Second-Order Raman Scattering in Exfoliated Black Phosphorus

Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 18; no. 2; pp. 1018 - 1027
Main Authors: Favron, Alexandre, Goudreault, Félix Antoine, Gosselin, Vincent, Groulx, Julien, Côté, Michel, Leonelli, Richard, Germain, Jean-Francis, Phaneuf-L’Heureux, Anne-Laurence, Francoeur, Sébastien, Martel, Richard
Format: Journal Article
Language:English
Published: United States American Chemical Society 14.02.2018
Subjects:
ISSN:1530-6984, 1530-6992, 1530-6992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1 ′, D2 and D2 ′, in exfoliated black phosphorus (P­(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag 1 and Ag 2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D′ and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.
AbstractList Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1 ′, D2 and D2 ′, in exfoliated black phosphorus (P­(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag 1 and Ag 2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D′ and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.
Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1', D2 and D2', in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag1 and Ag2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp2-hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D1, D1', D2 and D2', in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the Ag1 and Ag2 modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.
Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally forbidden Raman modes that are sensitive to crystal disorder, such as defects, dopants, strain, and so forth. The sp -hybridized carbon systems are, however, the exception among nanomaterials, where first-order Raman processes usually dominate. Here we report the identification of four second-order Raman modes, named D , D , D and D , in exfoliated black phosphorus (P(black)), an elemental direct-gap semiconductor exhibiting strong mechanical and electronic anisotropies. Located in close proximity to the A and A modes, these new modes dominate at an excitation wavelength of 633 nm. Their evolutions as a function of sample thickness, excitation wavelength, and defect density indicate that they are defect-activated and involve high-momentum phonons in a doubly resonant Raman process. Ab initio simulations of a monolayer reveal that the D' and D modes occur through intravalley scatterings with split contributions in the armchair and zigzag directions, respectively. The high sensitivity of these D modes to disorder helps explaining several discrepancies found in the literature.
Author Favron, Alexandre
Germain, Jean-Francis
Côté, Michel
Leonelli, Richard
Francoeur, Sébastien
Martel, Richard
Phaneuf-L’Heureux, Anne-Laurence
Gosselin, Vincent
Goudreault, Félix Antoine
Groulx, Julien
AuthorAffiliation Département de Chimie and Regroupement Québécois sur les Matériaux de Pointe
Département de Génie Physique
Université de Montréal
Département de Physique and Regroupement Québécois sur les Matériaux de Pointe
AuthorAffiliation_xml – name: Département de Physique and Regroupement Québécois sur les Matériaux de Pointe
– name: Département de Génie Physique
– name: Université de Montréal
– name: Département de Chimie and Regroupement Québécois sur les Matériaux de Pointe
Author_xml – sequence: 1
  givenname: Alexandre
  surname: Favron
  fullname: Favron, Alexandre
  organization: Université de Montréal
– sequence: 2
  givenname: Félix Antoine
  surname: Goudreault
  fullname: Goudreault, Félix Antoine
  organization: Université de Montréal
– sequence: 3
  givenname: Vincent
  surname: Gosselin
  fullname: Gosselin, Vincent
  organization: Université de Montréal
– sequence: 4
  givenname: Julien
  surname: Groulx
  fullname: Groulx, Julien
  organization: Université de Montréal
– sequence: 5
  givenname: Michel
  surname: Côté
  fullname: Côté, Michel
  organization: Université de Montréal
– sequence: 6
  givenname: Richard
  surname: Leonelli
  fullname: Leonelli, Richard
  organization: Université de Montréal
– sequence: 7
  givenname: Jean-Francis
  surname: Germain
  fullname: Germain, Jean-Francis
  organization: Département de Génie Physique
– sequence: 8
  givenname: Anne-Laurence
  surname: Phaneuf-L’Heureux
  fullname: Phaneuf-L’Heureux, Anne-Laurence
  organization: Département de Génie Physique
– sequence: 9
  givenname: Sébastien
  orcidid: 0000-0002-6129-7026
  surname: Francoeur
  fullname: Francoeur, Sébastien
  organization: Département de Génie Physique
– sequence: 10
  givenname: Richard
  orcidid: 0000-0002-9021-4656
  surname: Martel
  fullname: Martel, Richard
  email: r.martel@umontreal.ca
  organization: Université de Montréal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29320856$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtOwzAQRS0Eog_4A4SyZJMydl4OYgNVeUiVimj3luNMaEpqF9uR4O9J1ZYFC1jNSHPPleYMyLE2Ggm5oDCiwOi1VG6kpTYNej_KCohjnh6RPk0iCNM8Z8c_O497ZODcCgDyKIFT0mN5xIAnaZ_czlEZXYYzW6INXuVa6mCupPdoa_0W1DqYfFamqaXHMrhvpHoPXpbGbZbGtu6MnFSycXi-n0OyeJgsxk_hdPb4PL6bhjKKuQ-zikqsigRYnEGVIwesAApJWUnTMi1YyrGMkWeUMwZpoVJGMYmYylDmvIiG5GpXu7Hmo0Xnxbp2CptGajStEzTneZJxTuMuermPtsUaS7Gx9VraL3F4uAvc7ALKGucsVkLVXvraaG9l3QgKYmtXdHbFwa7Y2-3g-Bd86P8Hgx22va5Ma3Un62_kGxjGkpA
CitedBy_id crossref_primary_10_1002_admi_201902075
crossref_primary_10_1002_aelm_201800687
crossref_primary_10_1039_D1NR07772D
crossref_primary_10_1063_1_5118959
crossref_primary_10_1002_advs_201902359
crossref_primary_10_1088_2053_1591_ab6c09
crossref_primary_10_1088_2631_7990_ad304f
crossref_primary_10_1002_adpr_202300181
crossref_primary_10_1039_D3SC05365B
crossref_primary_10_1063_5_0093688
crossref_primary_10_1016_j_apsusc_2020_147033
crossref_primary_10_3390_ijms23020733
crossref_primary_10_1002_pssb_202100543
crossref_primary_10_1002_lpor_202000399
crossref_primary_10_1007_s11426_022_1355_6
crossref_primary_10_1016_j_est_2024_112451
crossref_primary_10_1063_1_5086840
crossref_primary_10_1002_jrs_5610
crossref_primary_10_1002_advs_202102128
crossref_primary_10_1557_jmr_2019_167
crossref_primary_10_1002_adma_202402922
crossref_primary_10_1016_j_molstruc_2021_132163
crossref_primary_10_1002_smtd_202300618
crossref_primary_10_1016_j_flatc_2021_100314
Cites_doi 10.1021/nl5032293
10.1002/adfm.201502902
10.1039/C5NR06293D
10.1016/j.cpc.2016.04.003
10.1088/2053-1583/aa79bb
10.1103/PhysRevLett.116.087401
10.1016/0038-1098(82)90565-8
10.1103/PhysRevB.55.10337
10.1038/ncomms5475
10.1038/nnano.2015.71
10.1103/PhysRev.92.580
10.1016/j.carbon.2009.12.057
10.1103/PhysRevB.91.195411
10.1103/PhysRevB.93.121405
10.1063/1.4958460
10.1021/nl201432g
10.1103/PhysRevLett.97.187401
10.1021/acs.nanolett.5b01117
10.1063/1.4894273
10.1038/srep04215
10.1038/lsa.2015.85
10.1021/acsnano.6b04194
10.1038/nmat4299
10.1143/JPSJ.52.1518
10.1007/s12274-014-0446-7
10.1103/PhysRevB.55.10355
10.1002/adfm.201404294
10.1002/adom.201500707
10.1038/nmat1532
10.1021/acs.nanolett.7b01463
10.1038/ncomms10450
10.1038/ncomms14670
10.1002/jcc.20495
10.1039/C4CS00282B
10.1021/am404847d
10.1103/PhysRevB.84.035433
10.1103/PhysRevB.76.233407
10.1038/nnano.2016.171
10.1016/0038-1098(85)90213-3
10.1038/nnano.2013.46
10.1088/2053-1583/3/2/025016
10.1021/acs.nanolett.6b03907
10.1107/S0365110X65004140
10.1038/srep06677
10.1038/nnano.2008.67
10.1038/s41467-017-00358-1
10.1007/BF00617267
10.1016/0378-4363(83)90574-0
10.1103/PhysRevB.90.115439
10.1103/PhysRevLett.77.3865
10.1021/nn501226z
ContentType Journal Article
Copyright Copyright © 2018 American Chemical Society
Copyright_xml – notice: Copyright © 2018 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.7b04486
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 1027
ExternalDocumentID 29320856
10_1021_acs_nanolett_7b04486
e42170357
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a348t-7f1aefb502470f9e80ef00ba12d16d6b268ed4e87182206bc621e532c7ea98b3
IEDL.DBID ACS
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000425559700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Thu Oct 02 08:59:08 EDT 2025
Mon Jul 21 05:42:24 EDT 2025
Sat Nov 29 05:22:27 EST 2025
Tue Nov 18 22:22:34 EST 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords doubly resonant Raman
phonon-defect modes
anisotropic properties
Black phosphorus
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-7f1aefb502470f9e80ef00ba12d16d6b268ed4e87182206bc621e532c7ea98b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9021-4656
0000-0002-6129-7026
PMID 29320856
PQID 1989578814
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1989578814
pubmed_primary_29320856
crossref_citationtrail_10_1021_acs_nanolett_7b04486
crossref_primary_10_1021_acs_nanolett_7b04486
acs_journals_10_1021_acs_nanolett_7b04486
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-02-14
PublicationDateYYYYMMDD 2018-02-14
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-14
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1021/nl5032293
– ident: ref45/cit45
  doi: 10.1002/adfm.201502902
– ident: ref27/cit27
  doi: 10.1039/C5NR06293D
– ident: ref48/cit48
  doi: 10.1016/j.cpc.2016.04.003
– ident: ref10/cit10
  doi: 10.1088/2053-1583/aa79bb
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.116.087401
– ident: ref37/cit37
  doi: 10.1016/0038-1098(82)90565-8
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.55.10337
– ident: ref19/cit19
  doi: 10.1038/ncomms5475
– ident: ref21/cit21
  doi: 10.1038/nnano.2015.71
– ident: ref14/cit14
  doi: 10.1103/PhysRev.92.580
– ident: ref6/cit6
  doi: 10.1016/j.carbon.2009.12.057
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.91.195411
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.93.121405
– ident: ref26/cit26
  doi: 10.1063/1.4958460
– ident: ref42/cit42
  doi: 10.1021/nl201432g
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.97.187401
– ident: ref30/cit30
  doi: 10.1021/acs.nanolett.5b01117
– ident: ref39/cit39
  doi: 10.1063/1.4894273
– ident: ref33/cit33
  doi: 10.1038/srep04215
– ident: ref17/cit17
  doi: 10.1038/lsa.2015.85
– ident: ref44/cit44
  doi: 10.1021/acsnano.6b04194
– ident: ref20/cit20
  doi: 10.1038/nmat4299
– ident: ref36/cit36
  doi: 10.1143/JPSJ.52.1518
– ident: ref22/cit22
  doi: 10.1007/s12274-014-0446-7
– ident: ref51/cit51
  doi: 10.1103/PhysRevB.55.10355
– ident: ref40/cit40
  doi: 10.1002/adfm.201404294
– ident: ref9/cit9
  doi: 10.1002/adom.201500707
– ident: ref47/cit47
  doi: 10.1038/nmat1532
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.7b01463
– ident: ref46/cit46
  doi: 10.1038/ncomms10450
– ident: ref3/cit3
  doi: 10.1038/ncomms14670
– ident: ref35/cit35
– ident: ref50/cit50
  doi: 10.1002/jcc.20495
– ident: ref2/cit2
  doi: 10.1039/C4CS00282B
– ident: ref34/cit34
  doi: 10.1021/am404847d
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.84.035433
– ident: ref7/cit7
  doi: 10.1103/PhysRevB.76.233407
– ident: ref18/cit18
  doi: 10.1038/nnano.2016.171
– ident: ref25/cit25
  doi: 10.1016/0038-1098(85)90213-3
– ident: ref1/cit1
  doi: 10.1038/nnano.2013.46
– ident: ref11/cit11
  doi: 10.1088/2053-1583/3/2/025016
– ident: ref24/cit24
  doi: 10.1021/acs.nanolett.6b03907
– ident: ref13/cit13
  doi: 10.1107/S0365110X65004140
– ident: ref15/cit15
  doi: 10.1038/srep06677
– ident: ref5/cit5
  doi: 10.1038/nnano.2008.67
– ident: ref29/cit29
  doi: 10.1038/s41467-017-00358-1
– ident: ref16/cit16
  doi: 10.1007/BF00617267
– ident: ref38/cit38
  doi: 10.1016/0378-4363(83)90574-0
– ident: ref32/cit32
  doi: 10.1103/PhysRevB.90.115439
– ident: ref49/cit49
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref23/cit23
  doi: 10.1021/nn501226z
SSID ssj0009350
Score 2.427945
Snippet Second-order Raman scattering has been extensively studied in carbon-based nanomaterials, for example, nanotube and graphene, because it activates normally...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1018
Title Second-Order Raman Scattering in Exfoliated Black Phosphorus
URI http://dx.doi.org/10.1021/acs.nanolett.7b04486
https://www.ncbi.nlm.nih.gov/pubmed/29320856
https://www.proquest.com/docview/1989578814
Volume 18
WOSCitedRecordID wos000425559700051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Publications
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60etCD70d9EcGLh-juJs1uwIuUiicV66G3sNmd0EJNStOKP9_ZNLUqiHhNssvOi5kvk3wDcME4cjQq83WI1g91ZHyVUVxJK2VmAt6SyKphE_LhQfV68dMCKP7s4At-rU15leu8IDEmVzJlhCeiZVgRVOk6j75tdxcku0E1kZWCmCBRrML5r3K_7OISkim_J6Rfqswq29xt_vecW7BR15Xe7cwRtmEJ8x1Y_8I2uAs3XQd-rf_o2Da9Z_2qc69rKn5Nuu8Ncq_znhVDshVar3qx5z31i3LUL8bTcg9e7jov7Xu_Hp7g6yBUE19mXGOWtigHS5bFqBhmjKWaC8sjG6UiUmhDJLxEJQKLUhMJjq1AGIk6VmmwD428yPEQPGMwtdrEwihL-IhpgiwysNY4KvtQiyZckuxJ7ftlUrW1BU_cxblCklohTQjmyk5MTULuZmEM_1jlf64azUg4_nj-fG7HhKLFtUB0jsWUzharuOUY9MMmHMwM_LkjFT5uYGl09A95jmGNKijlPuPm4Qk0JuMpnsKqeZsMyvEZLMueOqt89APKqOWT
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gXrw_VifFbx4qCZ9JQUvIoqiruLuwVtJkykraCvbXfHnO-m2Pg4iek2bYZ7MTNN8A7DPOHLUMnNVgMYNVKRdmVFcCSNEpn0eCmTVsAnRbsuHh_huDMLmLgwxURKlsjrE_0QX4Ed2LVd5QdIMDkXKqK2IxmEypAxr3fvktPOJtetXg1kplqkzimXQ3Jj7gYrNS7r8npd-KDarpHM-_092F2CurjKdk5FbLMIY5ksw-wV7cBmOO7YVNu6txd507tWzyp2OrtA26bnzmDtnb1nxRJZD41Sf-Zy7XlG-9Ir-sFyB7vlZ9_TCrUcpuMoP5MAVGVeYpSFlZMGyGCXDjLFUcc_wyESpF0k0AVL3RAUDi1IdeRxD39MCVSxTfxUm8iLHdXC0xtQoHXtaGuqWmKIGRvjGaAtsHyivBQcke1JHQplUh9weT-xio5CkVkgL_Ebnia4hye1kjKdfdrkfu15GkBy_vL_XmDOh2LEHIirHYki8xTIOLZ5-0IK1kZ0_KFIZZMeXRht_kGcXpi-6N9fJ9WX7ahNmqLaS9gdvHmzBxKA_xG2Y0q-Dx7K_UznsO1f07RE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xEmoPpUBLUyg1EhcOhl2_di1xQUBU1CpEJAdu1np3VomU2lGcoP78zjoOjwOKENe1dzRPzYx3_Q3AMePIUUvrqwiNH6lE-9JSXAkjhNUhjwWyetiE6HTk_X3afTbqi5ioiFJVH-K7qB4b2yAM8DO3XqiiJImmpyJn1Fokq7AeU053Ln5x2XvC2w3r4awUz9QdpTJa_DX3ChWXm3T1Mje9UnDWiae99Q6WP8Onptr0LubusQ0rWOzAx2cYhLtw3nMtsfFvHQand6f-qsLr6Rp1k557w8K7_mfLEVkQjVd_7vO6g7IaD8rJrPoC_fZ1__KX34xU8FUYyakvLFdo85gys2A2RcnQMpYrHhiemCQPEokmQuqiqHBgSa6TgGMcBlqgSmUefoW1oizwG3haY26UTgMtDXVNTFEjI0JjtAO4j1TQghOSPWsiosrqw-6AZ25xoZCsUUgLwoXeM91Ak7sJGaMlu_zHXeM5NMeS948WJs0ohtzBiCqwnBFvqUxjh6sftWBvbutHilQOuTGmyfc3yPMTNrtX7ezPTef3PnygEku6e948OoC16WSGP2BDP0yH1eSw9tn_8j3viw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-Order+Raman+Scattering+in+Exfoliated+Black+Phosphorus&rft.jtitle=Nano+letters&rft.au=Favron%2C+Alexandre&rft.au=Goudreault%2C+F%C3%A9lix+Antoine&rft.au=Gosselin%2C+Vincent&rft.au=Groulx%2C+Julien&rft.date=2018-02-14&rft.eissn=1530-6992&rft.volume=18&rft.issue=2&rft.spage=1018&rft_id=info:doi/10.1021%2Facs.nanolett.7b04486&rft_id=info%3Apmid%2F29320856&rft.externalDocID=29320856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon