N‑Cadherin Nanoantagonist Driven Mesenchymal-to-Epithelial Transition in Fibroblasts for Improving Reprogramming Efficiency

Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nano letters Ročník 21; číslo 13; s. 5540 - 5546
Hlavní autori: Meng, Xia, Zhou, Anwei, Huang, Yu, Zhang, Yu, Xu, Yurui, Shao, Kaifeng, Ning, Xinghai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States American Chemical Society 14.07.2021
Predmet:
ISSN:1530-6984, 1530-6992, 1530-6992
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
AbstractList Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency and . Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
Author Zhou, Anwei
Meng, Xia
Xu, Yurui
Zhang, Yu
Huang, Yu
Shao, Kaifeng
Ning, Xinghai
AuthorAffiliation National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics
SARI Center for Stem Cell and Nanomedicine
West China School of Medicine
Shanghai Advanced Research Institute, Chinese Academy of Sciences
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials
AuthorAffiliation_xml – name: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials
– name: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics
– name: Shanghai Advanced Research Institute, Chinese Academy of Sciences
– name: SARI Center for Stem Cell and Nanomedicine
– name: West China School of Medicine
Author_xml – sequence: 1
  givenname: Xia
  surname: Meng
  fullname: Meng, Xia
  organization: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials
– sequence: 2
  givenname: Anwei
  surname: Zhou
  fullname: Zhou, Anwei
  organization: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics
– sequence: 3
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
  organization: West China School of Medicine
– sequence: 4
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials
– sequence: 5
  givenname: Yurui
  surname: Xu
  fullname: Xu, Yurui
  email: dg1834024@smail.nju.edu.cn
  organization: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials
– sequence: 6
  givenname: Kaifeng
  surname: Shao
  fullname: Shao, Kaifeng
  email: shaokf1@gmail.com
  organization: Shanghai Advanced Research Institute, Chinese Academy of Sciences
– sequence: 7
  givenname: Xinghai
  orcidid: 0000-0003-3453-9656
  surname: Ning
  fullname: Ning, Xinghai
  email: xning@nju.edu.cn
  organization: National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34161107$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1U1D_6BghlySbDdewkDjs0nUKl0kpVWUfXjjPjyrEH21NpFki8Aq_Ik-DRTLtgAat7r3y-I-ucM3LkvNOEvKUwo1DRD6jizKHzVqc0owpACHhFTmnNoGy6rjp62QU_IWcxPgJAx2o4JieM04ZSaE_Jj9vfP3_NcVjpYFxxm_3QJVx6Z2IqLoN50q74qqN2arWd0JbJl4u1SSttDdriIaCLJhnvikxfGRm8tBhTLEYfiutpHfyTccviXudtGXCadtdiHI0y2XL7hrwe0UZ9cZjn5NvV4mH-pby5-3w9_3RTIuMilXXXjJI2VQWjgAZAt5xSJpgSg2SqFU3NRwBsO9lVXFIENQjZNAw6NWgpOnZO3u998ze-b3RM_WSi0tai034T-6rmXLRC1FWWvjtIN3LSQ78OZsKw7Z8jywK-F6jgYwx6fJFQ6HfN9LmZ_rmZ_tBMxj7-hSmTcBddCmjs_2DYw7vXR78JLqf1b-QPNDCsFg
CitedBy_id crossref_primary_10_3389_fonc_2023_1126721
crossref_primary_10_1002_adfm_202404563
crossref_primary_10_3390_biom14050509
crossref_primary_10_1016_j_jcis_2023_06_154
crossref_primary_10_1002_adma_202304172
crossref_primary_10_1016_j_bios_2024_116947
crossref_primary_10_1016_j_mehy_2023_111016
crossref_primary_10_1016_j_theriogenology_2023_01_008
crossref_primary_10_1016_j_cej_2025_164286
Cites_doi 10.1002/ijc.23027
10.1158/0008-5472.CAN-07-5949
10.1517/13543784.16.4.451
10.1038/nrm.2016.8
10.1021/acs.accounts.6b00506
10.1038/labinvest.2017.56
10.1038/nbt1418
10.1016/j.stem.2010.04.015
10.1038/s41586-018-0016-3
10.1038/nrg3473
10.1038/nm.2236
10.1016/j.cell.2006.07.024
10.1515/hsz-2016-0181
10.1016/j.cell.2007.11.019
10.3389/fnmol.2016.00078
10.1038/s41556-018-0136-x
10.1038/embor.2011.88
10.3390/cells10020284
10.1016/j.stemcr.2017.07.002
10.1038/ncb0511-497
10.1016/j.stem.2009.12.001
10.1002/cpcb.51
10.1089/scd.2019.0188
10.1016/j.stem.2010.04.014
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.nanolett.1c00880
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 5546
ExternalDocumentID 34161107
10_1021_acs_nanolett_1c00880
b486590831
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
123
3RI
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a348t-596fb16220f80600e7411383c8db3c78654f00a79b924b1a0cd8b66309cdeb893
IEDL.DBID ACS
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000674354200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 11:49:05 EDT 2025
Mon Jul 21 05:49:45 EDT 2025
Tue Nov 18 21:18:06 EST 2025
Sat Nov 29 06:17:18 EST 2025
Fri Jul 16 16:58:44 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords ADH-1 functionalized gold nanoparticles
induced pluripotent stem cells
N-cadherin
reprogramming efficiency
mesenchymal-to-epithelial transition
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-596fb16220f80600e7411383c8db3c78654f00a79b924b1a0cd8b66309cdeb893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3453-9656
PMID 34161107
PQID 2544878852
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2544878852
pubmed_primary_34161107
crossref_primary_10_1021_acs_nanolett_1c00880
crossref_citationtrail_10_1021_acs_nanolett_1c00880
acs_journals_10_1021_acs_nanolett_1c00880
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
3RI
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210714
2021-07-14
PublicationDateYYYYMMDD 2021-07-14
PublicationDate_xml – month: 07
  year: 2021
  text: 20210714
  day: 14
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref17/cit17
ref6/cit6
ref10/cit10
ref3/cit3
ref18/cit18
ref19/cit19
ref21/cit21
ref11/cit11
ref12/cit12
ref15/cit15
ref16/cit16
ref22/cit22
ref23/cit23
ref13/cit13
ref14/cit14
ref8/cit8
ref5/cit5
ref2/cit2
ref4/cit4
ref1/cit1
ref24/cit24
ref20/cit20
ref7/cit7
References_xml – ident: ref23/cit23
  doi: 10.1002/ijc.23027
– ident: ref21/cit21
  doi: 10.1158/0008-5472.CAN-07-5949
– ident: ref24/cit24
  doi: 10.1517/13543784.16.4.451
– ident: ref8/cit8
  doi: 10.1038/nrm.2016.8
– ident: ref22/cit22
  doi: 10.1021/acs.accounts.6b00506
– ident: ref14/cit14
  doi: 10.1038/labinvest.2017.56
– ident: ref11/cit11
  doi: 10.1038/nbt1418
– ident: ref16/cit16
  doi: 10.1016/j.stem.2010.04.015
– ident: ref6/cit6
  doi: 10.1038/s41586-018-0016-3
– ident: ref13/cit13
  doi: 10.1038/nrg3473
– ident: ref20/cit20
  doi: 10.1038/nm.2236
– ident: ref2/cit2
  doi: 10.1016/j.cell.2006.07.024
– ident: ref10/cit10
  doi: 10.1515/hsz-2016-0181
– ident: ref1/cit1
  doi: 10.1016/j.cell.2007.11.019
– ident: ref5/cit5
  doi: 10.3389/fnmol.2016.00078
– ident: ref12/cit12
  doi: 10.1038/s41556-018-0136-x
– ident: ref17/cit17
  doi: 10.1038/embor.2011.88
– ident: ref19/cit19
  doi: 10.3390/cells10020284
– ident: ref18/cit18
  doi: 10.1016/j.stemcr.2017.07.002
– ident: ref4/cit4
  doi: 10.1038/ncb0511-497
– ident: ref9/cit9
  doi: 10.1016/j.stem.2009.12.001
– ident: ref3/cit3
  doi: 10.1002/cpcb.51
– ident: ref7/cit7
  doi: 10.1089/scd.2019.0188
– ident: ref15/cit15
  doi: 10.1016/j.stem.2010.04.014
SSID ssj0009350
Score 2.4319556
Snippet Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5540
SubjectTerms Animals
Cadherins - antagonists & inhibitors
Cadherins - genetics
Cellular Reprogramming
Epithelial-Mesenchymal Transition
Fibroblasts
Gold
Induced Pluripotent Stem Cells
Metal Nanoparticles
Mice
Title N‑Cadherin Nanoantagonist Driven Mesenchymal-to-Epithelial Transition in Fibroblasts for Improving Reprogramming Efficiency
URI http://dx.doi.org/10.1021/acs.nanolett.1c00880
https://www.ncbi.nlm.nih.gov/pubmed/34161107
https://www.proquest.com/docview/2544878852
Volume 21
WOSCitedRecordID wos000674354200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELZ4HeAALOxCeclIXDiYdZw0to-otOJChbQg9RaNnWR3pTZBTUDigMRf4C_ySxi7aXlICHFMFFvJeOz5vtjzDSFHAgFbymPOcslTJCgWmJbCMisxnpk0NxLAF5uQ_b4aDPTlK1H8uIMvgt9gq5MCihI_oz4JLMYshRR9USDSdR592vnzKrIb-oqsOImREmkVTVPlPunFBSRbvQ9In6BMH216a999z3Wy2uBKejpxhB9kLis2yMobtcFN8tB_fnzqQOoz_iguqyVaFf6WTjuXno3dskcvXDKS_Xc_giGrS9a9cSkbQ_RR6oOaP99FsXUPWXZpEHnXFUXYS2f_Jigi-smRr5G76nqFCpfe-ZNc97pXnXPWVF9gEEaqZm0d5yaIheC5wsHkGWKPAPmsVakJrVRxO8o5B6kNUjgTALepMohfuLZpZhAG_SILRVlk24TqQEOG0DSWoY4yENqpvCng7Tw1AEq2yDFaL2lmT5X4jXERJO7m1KRJY9IWCafDldhGxtxV0xh-0YrNWt1MZDy-eP5w6gkJzje3iQJFVt5WiZN0U1KptmiRrYmLzHoMHVtEPr3zje_ZJcvCHZNxWp3RHlmox7fZPlmyd_X_anxA5uVAHXgvfwGD9f4Q
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6tClLpgUcL7fIoRuLSg6nztH2sll21ol0hUaTeIttJSqVtUm3SSj0g8Rf4i_wSZrzJLhyqCo6xYssZjz3fF3s-A7wPEbDlIhW8lCJHguIM1zJ03EmMZzYvrTTGXzYhp1N1dqY_DyDpc2GwEw221PhN_JW6QLBPZZWpavya9kPgMHQpZOoPEoyw5N4Hoy8rrd3IX8yKcxmZkVZxnzF3RysUl1zzd1y6A2z6oDN58p_dfQqPO5TJDhZu8QwGRbUJG39oD27B9-mvHz9HJvf5fwwX2RptbM5rUtJlH-e0CLITSk1y324vzYy3NR9fUQLHDD2W-RDnT3sxrD1Bzl1bxOFtwxAEs-WfCob4fnEA7JKexl6vgpI9n8PXyfh0dMi7uxi4iWLV8kSnpQ3SMBSlwqEVBSKRANmtU7mNnFRpEpdCGKktEjobGOFyZRHNCO3ywiIoegFrVV0VO8B0oE2BQDWVkY4LE2rSfFNGJGVujVFyCHtovaybS03mt8nDIKPC3qRZZ9IhRP2oZa4TNae7NWb31OLLWlcLUY973n_XO0SGs4-2VExV1NdNRgJvSiqVhEPYXnjKssWIuCOy65f_8D1vYf3w9OQ4Oz6afnoFj0I6QEMqnvFrWGvn18UbeOhu2otmvutd_jcJ_wWd
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqqFA5QAsFFmjrSr30YHB-bR9Xy65atV0htZW4Rf5JAGlJVpssEgckXoFX5EmY8WYXOCBU9RgrtpzxjOeb2PMNIV9CAGyOp5wVgjsIUKxmSoSWWQH-zLjCCK19sQkxHMqTE3X8qNQXTKKGkWp_iI9WPXZFyzAQHGJ7qcsKvqg5CCy4LwnR-nICPh1VvNv7_cC3G_nirGDPEB0pGc-z5p4ZBX2TrZ_6pmcAp3c8g_X_mPJbstaiTdqdqcc78iovN8jqIw7CTXI9vLu57Wnn8wApbLYVyFqfVsioS48muBnSX5iiZM-uLvSINRXrjzGRYwSaS72r87e-KPQeQOxdGcDjTU0BDNPFHwsKOH92EewCn_qetwKTPt-Tv4P-n9431tZkYDqKZcMSlRYmSMOQFxKWmOeASAKIcq10JrJCpklccK6FMhDYmUBz66QBVMOVdbkBcLRFlsqqzHcIVYHSOQDWVEQqznWokPtNap4UzmgtRYd8BellrU3VmT8uD4MMG-cizVqRdkg0X7nMtuTmWGNj9EIvtug1npF7vPD-57lSZGCFeLSiy7ya1hkSvUkhZRJ2yPZMWxYjRhhDQpS9-w_f84msHB8Nsp_fhz_2yJsQ79EgmWe8T5aayTT_QF7by-a8nnz0Wn8PRI0IFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=N-Cadherin+Nanoantagonist+Driven+Mesenchymal-to-Epithelial+Transition+in+Fibroblasts+for+Improving+Reprogramming+Efficiency&rft.jtitle=Nano+letters&rft.au=Meng%2C+Xia&rft.au=Zhou%2C+Anwei&rft.au=Huang%2C+Yu&rft.au=Zhang%2C+Yu&rft.date=2021-07-14&rft.eissn=1530-6992&rft.volume=21&rft.issue=13&rft.spage=5540&rft_id=info:doi/10.1021%2Facs.nanolett.1c00880&rft_id=info%3Apmid%2F34161107&rft.externalDocID=34161107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon