Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis
In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precu...
Saved in:
| Published in: | Accounts of chemical research Vol. 53; no. 3; p. 690 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
17.03.2020
|
| Subjects: | |
| ISSN: | 1520-4898, 1520-4898 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. |
|---|---|
| AbstractList | In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group. |
| Author | Ye, Song Chen, Xiang-Yu Gao, Zhong-Hua |
| Author_xml | – sequence: 1 givenname: Xiang-Yu surname: Chen fullname: Chen, Xiang-Yu organization: School of Chemical Sciences, University of the Chinese Academy of Sciences, 100049 Beijing, China – sequence: 2 givenname: Zhong-Hua orcidid: 0000-0002-2727-7195 surname: Gao fullname: Gao, Zhong-Hua organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China – sequence: 3 givenname: Song orcidid: 0000-0002-3962-7738 surname: Ye fullname: Ye, Song organization: School of Chemical Sciences, University of the Chinese Academy of Sciences, 100049 Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32142245$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtOwzAQRS0E4v0HCHnJJsWvvJallIdUAQtYRxNnUowcu9hJpez4dIIoEquZkc49I90Tsu-8Q0IuOJtxJvg16DgDrf3g-jgra8Yyme6RY54KlqiiLPb_7UfkJMYPxphQWX5IjqTgSgiVHpOvG9MOTvfGO7D0KXnAHoPXo7ZG0wWEGh1GeovBbLGhbfAdtcnLGPzaDj10EzTXpqHgGvr6jibQ-WYzReFHGKlxdOnATUdEi9OXLdLnsAbnJwLsGE08Iwct2Ijnu3lK3u6Wr4uHZPV8_7iYrxKQqugTzGTR6gZ1zpuyRF5gKzKJrEAA0eZN3hZSZNDUZQ1CMV5DnaVMtahExkWaiVNy9evdBP85YOyrzkSN1oJDP8RKyFxJXqSlnNDLHTrUHTbVJpgOwlj9tSa-AVk8dm4 |
| CitedBy_id | crossref_primary_10_1002_ange_202016506 crossref_primary_10_1002_chem_202203716 crossref_primary_10_1002_chem_202300171 crossref_primary_10_1039_D3QO01222K crossref_primary_10_1039_D0QO00963F crossref_primary_10_1002_adma_202210727 crossref_primary_10_1080_00397911_2024_2395993 crossref_primary_10_1002_cctc_202301331 crossref_primary_10_1038_s41467_024_52823_3 crossref_primary_10_1002_ajoc_202300371 crossref_primary_10_1002_adsc_202301082 crossref_primary_10_1055_a_2253_4365 crossref_primary_10_1039_D5QO00332F crossref_primary_10_1038_s41467_022_31760_z crossref_primary_10_1016_j_gresc_2024_04_007 crossref_primary_10_1021_acs_accounts_5c00283 crossref_primary_10_1039_D1QO00706H crossref_primary_10_1002_anie_202421151 crossref_primary_10_1002_ajoc_202200080 crossref_primary_10_1002_ejoc_202001544 crossref_primary_10_1002_tcr_202300046 crossref_primary_10_1039_D0SC03595E crossref_primary_10_1039_D2QO01751B crossref_primary_10_1002_ange_202211977 crossref_primary_10_1002_anie_202103415 crossref_primary_10_1002_ange_202117340 crossref_primary_10_1002_anie_202507590 crossref_primary_10_1039_D5SC00452G crossref_primary_10_3390_catal14040219 crossref_primary_10_1002_anie_202506929 crossref_primary_10_1093_bulcsj_uoaf057 crossref_primary_10_1002_ejoc_202500434 crossref_primary_10_1007_s11426_023_1909_5 crossref_primary_10_1002_anie_202116629 crossref_primary_10_1002_anie_202508789 crossref_primary_10_1039_D0QO00868K crossref_primary_10_1002_cctc_202200099 crossref_primary_10_1021_jacs_4c10486 crossref_primary_10_1002_adsc_202300686 crossref_primary_10_1002_adsc_202000900 crossref_primary_10_1039_D3QO00667K crossref_primary_10_1002_ange_202508789 crossref_primary_10_1002_advs_202303517 crossref_primary_10_1002_ange_202506929 crossref_primary_10_1039_D0QO01508C crossref_primary_10_1002_ange_202416519 crossref_primary_10_1002_anie_202202040 crossref_primary_10_1038_s41467_024_45218_x crossref_primary_10_1002_ange_202212005 crossref_primary_10_1039_D3QO01129A crossref_primary_10_1055_a_1967_1073 crossref_primary_10_1002_tcr_202300091 crossref_primary_10_1016_j_tet_2021_132456 crossref_primary_10_1039_D2CY01118B crossref_primary_10_1016_j_tet_2021_132337 crossref_primary_10_1038_s44160_023_00416_1 crossref_primary_10_1002_ejoc_202200039 crossref_primary_10_1016_j_cclet_2024_109495 crossref_primary_10_1039_D5OB00586H crossref_primary_10_1002_ange_202012581 crossref_primary_10_1007_s11426_023_1744_2 crossref_primary_10_1002_ange_202507590 crossref_primary_10_1002_ange_202303007 crossref_primary_10_3390_molecules27185952 crossref_primary_10_1002_anie_202117340 crossref_primary_10_1016_j_tet_2021_132330 crossref_primary_10_1039_D5OB00259A crossref_primary_10_1016_j_cclet_2020_08_027 crossref_primary_10_1039_D3SC03274D crossref_primary_10_1002_anie_202016506 crossref_primary_10_1016_j_checat_2024_100915 crossref_primary_10_1016_j_tetlet_2024_155319 crossref_primary_10_1055_a_2005_5372 crossref_primary_10_1021_jacs_1c01022 crossref_primary_10_3389_fchem_2022_1110240 crossref_primary_10_1039_D1QO01507A crossref_primary_10_1021_jacs_5c05380 crossref_primary_10_1002_cjoc_70071 crossref_primary_10_1002_ange_202104712 crossref_primary_10_1039_D1SC00469G crossref_primary_10_1039_D3QO00503H crossref_primary_10_1039_D2SC04251G crossref_primary_10_1002_asia_70311 crossref_primary_10_1002_ange_202017017 crossref_primary_10_1016_j_apcata_2022_118976 crossref_primary_10_1016_j_gresc_2025_04_011 crossref_primary_10_1039_D3QO00539A crossref_primary_10_1016_j_checat_2021_03_004 crossref_primary_10_1039_D2QO01993K crossref_primary_10_1021_acs_orglett_5c00315 crossref_primary_10_1002_ange_202103415 crossref_primary_10_1039_D0SC03297B crossref_primary_10_1002_anie_202104712 crossref_primary_10_1038_s41467_025_59781_4 crossref_primary_10_1002_ange_202303388 crossref_primary_10_1039_D2CC03104C crossref_primary_10_1002_ejoc_202500220 crossref_primary_10_1038_s41467_024_46376_8 crossref_primary_10_1039_D1QO01661J crossref_primary_10_1002_anie_202017017 crossref_primary_10_1002_tcr_202200219 crossref_primary_10_1039_D0QO00494D crossref_primary_10_1002_ejoc_202300832 crossref_primary_10_1039_D4CY00470A crossref_primary_10_1002_chem_202100700 crossref_primary_10_1002_ejoc_202100090 crossref_primary_10_1039_D4QO00660G crossref_primary_10_1039_D4RA05596A crossref_primary_10_3390_catal11080972 crossref_primary_10_1002_anie_202303388 crossref_primary_10_1039_D2QO01721K crossref_primary_10_1002_ajoc_202200238 crossref_primary_10_1021_jacsau_4c01166 crossref_primary_10_1038_s41467_024_44743_z crossref_primary_10_1016_j_mcat_2023_113621 crossref_primary_10_1002_cjoc_202400170 crossref_primary_10_1002_anie_202212005 crossref_primary_10_1002_cctc_202201320 crossref_primary_10_3390_molecules28093743 crossref_primary_10_1002_chem_202202467 crossref_primary_10_1016_j_cclet_2025_111484 crossref_primary_10_1016_j_mcat_2022_112122 crossref_primary_10_1002_cctc_202000910 crossref_primary_10_1021_acscatal_5c01629 crossref_primary_10_1039_D2QO01027E crossref_primary_10_1039_D2QO01940J crossref_primary_10_1002_ange_202421151 crossref_primary_10_1002_anie_202416519 crossref_primary_10_1002_anie_202012581 crossref_primary_10_1007_s11426_022_1328_5 crossref_primary_10_1007_s11426_023_1578_y crossref_primary_10_1039_D1SC01910D crossref_primary_10_1002_chem_202401811 crossref_primary_10_1002_anie_202303007 crossref_primary_10_1039_D1QO01127H crossref_primary_10_1002_hlca_202100015 crossref_primary_10_1002_anie_202016938 crossref_primary_10_1002_chem_202004059 crossref_primary_10_1016_j_cclet_2024_109790 crossref_primary_10_1002_ajoc_202400704 crossref_primary_10_1002_anie_202501991 crossref_primary_10_1039_D0RA08326G crossref_primary_10_1039_D2QO00350C crossref_primary_10_1002_chem_202402259 crossref_primary_10_1016_j_tet_2020_131703 crossref_primary_10_1016_j_comptc_2022_114007 crossref_primary_10_1002_anie_202303478 crossref_primary_10_1055_a_1822_4690 crossref_primary_10_1016_j_tet_2022_133239 crossref_primary_10_1002_ange_202501991 crossref_primary_10_1002_ejoc_202500389 crossref_primary_10_1002_ajoc_202200383 crossref_primary_10_1039_D1SC01891D crossref_primary_10_1002_adsc_202101369 crossref_primary_10_1002_ange_202116629 crossref_primary_10_1002_ejoc_202200548 crossref_primary_10_1016_j_jcat_2025_116279 crossref_primary_10_1007_s11426_022_1327_4 crossref_primary_10_1002_adhm_202002139 crossref_primary_10_1002_ange_202016938 crossref_primary_10_1002_ange_202303478 crossref_primary_10_1039_D3QO01553J crossref_primary_10_1002_cctc_202001513 crossref_primary_10_1021_jacs_2c11209 crossref_primary_10_1039_D5CC02337H crossref_primary_10_1039_D5SC01605C crossref_primary_10_1039_D1QO00743B crossref_primary_10_1002_ejoc_202100261 crossref_primary_10_1021_acscatal_5c04159 crossref_primary_10_1002_ange_202112860 crossref_primary_10_1002_cjoc_202200628 crossref_primary_10_1002_ange_202202040 crossref_primary_10_1039_D4QO00372A crossref_primary_10_1002_ajoc_202400734 crossref_primary_10_1002_cjoc_70120 crossref_primary_10_1039_D3QO00423F crossref_primary_10_1038_s41467_022_33444_0 crossref_primary_10_1038_s41467_024_44756_8 crossref_primary_10_1016_j_tetlet_2023_154483 crossref_primary_10_1039_D1SC06100C crossref_primary_10_1002_anie_202207824 crossref_primary_10_1515_zkri_2021_2040 crossref_primary_10_1039_D2SC03745A crossref_primary_10_1039_D1QO01462E crossref_primary_10_1002_ange_202311709 crossref_primary_10_1002_cjoc_70234 crossref_primary_10_1002_ange_202207824 crossref_primary_10_1038_s41467_023_39707_8 crossref_primary_10_1002_anie_202112860 crossref_primary_10_1021_acs_orglett_5c02576 crossref_primary_10_1016_j_chempr_2025_102586 crossref_primary_10_1002_ange_202301126 crossref_primary_10_1002_anie_202311709 crossref_primary_10_1039_D5CS00600G crossref_primary_10_1002_anie_202211977 crossref_primary_10_1002_anie_202404979 crossref_primary_10_1039_D0RA07271K crossref_primary_10_1038_s41467_024_49799_5 crossref_primary_10_1039_D1SC06102J crossref_primary_10_1039_D2QO00908K crossref_primary_10_1038_s41467_023_39988_z crossref_primary_10_1039_D2QO00257D crossref_primary_10_1002_advs_202406095 crossref_primary_10_1002_ange_202404979 crossref_primary_10_1002_anie_202301126 crossref_primary_10_1002_tcr_202200054 crossref_primary_10_1007_s11426_020_9851_8 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.accounts.9b00635 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| ExternalDocumentID | 32142245 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 7X8 ABBLG ABLBI ABUFD |
| ID | FETCH-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612562 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 312 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526398000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Sun Nov 09 09:28:15 EST 2025 Thu Apr 03 07:04:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612562 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3962-7738 0000-0002-2727-7195 |
| PMID | 32142245 |
| PQID | 2374318593 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2374318593 pubmed_primary_32142245 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-17 |
| PublicationDateYYYYMMDD | 2020-03-17 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Accounts of chemical research |
| PublicationTitleAlternate | Acc Chem Res |
| PublicationYear | 2020 |
| SSID | ssj0002467 |
| Score | 2.6901033 |
| SecondaryResourceType | review_article |
| Snippet | In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 690 |
| SubjectTerms | Catalysis Heterocyclic Compounds - chemistry Methane - analogs & derivatives Methane - chemistry Organic Chemicals - chemistry Pyrrolidonecarboxylic Acid - chemistry Stereoisomerism |
| Title | Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32142245 https://www.proquest.com/docview/2374318593 |
| Volume | 53 |
| WOSCitedRecordID | wos000526398000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UCnpxX-rGCF7HNkuznKTWlh609FCltzCrBEpSm1rozZ_ue9OEevAgeMktYXh589731o-QO2O8IMCxDydQOJITNxlvCcFC4wgJwZuQlgzm7TkcDKLxOB6WCbeibKusbKI11CqXmCNvuB76OtzO9TD9YMgahdXVkkJjk9Q8gDLY0hWO19vCXd8yyIKLajI_iqNqdM51GlwWcGDLx1Dc417AoCR8-xVkWmfT2__vMQ_IXgkzaXulF4dkQ2dHZKdTsbsdk6_HFF3aKhNIB6yPbTG5XMpJKmmHzwTaQPoE-rnQiuIQCp2w4XKWv4OqIoc9bctUUZ4pOsJaA23_qITTNKNd7LBJ88Ly7MBHqJ36zG26CLegnJDXXnfU6bOSjYFxz4_mTMNNNVJpGToqjrUTaeMGnm5GmnPXhCo0YBwCrkQsOMAER3AB6M83GoM0AFbuKdnK8kyfE-opHRgFWAfgkc9VEwmAWuA0AKv5ItZRndxWwk1ALFjC4JnOP4tkLd46OVv9oWS6WsuRIOUSAJLWxR_eviS7LgbO2JgXXpGagbuur8m2XMzTYnZj1Qieg-HLN67Y1gI |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+N-Heterocyclic+Carbenes+Derived+from+l-Pyroglutamic+Acid+and+Their+Applications+in+Enantioselective+Organocatalysis&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Xiang-Yu&rft.au=Gao%2C+Zhong-Hua&rft.au=Ye%2C+Song&rft.date=2020-03-17&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=53&rft.issue=3&rft.spage=690&rft_id=info:doi/10.1021%2Facs.accounts.9b00635&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |