Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis

In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precu...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research Vol. 53; no. 3; p. 690
Main Authors: Chen, Xiang-Yu, Gao, Zhong-Hua, Ye, Song
Format: Journal Article
Language:English
Published: United States 17.03.2020
Subjects:
ISSN:1520-4898, 1520-4898
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
AbstractList In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new catalysts to imitate the enzyme machinery for asymmetric transformations. Vitamin B1, a bifunctional thiazolium N-heterocyclic carbene (NHC) precursor, is the coenzyme for transketolase. In the past two decades, a series of chiral NHCs, including monocyclic, bicyclic, tetracyclic, and even bridged ones, have been synthesized and successfully utilized as efficient organocatalysts for a wide variety of asymmetric organic reactions. The utility of bifunctional catalysts can enhance catalytic activity and improve stereochemical control through their synchronous activation of both reaction partners. However, the NHCs possessing multiple activation sites are far less developed.This Account gives an overview of our research on the design, development, and applications of bifunctional NHCs in organocatalysis. We synthesized a series of l-pyroglutamic acid-derived bifunctional NHCs bearing a free hydroxyl group which can interact with carbonyl or imino groups via hydrogen-bonding. Further studies revealed that these bifunctional catalysts worked well for a variety of reactions. We have developed bifunctional NHC-catalyzed aza-benzoin reactions, [2 + 2], [2 + 3], and [2 + 4] cycloadditions of ketenes, [3 + 2] and [3 + 4] annulations of enals, and aza-MBH and Rauhut-Currier reactions of Michael acceptors. In addition to these reactions via nucleophilic Breslow intermediates, enolates, homoenolates, and zwitterionic azolium intermediates, the bifunctional NHC-catalyzed [3 + 3] annulation via 1,3-biselectrophilic α,β-unsaturated acyl azolium intermediates was also developed.In these reactions, bifunctional NHCs showed amazing effects compared to normal nonbifunctional NHCs. In some cases, the bifunctional NHCs facilitated reactions which did not work under normal NHC catalysis, possibly due to additional activation via H-bonding. More interestingly, the bifunctional NHCs could not only improve but also switch the enantioselectivity to get products with opposite stereochemistry through H-bond controlled stereochemical directing. Furthermore, the reaction mode could be totally changed from [3 + 2] to [3 + 4] annulation to give kinetically favored products when bifunctional NHCs were employed. In future, the applications of bifunctional NHCs in other challenging reactions, such as asymmetric reactions with carbon-carbon unsaturated bonds, and the reactions involving alkyl or heteroatom radicals will be the major focus in our group.
Author Ye, Song
Chen, Xiang-Yu
Gao, Zhong-Hua
Author_xml – sequence: 1
  givenname: Xiang-Yu
  surname: Chen
  fullname: Chen, Xiang-Yu
  organization: School of Chemical Sciences, University of the Chinese Academy of Sciences, 100049 Beijing, China
– sequence: 2
  givenname: Zhong-Hua
  orcidid: 0000-0002-2727-7195
  surname: Gao
  fullname: Gao, Zhong-Hua
  organization: Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China
– sequence: 3
  givenname: Song
  orcidid: 0000-0002-3962-7738
  surname: Ye
  fullname: Ye, Song
  organization: School of Chemical Sciences, University of the Chinese Academy of Sciences, 100049 Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32142245$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtOwzAQRS0E4v0HCHnJJsWvvJallIdUAQtYRxNnUowcu9hJpez4dIIoEquZkc49I90Tsu-8Q0IuOJtxJvg16DgDrf3g-jgra8Yyme6RY54KlqiiLPb_7UfkJMYPxphQWX5IjqTgSgiVHpOvG9MOTvfGO7D0KXnAHoPXo7ZG0wWEGh1GeovBbLGhbfAdtcnLGPzaDj10EzTXpqHgGvr6jibQ-WYzReFHGKlxdOnATUdEi9OXLdLnsAbnJwLsGE08Iwct2Ijnu3lK3u6Wr4uHZPV8_7iYrxKQqugTzGTR6gZ1zpuyRF5gKzKJrEAA0eZN3hZSZNDUZQ1CMV5DnaVMtahExkWaiVNy9evdBP85YOyrzkSN1oJDP8RKyFxJXqSlnNDLHTrUHTbVJpgOwlj9tSa-AVk8dm4
CitedBy_id crossref_primary_10_1002_ange_202016506
crossref_primary_10_1002_chem_202203716
crossref_primary_10_1002_chem_202300171
crossref_primary_10_1039_D3QO01222K
crossref_primary_10_1039_D0QO00963F
crossref_primary_10_1002_adma_202210727
crossref_primary_10_1080_00397911_2024_2395993
crossref_primary_10_1002_cctc_202301331
crossref_primary_10_1038_s41467_024_52823_3
crossref_primary_10_1002_ajoc_202300371
crossref_primary_10_1002_adsc_202301082
crossref_primary_10_1055_a_2253_4365
crossref_primary_10_1039_D5QO00332F
crossref_primary_10_1038_s41467_022_31760_z
crossref_primary_10_1016_j_gresc_2024_04_007
crossref_primary_10_1021_acs_accounts_5c00283
crossref_primary_10_1039_D1QO00706H
crossref_primary_10_1002_anie_202421151
crossref_primary_10_1002_ajoc_202200080
crossref_primary_10_1002_ejoc_202001544
crossref_primary_10_1002_tcr_202300046
crossref_primary_10_1039_D0SC03595E
crossref_primary_10_1039_D2QO01751B
crossref_primary_10_1002_ange_202211977
crossref_primary_10_1002_anie_202103415
crossref_primary_10_1002_ange_202117340
crossref_primary_10_1002_anie_202507590
crossref_primary_10_1039_D5SC00452G
crossref_primary_10_3390_catal14040219
crossref_primary_10_1002_anie_202506929
crossref_primary_10_1093_bulcsj_uoaf057
crossref_primary_10_1002_ejoc_202500434
crossref_primary_10_1007_s11426_023_1909_5
crossref_primary_10_1002_anie_202116629
crossref_primary_10_1002_anie_202508789
crossref_primary_10_1039_D0QO00868K
crossref_primary_10_1002_cctc_202200099
crossref_primary_10_1021_jacs_4c10486
crossref_primary_10_1002_adsc_202300686
crossref_primary_10_1002_adsc_202000900
crossref_primary_10_1039_D3QO00667K
crossref_primary_10_1002_ange_202508789
crossref_primary_10_1002_advs_202303517
crossref_primary_10_1002_ange_202506929
crossref_primary_10_1039_D0QO01508C
crossref_primary_10_1002_ange_202416519
crossref_primary_10_1002_anie_202202040
crossref_primary_10_1038_s41467_024_45218_x
crossref_primary_10_1002_ange_202212005
crossref_primary_10_1039_D3QO01129A
crossref_primary_10_1055_a_1967_1073
crossref_primary_10_1002_tcr_202300091
crossref_primary_10_1016_j_tet_2021_132456
crossref_primary_10_1039_D2CY01118B
crossref_primary_10_1016_j_tet_2021_132337
crossref_primary_10_1038_s44160_023_00416_1
crossref_primary_10_1002_ejoc_202200039
crossref_primary_10_1016_j_cclet_2024_109495
crossref_primary_10_1039_D5OB00586H
crossref_primary_10_1002_ange_202012581
crossref_primary_10_1007_s11426_023_1744_2
crossref_primary_10_1002_ange_202507590
crossref_primary_10_1002_ange_202303007
crossref_primary_10_3390_molecules27185952
crossref_primary_10_1002_anie_202117340
crossref_primary_10_1016_j_tet_2021_132330
crossref_primary_10_1039_D5OB00259A
crossref_primary_10_1016_j_cclet_2020_08_027
crossref_primary_10_1039_D3SC03274D
crossref_primary_10_1002_anie_202016506
crossref_primary_10_1016_j_checat_2024_100915
crossref_primary_10_1016_j_tetlet_2024_155319
crossref_primary_10_1055_a_2005_5372
crossref_primary_10_1021_jacs_1c01022
crossref_primary_10_3389_fchem_2022_1110240
crossref_primary_10_1039_D1QO01507A
crossref_primary_10_1021_jacs_5c05380
crossref_primary_10_1002_cjoc_70071
crossref_primary_10_1002_ange_202104712
crossref_primary_10_1039_D1SC00469G
crossref_primary_10_1039_D3QO00503H
crossref_primary_10_1039_D2SC04251G
crossref_primary_10_1002_asia_70311
crossref_primary_10_1002_ange_202017017
crossref_primary_10_1016_j_apcata_2022_118976
crossref_primary_10_1016_j_gresc_2025_04_011
crossref_primary_10_1039_D3QO00539A
crossref_primary_10_1016_j_checat_2021_03_004
crossref_primary_10_1039_D2QO01993K
crossref_primary_10_1021_acs_orglett_5c00315
crossref_primary_10_1002_ange_202103415
crossref_primary_10_1039_D0SC03297B
crossref_primary_10_1002_anie_202104712
crossref_primary_10_1038_s41467_025_59781_4
crossref_primary_10_1002_ange_202303388
crossref_primary_10_1039_D2CC03104C
crossref_primary_10_1002_ejoc_202500220
crossref_primary_10_1038_s41467_024_46376_8
crossref_primary_10_1039_D1QO01661J
crossref_primary_10_1002_anie_202017017
crossref_primary_10_1002_tcr_202200219
crossref_primary_10_1039_D0QO00494D
crossref_primary_10_1002_ejoc_202300832
crossref_primary_10_1039_D4CY00470A
crossref_primary_10_1002_chem_202100700
crossref_primary_10_1002_ejoc_202100090
crossref_primary_10_1039_D4QO00660G
crossref_primary_10_1039_D4RA05596A
crossref_primary_10_3390_catal11080972
crossref_primary_10_1002_anie_202303388
crossref_primary_10_1039_D2QO01721K
crossref_primary_10_1002_ajoc_202200238
crossref_primary_10_1021_jacsau_4c01166
crossref_primary_10_1038_s41467_024_44743_z
crossref_primary_10_1016_j_mcat_2023_113621
crossref_primary_10_1002_cjoc_202400170
crossref_primary_10_1002_anie_202212005
crossref_primary_10_1002_cctc_202201320
crossref_primary_10_3390_molecules28093743
crossref_primary_10_1002_chem_202202467
crossref_primary_10_1016_j_cclet_2025_111484
crossref_primary_10_1016_j_mcat_2022_112122
crossref_primary_10_1002_cctc_202000910
crossref_primary_10_1021_acscatal_5c01629
crossref_primary_10_1039_D2QO01027E
crossref_primary_10_1039_D2QO01940J
crossref_primary_10_1002_ange_202421151
crossref_primary_10_1002_anie_202416519
crossref_primary_10_1002_anie_202012581
crossref_primary_10_1007_s11426_022_1328_5
crossref_primary_10_1007_s11426_023_1578_y
crossref_primary_10_1039_D1SC01910D
crossref_primary_10_1002_chem_202401811
crossref_primary_10_1002_anie_202303007
crossref_primary_10_1039_D1QO01127H
crossref_primary_10_1002_hlca_202100015
crossref_primary_10_1002_anie_202016938
crossref_primary_10_1002_chem_202004059
crossref_primary_10_1016_j_cclet_2024_109790
crossref_primary_10_1002_ajoc_202400704
crossref_primary_10_1002_anie_202501991
crossref_primary_10_1039_D0RA08326G
crossref_primary_10_1039_D2QO00350C
crossref_primary_10_1002_chem_202402259
crossref_primary_10_1016_j_tet_2020_131703
crossref_primary_10_1016_j_comptc_2022_114007
crossref_primary_10_1002_anie_202303478
crossref_primary_10_1055_a_1822_4690
crossref_primary_10_1016_j_tet_2022_133239
crossref_primary_10_1002_ange_202501991
crossref_primary_10_1002_ejoc_202500389
crossref_primary_10_1002_ajoc_202200383
crossref_primary_10_1039_D1SC01891D
crossref_primary_10_1002_adsc_202101369
crossref_primary_10_1002_ange_202116629
crossref_primary_10_1002_ejoc_202200548
crossref_primary_10_1016_j_jcat_2025_116279
crossref_primary_10_1007_s11426_022_1327_4
crossref_primary_10_1002_adhm_202002139
crossref_primary_10_1002_ange_202016938
crossref_primary_10_1002_ange_202303478
crossref_primary_10_1039_D3QO01553J
crossref_primary_10_1002_cctc_202001513
crossref_primary_10_1021_jacs_2c11209
crossref_primary_10_1039_D5CC02337H
crossref_primary_10_1039_D5SC01605C
crossref_primary_10_1039_D1QO00743B
crossref_primary_10_1002_ejoc_202100261
crossref_primary_10_1021_acscatal_5c04159
crossref_primary_10_1002_ange_202112860
crossref_primary_10_1002_cjoc_202200628
crossref_primary_10_1002_ange_202202040
crossref_primary_10_1039_D4QO00372A
crossref_primary_10_1002_ajoc_202400734
crossref_primary_10_1002_cjoc_70120
crossref_primary_10_1039_D3QO00423F
crossref_primary_10_1038_s41467_022_33444_0
crossref_primary_10_1038_s41467_024_44756_8
crossref_primary_10_1016_j_tetlet_2023_154483
crossref_primary_10_1039_D1SC06100C
crossref_primary_10_1002_anie_202207824
crossref_primary_10_1515_zkri_2021_2040
crossref_primary_10_1039_D2SC03745A
crossref_primary_10_1039_D1QO01462E
crossref_primary_10_1002_ange_202311709
crossref_primary_10_1002_cjoc_70234
crossref_primary_10_1002_ange_202207824
crossref_primary_10_1038_s41467_023_39707_8
crossref_primary_10_1002_anie_202112860
crossref_primary_10_1021_acs_orglett_5c02576
crossref_primary_10_1016_j_chempr_2025_102586
crossref_primary_10_1002_ange_202301126
crossref_primary_10_1002_anie_202311709
crossref_primary_10_1039_D5CS00600G
crossref_primary_10_1002_anie_202211977
crossref_primary_10_1002_anie_202404979
crossref_primary_10_1039_D0RA07271K
crossref_primary_10_1038_s41467_024_49799_5
crossref_primary_10_1039_D1SC06102J
crossref_primary_10_1039_D2QO00908K
crossref_primary_10_1038_s41467_023_39988_z
crossref_primary_10_1039_D2QO00257D
crossref_primary_10_1002_advs_202406095
crossref_primary_10_1002_ange_202404979
crossref_primary_10_1002_anie_202301126
crossref_primary_10_1002_tcr_202200054
crossref_primary_10_1007_s11426_020_9851_8
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.accounts.9b00635
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
ExternalDocumentID 32142245
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
7X8
ABBLG
ABLBI
ABUFD
ID FETCH-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612562
IEDL.DBID 7X8
ISICitedReferencesCount 312
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526398000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Sun Nov 09 09:28:15 EST 2025
Thu Apr 03 07:04:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-e638fcdec71d99e18ef263e08eaa2f7d7f8326adb9ba2401bab6504fe42612562
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3962-7738
0000-0002-2727-7195
PMID 32142245
PQID 2374318593
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2374318593
pubmed_primary_32142245
PublicationCentury 2000
PublicationDate 2020-03-17
PublicationDateYYYYMMDD 2020-03-17
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2020
SSID ssj0002467
Score 2.6901033
SecondaryResourceType review_article
Snippet In nature, enzymes are a powerful medium for the construction of enantiomerically pure chemicals, which always inspires synthetic chemists to explore new...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 690
SubjectTerms Catalysis
Heterocyclic Compounds - chemistry
Methane - analogs & derivatives
Methane - chemistry
Organic Chemicals - chemistry
Pyrrolidonecarboxylic Acid - chemistry
Stereoisomerism
Title Bifunctional N-Heterocyclic Carbenes Derived from l-Pyroglutamic Acid and Their Applications in Enantioselective Organocatalysis
URI https://www.ncbi.nlm.nih.gov/pubmed/32142245
https://www.proquest.com/docview/2374318593
Volume 53
WOSCitedRecordID wos000526398000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFB7UCnpxX-rGCF7HNkuznKTWlh609FCltzCrBEpSm1rozZ_ue9OEevAgeMktYXh589731o-QO2O8IMCxDydQOJITNxlvCcFC4wgJwZuQlgzm7TkcDKLxOB6WCbeibKusbKI11CqXmCNvuB76OtzO9TD9YMgahdXVkkJjk9Q8gDLY0hWO19vCXd8yyIKLajI_iqNqdM51GlwWcGDLx1Dc417AoCR8-xVkWmfT2__vMQ_IXgkzaXulF4dkQ2dHZKdTsbsdk6_HFF3aKhNIB6yPbTG5XMpJKmmHzwTaQPoE-rnQiuIQCp2w4XKWv4OqIoc9bctUUZ4pOsJaA23_qITTNKNd7LBJ88Ly7MBHqJ36zG26CLegnJDXXnfU6bOSjYFxz4_mTMNNNVJpGToqjrUTaeMGnm5GmnPXhCo0YBwCrkQsOMAER3AB6M83GoM0AFbuKdnK8kyfE-opHRgFWAfgkc9VEwmAWuA0AKv5ItZRndxWwk1ALFjC4JnOP4tkLd46OVv9oWS6WsuRIOUSAJLWxR_eviS7LgbO2JgXXpGagbuur8m2XMzTYnZj1Qieg-HLN67Y1gI
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bifunctional+N-Heterocyclic+Carbenes+Derived+from+l-Pyroglutamic+Acid+and+Their+Applications+in+Enantioselective+Organocatalysis&rft.jtitle=Accounts+of+chemical+research&rft.au=Chen%2C+Xiang-Yu&rft.au=Gao%2C+Zhong-Hua&rft.au=Ye%2C+Song&rft.date=2020-03-17&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=53&rft.issue=3&rft.spage=690&rft_id=info:doi/10.1021%2Facs.accounts.9b00635&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon