Second-Order Raman Scattering in Exfoliated Black Phosphorus
Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems...
Saved in:
| Published in: | Nano letters Vol. 18; no. 2; pp. 1018 - 1027 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Chemical Society
14.02.2018
|
| Subjects: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1 ′, D2 and D2 ′, in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag 1 and Ag 2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D′ and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature. |
|---|---|
| AbstractList | Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1 ′, D2 and D2 ′, in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag 1 and Ag 2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D′ and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature. Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1', D2 and D2', in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag1 and Ag2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1', D2 and D2', in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag1 and Ag2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature. Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp -hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D , D , D and D , in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the A and A modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature. |
| Author | Favron, Alexandre Germain, Jean-Francis Côté, Michel Leonelli, Richard Francoeur, Sébastien Martel, Richard Phaneuf-L’Heureux, Anne-Laurence Gosselin, Vincent Goudreault, Félix Antoine Groulx, Julien |
| AuthorAffiliation | Département de Chimie and Regroupement Québécois sur les Matériaux de Pointe Département de Génie Physique Université de Montréal Département de Physique and Regroupement Québécois sur les Matériaux de Pointe |
| AuthorAffiliation_xml | – name: Département de Physique and Regroupement Québécois sur les Matériaux de Pointe – name: Département de Génie Physique – name: Université de Montréal – name: Département de Chimie and Regroupement Québécois sur les Matériaux de Pointe |
| Author_xml | – sequence: 1 givenname: Alexandre surname: Favron fullname: Favron, Alexandre organization: Université de Montréal – sequence: 2 givenname: Félix Antoine surname: Goudreault fullname: Goudreault, Félix Antoine organization: Université de Montréal – sequence: 3 givenname: Vincent surname: Gosselin fullname: Gosselin, Vincent organization: Université de Montréal – sequence: 4 givenname: Julien surname: Groulx fullname: Groulx, Julien organization: Université de Montréal – sequence: 5 givenname: Michel surname: Côté fullname: Côté, Michel organization: Université de Montréal – sequence: 6 givenname: Richard surname: Leonelli fullname: Leonelli, Richard organization: Université de Montréal – sequence: 7 givenname: Jean-Francis surname: Germain fullname: Germain, Jean-Francis organization: Département de Génie Physique – sequence: 8 givenname: Anne-Laurence surname: Phaneuf-L’Heureux fullname: Phaneuf-L’Heureux, Anne-Laurence organization: Département de Génie Physique – sequence: 9 givenname: Sébastien orcidid: 0000-0002-6129-7026 surname: Francoeur fullname: Francoeur, Sébastien organization: Département de Génie Physique – sequence: 10 givenname: Richard orcidid: 0000-0002-9021-4656 surname: Martel fullname: Martel, Richard email: r.martel@umontreal.ca organization: Université de Montréal |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29320856$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMtOwzAQRS0Eog_4A4SyZJMydl4OYgNVeUiVimj3luNMaEpqF9uR4O9J1ZYFC1jNSHPPleYMyLE2Ggm5oDCiwOi1VG6kpTYNej_KCohjnh6RPk0iCNM8Z8c_O497ZODcCgDyKIFT0mN5xIAnaZ_czlEZXYYzW6INXuVa6mCupPdoa_0W1DqYfFamqaXHMrhvpHoPXpbGbZbGtu6MnFSycXi-n0OyeJgsxk_hdPb4PL6bhjKKuQ-zikqsigRYnEGVIwesAApJWUnTMi1YyrGMkWeUMwZpoVJGMYmYylDmvIiG5GpXu7Hmo0Xnxbp2CptGajStEzTneZJxTuMuermPtsUaS7Gx9VraL3F4uAvc7ALKGucsVkLVXvraaG9l3QgKYmtXdHbFwa7Y2-3g-Bd86P8Hgx22va5Ma3Un62_kGxjGkpA |
| CitedBy_id | crossref_primary_10_1002_admi_201902075 crossref_primary_10_1002_aelm_201800687 crossref_primary_10_1039_D1NR07772D crossref_primary_10_1063_1_5118959 crossref_primary_10_1002_advs_201902359 crossref_primary_10_1088_2053_1591_ab6c09 crossref_primary_10_1088_2631_7990_ad304f crossref_primary_10_1002_adpr_202300181 crossref_primary_10_1039_D3SC05365B crossref_primary_10_1063_5_0093688 crossref_primary_10_1016_j_apsusc_2020_147033 crossref_primary_10_3390_ijms23020733 crossref_primary_10_1002_pssb_202100543 crossref_primary_10_1002_lpor_202000399 crossref_primary_10_1007_s11426_022_1355_6 crossref_primary_10_1016_j_est_2024_112451 crossref_primary_10_1063_1_5086840 crossref_primary_10_1002_jrs_5610 crossref_primary_10_1002_advs_202102128 crossref_primary_10_1557_jmr_2019_167 crossref_primary_10_1002_adma_202402922 crossref_primary_10_1016_j_molstruc_2021_132163 crossref_primary_10_1002_smtd_202300618 crossref_primary_10_1016_j_flatc_2021_100314 |
| Cites_doi | 10.1021/nl5032293 10.1002/adfm.201502902 10.1039/C5NR06293D 10.1016/j.cpc.2016.04.003 10.1088/2053-1583/aa79bb 10.1103/PhysRevLett.116.087401 10.1016/0038-1098(82)90565-8 10.1103/PhysRevB.55.10337 10.1038/ncomms5475 10.1038/nnano.2015.71 10.1103/PhysRev.92.580 10.1016/j.carbon.2009.12.057 10.1103/PhysRevB.91.195411 10.1103/PhysRevB.93.121405 10.1063/1.4958460 10.1021/nl201432g 10.1103/PhysRevLett.97.187401 10.1021/acs.nanolett.5b01117 10.1063/1.4894273 10.1038/srep04215 10.1038/lsa.2015.85 10.1021/acsnano.6b04194 10.1038/nmat4299 10.1143/JPSJ.52.1518 10.1007/s12274-014-0446-7 10.1103/PhysRevB.55.10355 10.1002/adfm.201404294 10.1002/adom.201500707 10.1038/nmat1532 10.1021/acs.nanolett.7b01463 10.1038/ncomms10450 10.1038/ncomms14670 10.1002/jcc.20495 10.1039/C4CS00282B 10.1021/am404847d 10.1103/PhysRevB.84.035433 10.1103/PhysRevB.76.233407 10.1038/nnano.2016.171 10.1016/0038-1098(85)90213-3 10.1038/nnano.2013.46 10.1088/2053-1583/3/2/025016 10.1021/acs.nanolett.6b03907 10.1107/S0365110X65004140 10.1038/srep06677 10.1038/nnano.2008.67 10.1038/s41467-017-00358-1 10.1007/BF00617267 10.1016/0378-4363(83)90574-0 10.1103/PhysRevB.90.115439 10.1103/PhysRevLett.77.3865 10.1021/nn501226z |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 American Chemical Society |
| Copyright_xml | – notice: Copyright © 2018 American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/acs.nanolett.7b04486 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-6992 |
| EndPage | 1027 |
| ExternalDocumentID | 29320856 10_1021_acs_nanolett_7b04486 e42170357 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 |
| ID | FETCH-LOGICAL-a348t-7f1aefb502470f9e80ef00ba12d16d6b268ed4e87182206bc621e532c7ea98b3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425559700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Thu Oct 02 08:59:08 EDT 2025 Mon Jul 21 05:42:24 EDT 2025 Sat Nov 29 05:22:27 EST 2025 Tue Nov 18 22:22:34 EST 2025 Thu Aug 27 13:41:56 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | doubly resonant Raman phonon-defect modes anisotropic properties Black phosphorus |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a348t-7f1aefb502470f9e80ef00ba12d16d6b268ed4e87182206bc621e532c7ea98b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9021-4656 0000-0002-6129-7026 |
| PMID | 29320856 |
| PQID | 1989578814 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1989578814 pubmed_primary_29320856 crossref_citationtrail_10_1021_acs_nanolett_7b04486 crossref_primary_10_1021_acs_nanolett_7b04486 acs_journals_10_1021_acs_nanolett_7b04486 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-14 |
| PublicationDateYYYYMMDD | 2018-02-14 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-14 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2018 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref28/cit28 doi: 10.1021/nl5032293 – ident: ref45/cit45 doi: 10.1002/adfm.201502902 – ident: ref27/cit27 doi: 10.1039/C5NR06293D – ident: ref48/cit48 doi: 10.1016/j.cpc.2016.04.003 – ident: ref10/cit10 doi: 10.1088/2053-1583/aa79bb – ident: ref31/cit31 doi: 10.1103/PhysRevLett.116.087401 – ident: ref37/cit37 doi: 10.1016/0038-1098(82)90565-8 – ident: ref52/cit52 doi: 10.1103/PhysRevB.55.10337 – ident: ref19/cit19 doi: 10.1038/ncomms5475 – ident: ref21/cit21 doi: 10.1038/nnano.2015.71 – ident: ref14/cit14 doi: 10.1103/PhysRev.92.580 – ident: ref6/cit6 doi: 10.1016/j.carbon.2009.12.057 – ident: ref8/cit8 doi: 10.1103/PhysRevB.91.195411 – ident: ref43/cit43 doi: 10.1103/PhysRevB.93.121405 – ident: ref26/cit26 doi: 10.1063/1.4958460 – ident: ref42/cit42 doi: 10.1021/nl201432g – ident: ref4/cit4 doi: 10.1103/PhysRevLett.97.187401 – ident: ref30/cit30 doi: 10.1021/acs.nanolett.5b01117 – ident: ref39/cit39 doi: 10.1063/1.4894273 – ident: ref33/cit33 doi: 10.1038/srep04215 – ident: ref17/cit17 doi: 10.1038/lsa.2015.85 – ident: ref44/cit44 doi: 10.1021/acsnano.6b04194 – ident: ref20/cit20 doi: 10.1038/nmat4299 – ident: ref36/cit36 doi: 10.1143/JPSJ.52.1518 – ident: ref22/cit22 doi: 10.1007/s12274-014-0446-7 – ident: ref51/cit51 doi: 10.1103/PhysRevB.55.10355 – ident: ref40/cit40 doi: 10.1002/adfm.201404294 – ident: ref9/cit9 doi: 10.1002/adom.201500707 – ident: ref47/cit47 doi: 10.1038/nmat1532 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.7b01463 – ident: ref46/cit46 doi: 10.1038/ncomms10450 – ident: ref3/cit3 doi: 10.1038/ncomms14670 – ident: ref35/cit35 – ident: ref50/cit50 doi: 10.1002/jcc.20495 – ident: ref2/cit2 doi: 10.1039/C4CS00282B – ident: ref34/cit34 doi: 10.1021/am404847d – ident: ref41/cit41 doi: 10.1103/PhysRevB.84.035433 – ident: ref7/cit7 doi: 10.1103/PhysRevB.76.233407 – ident: ref18/cit18 doi: 10.1038/nnano.2016.171 – ident: ref25/cit25 doi: 10.1016/0038-1098(85)90213-3 – ident: ref1/cit1 doi: 10.1038/nnano.2013.46 – ident: ref11/cit11 doi: 10.1088/2053-1583/3/2/025016 – ident: ref24/cit24 doi: 10.1021/acs.nanolett.6b03907 – ident: ref13/cit13 doi: 10.1107/S0365110X65004140 – ident: ref15/cit15 doi: 10.1038/srep06677 – ident: ref5/cit5 doi: 10.1038/nnano.2008.67 – ident: ref29/cit29 doi: 10.1038/s41467-017-00358-1 – ident: ref16/cit16 doi: 10.1007/BF00617267 – ident: ref38/cit38 doi: 10.1016/0378-4363(83)90574-0 – ident: ref32/cit32 doi: 10.1103/PhysRevB.90.115439 – ident: ref49/cit49 doi: 10.1103/PhysRevLett.77.3865 – ident: ref23/cit23 doi: 10.1021/nn501226z |
| SSID | ssj0009350 |
| Score | 2.427945 |
| Snippet | Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1018 |
| Title | Second-Order Raman Scattering in Exfoliated Black Phosphorus |
| URI | http://dx.doi.org/10.1021/acs.nanolett.7b04486 https://www.ncbi.nlm.nih.gov/pubmed/29320856 https://www.proquest.com/docview/1989578814 |
| Volume | 18 |
| WOSCitedRecordID | wos000425559700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Publications customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60etCD70d9EcGLh-juJs1uwIuUiicV66G3sNmd0EJNStOKP9_ZNLUqiHhNssvOi5kvk3wDcME4cjQq83WI1g91ZHyVUVxJK2VmAt6SyKphE_LhQfV68dMCKP7s4At-rU15leu8IDEmVzJlhCeiZVgRVOk6j75tdxcku0E1kZWCmCBRrML5r3K_7OISkim_J6Rfqswq29xt_vecW7BR15Xe7cwRtmEJ8x1Y_8I2uAs3XQd-rf_o2Da9Z_2qc69rKn5Nuu8Ncq_znhVDshVar3qx5z31i3LUL8bTcg9e7jov7Xu_Hp7g6yBUE19mXGOWtigHS5bFqBhmjKWaC8sjG6UiUmhDJLxEJQKLUhMJjq1AGIk6VmmwD428yPEQPGMwtdrEwihL-IhpgiwysNY4KvtQiyZckuxJ7ftlUrW1BU_cxblCklohTQjmyk5MTULuZmEM_1jlf64azUg4_nj-fG7HhKLFtUB0jsWUzharuOUY9MMmHMwM_LkjFT5uYGl09A95jmGNKijlPuPm4Qk0JuMpnsKqeZsMyvEZLMueOqt89APKqOWT |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrw_VifFbx4qCZ9JQUvIoqiruLuwVtJkykraCvbXfHnO-m2Pg4iek2bYZ7MTNN8A7DPOHLUMnNVgMYNVKRdmVFcCSNEpn0eCmTVsAnRbsuHh_huDMLmLgwxURKlsjrE_0QX4Ed2LVd5QdIMDkXKqK2IxmEypAxr3fvktPOJtetXg1kplqkzimXQ3Jj7gYrNS7r8npd-KDarpHM-_092F2CurjKdk5FbLMIY5ksw-wV7cBmOO7YVNu6txd507tWzyp2OrtA26bnzmDtnb1nxRJZD41Sf-Zy7XlG-9Ir-sFyB7vlZ9_TCrUcpuMoP5MAVGVeYpSFlZMGyGCXDjLFUcc_wyESpF0k0AVL3RAUDi1IdeRxD39MCVSxTfxUm8iLHdXC0xtQoHXtaGuqWmKIGRvjGaAtsHyivBQcke1JHQplUh9weT-xio5CkVkgL_Ebnia4hye1kjKdfdrkfu15GkBy_vL_XmDOh2LEHIirHYki8xTIOLZ5-0IK1kZ0_KFIZZMeXRht_kGcXpi-6N9fJ9WX7ahNmqLaS9gdvHmzBxKA_xG2Y0q-Dx7K_UznsO1f07RE |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xEmoPpUBLUyg1EhcOhl2_di1xQUBU1CpEJAdu1np3VomU2lGcoP78zjoOjwOKENe1dzRPzYx3_Q3AMePIUUvrqwiNH6lE-9JSXAkjhNUhjwWyetiE6HTk_X3afTbqi5ioiFJVH-K7qB4b2yAM8DO3XqiiJImmpyJn1Fokq7AeU053Ln5x2XvC2w3r4awUz9QdpTJa_DX3ChWXm3T1Mje9UnDWiae99Q6WP8Onptr0LubusQ0rWOzAx2cYhLtw3nMtsfFvHQand6f-qsLr6Rp1k557w8K7_mfLEVkQjVd_7vO6g7IaD8rJrPoC_fZ1__KX34xU8FUYyakvLFdo85gys2A2RcnQMpYrHhiemCQPEokmQuqiqHBgSa6TgGMcBlqgSmUefoW1oizwG3haY26UTgMtDXVNTFEjI0JjtAO4j1TQghOSPWsiosrqw-6AZ25xoZCsUUgLwoXeM91Ak7sJGaMlu_zHXeM5NMeS948WJs0ohtzBiCqwnBFvqUxjh6sftWBvbutHilQOuTGmyfc3yPMTNrtX7ezPTef3PnygEku6e948OoC16WSGP2BDP0yH1eSw9tn_8j3viw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-Order+Raman+Scattering+in+Exfoliated+Black+Phosphorus&rft.jtitle=Nano+letters&rft.au=Favron%2C+Alexandre&rft.au=Goudreault%2C+F%C3%A9lix+Antoine&rft.au=Gosselin%2C+Vincent&rft.au=Groulx%2C+Julien&rft.date=2018-02-14&rft.eissn=1530-6992&rft.volume=18&rft.issue=2&rft.spage=1018&rft_id=info:doi/10.1021%2Facs.nanolett.7b04486&rft_id=info%3Apmid%2F29320856&rft.externalDocID=29320856 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |