Mathews’ stability graph method
  publication-title: Tunn. Undergr. Space Technol.
– volume: 191
  year: 2020
  ident: b0005
  article-title: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism
  publication-title: Knowl.-Based Syst.
– volume: 10
  issue: 5
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0250
  article-title: Prediction of Pile Axial Bearing Capacity Using Artificial Neural Network and Random Forest
  publication-title: Appl. Sci. Basel
– year: 2003
  ident: 10.1016/j.tust.2022.104494_b0120
– volume: 23
  start-page: 701
  issue: 5
  year: 2013
  ident: 10.1016/j.tust.2022.104494_b0340
  article-title: Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2013.08.014
– volume: 55
  start-page: 157
  year: 2012
  ident: 10.1016/j.tust.2022.104494_b0090
  article-title: Reliability assessment of stability of underground rock caverns
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2012.07.012
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 10.1016/j.tust.2022.104494_b0170
  article-title: Multi-Verse Optimizer: a nature-inspired algorithm for global optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1870-7
– year: 2013
  ident: 10.1016/j.tust.2022.104494_b0115
– year: 2000
  ident: 10.1016/j.tust.2022.104494_b0265
  article-title: Empirical underground entry type excavation span design modification. Proceedings, 53rd Annual Conference, Canadian Geotechnical
  publication-title: Society.
– volume: 12
  start-page: 331
  issue: 1
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0145
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.02.011
– volume: 41
  start-page: 756
  year: 2004
  ident: 10.1016/j.tust.2022.104494_b0155
  article-title: Using logistic regression to investigate and improve an empirical design method
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2004.03.131
– ident: 10.1016/j.tust.2022.104494_b0195
– volume: 109
  start-page: 1457
  issue: 2
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0045
  article-title: Evaluation of vertical shaft stability in underground mines: comparison of three weight methods with uncertainty theory
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04885-5
– volume: 1-33
  year: 2022
  ident: 10.1016/j.tust.2022.104494_b0341
  article-title: Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential
  publication-title: Artificial Intelligence Review
– volume: 79
  start-page: 4265
  issue: 8
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0305
  article-title: Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01788-w
– volume: 88
  start-page: 912
  issue: 4
  year: 2013
  ident: 10.1016/j.tust.2022.104494_b0085
  article-title: The ecological impacts of nighttime light pollution: a mechanistic appraisal
  publication-title: Biol. Rev.
  doi: 10.1111/brv.12036
– volume: 78
  start-page: 79
  year: 2017
  ident: 10.1016/j.tust.2022.104494_b0285
  article-title: Biological inspired optimization algorithms for cole-impedance parameters identification
  publication-title: Aeu-Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2017.05.010
– volume: 92
  start-page: 1179
  issue: 2
  year: 2018
  ident: 10.1016/j.tust.2022.104494_b0210
  article-title: Prediction of open stope hangingwall stability using random forests
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3246-7
– volume: 30
  start-page: 4753
  issue: 6
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0346
  article-title: Performance of hybrid SCA-RF and HHO-RF models for predicting backbreak in open-pit mine blasting operations
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-021-09929-y
– year: 2021
  ident: 10.1016/j.tust.2022.104494_b0055
  article-title: Grid Search Optimised Artificial Neural Network for Open Stope Stability Prediction
  publication-title: Int. J. Min. Reclam. Environ.
  doi: 10.1080/17480930.2021.1899404
– volume: 145
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0330
  article-title: Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2021.104856
– year: 2021
  ident: 10.1016/j.tust.2022.104494_b0200
  article-title: An evolutionary adaptive neuro-fuzzy inference system for estimating field penetration index of tunnel boring machine in rock mass
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.05.010
– volume: 576
  start-page: 698
  year: 2019
  ident: 10.1016/j.tust.2022.104494_b0050
  article-title: Novel forecasting models for immediate-short-term to long-term influent flow prediction by combining ANFIS and grey wolf optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.06.065
– year: 2004
  ident: 10.1016/j.tust.2022.104494_b0185
  article-title: Update of span design curve for weak rock masses
– volume: 12
  issue: 3
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0280
  article-title: Predicting rock size distribution in mine blasting using various novel soft computing models based on meta-heuristics and machine learning algorithms
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.11.005
– volume: 9
  issue: 7
  year: 2016
  ident: 10.1016/j.tust.2022.104494_b0080
  article-title: Hard-Rock Stability Analysis for Span Design in Entry-Type Excavations with Learning Classifiers
  publication-title: Materials
  doi: 10.3390/ma9070531
– year: 2021
  ident: 10.1016/j.tust.2022.104494_b0105
  article-title: (2021) Prediction of Stope Stability Using Variable Weight and Unascertained Measurement Technique
  publication-title: Geofluids
  doi: 10.1155/2021/8821168
– volume: 45
  start-page: 322
  issue: 2
  year: 2016
  ident: 10.1016/j.tust.2022.104494_b0065
  article-title: Training feedforward neural networks using multi-verse optimizer for binary classification problems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-016-0767-1
– year: 1994
  ident: 10.1016/j.tust.2022.104494_b0125
– start-page: 1
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0025
  article-title: An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity
  publication-title: Artif. Intell. Rev.
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.tust.2022.104494_b0240
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manage.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 70
  start-page: 148
  year: 2017
  ident: 10.1016/j.tust.2022.104494_b0095
  article-title: Evaluating stability of underground entry-type excavations using multivariate adaptive regression splines and logistic regression
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.07.013
– volume: 111
  start-page: A73
  year: 2002
  ident: 10.1016/j.tust.2022.104494_b0260
  article-title: Application of a neural network in the empirical design of underground excavation spans
  publication-title: Trans. Inst. Mining Metall. Section a-Mining Technol.
  doi: 10.1179/mnt.2002.111.1.73
– volume: 9
  issue: 8
  year: 2019
  ident: 10.1016/j.tust.2022.104494_b0315
  article-title: Random Forests and Cubist Algorithms for Predicting Shear Strengths of Rockfill Materials
  publication-title: Appl. Sci. Basel
– ident: 10.1016/j.tust.2022.104494_b0335
  doi: 10.1016/j.engappai.2020.104015
– volume: 70
  start-page: 980
  year: 2018
  ident: 10.1016/j.tust.2022.104494_b0150
  article-title: Variable selection and prediction of uniaxial compressive strength and modulus of elasticity by random forest
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.030
– year: 1988
  ident: 10.1016/j.tust.2022.104494_b0205
– year: 2019
  ident: 10.1016/j.tust.2022.104494_b0015
  article-title: Mine stope performance assessment in unfavorable rock mass conditions using neural network-based classifiers
– volume: 52
  start-page: 64
  year: 2017
  ident: 10.1016/j.tust.2022.104494_b0225
  article-title: Multi-objective Grey Wolf Optimizer for improved cervix lesion classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.022
– volume: 73
  start-page: 395
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0230
  article-title: Open stope stability assessment through artificial intelligence
  publication-title: REM-Int. Eng. J.
  doi: 10.1590/0370-44672020730012
– volume: 23
  start-page: 6023
  issue: 15
  year: 2019
  ident: 10.1016/j.tust.2022.104494_b0235
  article-title: Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-018-3586-y
– start-page: 1
  year: 2022
  ident: 10.1016/j.tust.2022.104494_b0343
  article-title: Shape ratio effects on the mechanical characteristics of rectangular prism rocks and isolated pillars under uniaxial compression
  publication-title: International Journal of Mining Science and Technology
– volume: 134
  start-page: 50
  year: 2017
  ident: 10.1016/j.tust.2022.104494_b0165
  article-title: Optimization of problems with multiple objectives using the multi-verse optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.07.018
– volume: 37
  start-page: 3519
  issue: 4
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0140
  article-title: Developing a hybrid model of salp swarm algorithm-based support vector machine to predict the strength of fiber-reinforced cemented paste backfill
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01014-x
– volume: 79
  start-page: 291
  issue: 1
  year: 2015
  ident: 10.1016/j.tust.2022.104494_b0320
  article-title: Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1842-3
– volume: 89
  start-page: 228
  year: 2015
  ident: 10.1016/j.tust.2022.104494_b0160
  article-title: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.07.006
– volume: 28
  start-page: 527
  issue: 2
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0344
  article-title: Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-021-4619-8
– volume: 87
  start-page: 104
  year: 2016
  ident: 10.1016/j.tust.2022.104494_b0255
  article-title: Statistical analysis of the stability number adjustment factors and implications for underground mine design
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2016.06.001
– volume: 13
  start-page: 1380
  issue: 6
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0135
  article-title: Prediction of blasting mean fragment size using support vector regression combined with five optimization algorithms
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2021.07.013
– year: 2021
  ident: 10.1016/j.tust.2022.104494_b0300
  article-title: Performance evaluation of hybrid GA-SVM and GWO-SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation
  publication-title: Eng. Comput.
– volume: 20
  start-page: 18
  issue: 2
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0220
  article-title: Development of a Stope Stability Prediction Model Using Ensemble Learning Techniques-A Case Study
  publication-title: Ghana Mining Journal
  doi: 10.4314/gm.v20i2.3
– volume: 79
  start-page: 2763
  issue: 6
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0270
  article-title: Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-020-01730-0
– volume: 114
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.tust.2022.104494_b0035
  article-title: Empirical approaches for opening design in weak rock masses
  publication-title: Mining Technology
  doi: 10.1179/037178405X44494
– volume: 30
  start-page: 3707
  issue: 12
  year: 2018
  ident: 10.1016/j.tust.2022.104494_b0020
  article-title: A Levy flight-based grey wolf optimizer combined with back-propagation algorithm for neural network training
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2952-5
– volume: 1-24
  year: 2022
  ident: 10.1016/j.tust.2022.104494_b0342
  article-title: Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm
  publication-title: Acta Geotechnica
– volume: 6
  start-page: 379
  issue: 4
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0130
  article-title: Stability analysis of underground mine hard rock pillars via combination of finite difference methods, neural networks, and Monte Carlo simulation techniques
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2020.05.005
– ident: 10.1016/j.tust.2022.104494_b0075
– volume: 118
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0030
  article-title: Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2021.104183
– start-page: 1
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0290
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artif. Intell. Rev.
– volume: 30
  start-page: 191
  issue: 1
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0180
  article-title: A novel combination of whale optimization algorithm and support vector machine with different kernel functions for prediction of blasting-induced fly-rock in quarry mines
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09710-7
– volume: 21
  issue: 3–4
  year: 2006
  ident: 10.1016/j.tust.2022.104494_b0245
  article-title: Stability assessment in wide underground mine openings by Mathews’ stability graph method
  publication-title: Tunn. Undergr. Space Technol.
– ident: 10.1016/j.tust.2022.104494_b0110
– year: 2021
  ident: 10.1016/j.tust.2022.104494_b0010
  article-title: A Feasibility Study on The Implementation of Neural Network Classifiers for Open Stope Design
  publication-title: Geotech. Geol. Eng.
– volume: 30
  start-page: 2355
  issue: 8
  year: 2018
  ident: 10.1016/j.tust.2022.104494_b0070
  article-title: A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2818-2
– volume: 15
  start-page: 3135
  issue: 11
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0275
  article-title: Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-020-00962-4
– volume: 31
  start-page: 991
  issue: 4
  year: 2019
  ident: 10.1016/j.tust.2022.104494_b0060
  article-title: Chaotic multi-verse optimizer-based feature selection
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3131-4
– volume: 33
  issue: 3
  year: 2019
  ident: 10.1016/j.tust.2022.104494_b0310
  article-title: Feasibility of Stochastic Gradient Boosting Approach for Evaluating Seismic Liquefaction Potential Based on SPT and CPT Case Histories
  publication-title: J. Perform. Constr. Facil
  doi: 10.1061/(ASCE)CF.1943-5509.0001292
– volume: 60
  start-page: 115
  year: 2017
  ident: 10.1016/j.tust.2022.104494_b0100
  article-title: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.06.044
– volume: 30
  issue: 5
  year: 2016
  ident: 10.1016/j.tust.2022.104494_b0325
  article-title: Classification of Rockburst in Underground Projects: Comparison of Ten Supervised Learning Methods
  publication-title: J. Comput. Civil Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000553
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.tust.2022.104494_b0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 1
  year: 2021
  ident: 10.1016/j.tust.2022.104494_b0215
  article-title: Performance evaluation of hybrid WOA-XGBoost, GWO-XGBoost and BO-XGBoost models to predict blast-induced ground vibration
  publication-title: Eng. Comput.
– volume: 191
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0005
  article-title: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2019.105237
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.tust.2022.104494_b0175
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 10.1016/j.tust.2022.104494_b0190
– start-page: 1
  year: 2022
  ident: 10.1016/j.tust.2022.104494_b0345
  article-title: A hybrid metaheuristic approach using random forest and particle swarm optimization to study and evaluate backbreak in open-pit blasting
  publication-title: Neural Computing and Applications
– volume: 11
  start-page: 1095
  issue: 4
  year: 2020
  ident: 10.1016/j.tust.2022.104494_b0295
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2019.12.003
SSID ssj0005229
Score 2.6053987
Snippet •We concentrated on the stability prediction of underground entry-type excavations.•Three RF-based hybrid models are present to predict entry-type excavation...
The stability evaluation of underground entry-type excavations is a prerequisite of the entry-type mining method, which directly affects whether workers can be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104494
SubjectTerms Algorithms
Classification
Construction accidents & safety
Critical span graph
Decision trees
Entry-type excavations
Excavation
Hybrid model
Kernel functions
Machine learning
Mathematical models
Mining engineering
Optimization
Parameters
Performance enhancement
Performance evaluation
Performance indices
Random forest
Rock masses
Stability
Stability analysis
Support vector machines
Systems stability
Underground construction
Working conditions
Title Optimization of random forest through the use of MVO, GWO and MFO in evaluating the stability of underground entry-type excavations
URI https://dx.doi.org/10.1016/j.tust.2022.104494
https://www.proquest.com/docview/2667852063
Volume 124
WOSCitedRecordID wos000793657600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-4364
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005229
  issn: 0886-7798
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE-1tCAfuEGqPOw8jhVqVRB0OSxl4RLZsaOmarPVNlntvT-Cv8v4Ea_ZqhU9cMmuooll7Xw7_mYyD4TecRLljIkwkJzwgMR1EjCeskDQvCI5K0Kq67hPvmTHx_l0WnwbjX4PtTCL86xt8-WyuPyvqoZ7oGxVOnsPdbtF4QZ8B6XDFdQO139S_BiMwIWtrlRUEA4jMbtQ6YRwALi5PIpv9iaO__VkrKPjP8Ym6-JwrPuI2DbgtpoKSKROo9Uv5FXh2VzVg4C4nkwS6EiuXFZs4UUALeed9DqXZqiG9B8GcwZ2pbsR3v91Ous1vjzwHvVDaPu0Z40L2DZa8Ces3jd-CAO8X5dq5SxdCjTfjKN2ZjkmnmEFr5GYacg3bL4JP5ztdapGRS2_txL-u8H22sHn0hGHTLezUq1RqjVKs8YDtBlntACLv7n_6WD62cse0gPw3M5tPZZJHVzfyW2cZ-3015Rm8hQ9sb4I3jcYeoZGsn2OHnsdKl-gax9NeFZjgyZs0IQtmuBTYkCTEgA0fcCAJQyCGLCEmxavsKQlHZaUvAcHvMIS9rD0En0_PJh8PArs3I6AJTTqgihiUZSJRMJJK1KSEh7HWVgVouZEAJ8XBQ0jXoBjW4U1TVid1FzNVaAJiOSRTF6hjXbWyi2EeSIoZSAHfjARaZ3Lus5CngIpzSWPk20UDb9sWdmm9mq2ynl5u0630Xv3zKVp6XKnNB0UVlpSashmCfi787ndQbultQ5XJbDhLKcxuAWv77WJHfRo9b_ZRRvdvJdv0MNq0TVX87cWm38AUoS8cQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+random+forest+through+the+use+of+MVO%2C+GWO+and+MFO+in+evaluating+the+stability+of+underground+entry-type+excavations&rft.jtitle=Tunnelling+and+underground+space+technology&rft.au=Zhou%2C+Jian&rft.au=Huang%2C+Shuai&rft.au=Qiu%2C+Yingui&rft.date=2022-06-01&rft.issn=0886-7798&rft.volume=124&rft.spage=104494&rft_id=info:doi/10.1016%2Fj.tust.2022.104494&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tust_2022_104494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-7798&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-7798&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-7798&client=summon