Mechanism Regulating Self-Intercalation in Layered Materials

Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assemb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters Jg. 23; H. 8; S. 3623 - 3629
Hauptverfasser: Zhang, Peikun, Xue, Minmin, Chen, Changfeng, Guo, Wanlin, Zhang, Zhuhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Chemical Society 26.04.2023
Schlagworte:
ISSN:1530-6984, 1530-6992, 1530-6992
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
AbstractList Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.
Author Chen, Changfeng
Zhang, Peikun
Xue, Minmin
Guo, Wanlin
Zhang, Zhuhua
AuthorAffiliation State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science
Department of Physics and Astronomy
AuthorAffiliation_xml – name: Department of Physics and Astronomy
– name: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science
Author_xml – sequence: 1
  givenname: Peikun
  surname: Zhang
  fullname: Zhang, Peikun
  organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science
– sequence: 2
  givenname: Minmin
  orcidid: 0000-0002-6629-6436
  surname: Xue
  fullname: Xue, Minmin
  organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science
– sequence: 3
  givenname: Changfeng
  surname: Chen
  fullname: Chen, Changfeng
  email: changfeng.chen@unlv.edu
  organization: Department of Physics and Astronomy
– sequence: 4
  givenname: Wanlin
  surname: Guo
  fullname: Guo, Wanlin
  email: wlguo@nuaa.edu.cn
  organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science
– sequence: 5
  givenname: Zhuhua
  orcidid: 0000-0001-6406-0959
  surname: Zhang
  fullname: Zhang, Zhuhua
  email: chuwazhang@nuaa.edu.cn
  organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37043360$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PwkAQhjcGI4L-A2N69FKc_ShsjRdD_CCBmPhx3gzbAUvKFnfbA__eVsCDBz3NZud9JjNPj3Vc6YixCw4DDoJfow0Dh64sqKoG0gJoMTpipzyREA_TVHR-3lp1WS-EFQCkMoET1pUjUFIO4ZTdzsh-oMvDOnqhZV1glbtl9ErFIp64irzF9qt0Ue6iKW7JUxbNsGnkWIQzdrxoCp3va5-9P9y_jZ_i6fPjZHw3jVEqXcVczJVICBQhWUj5HCVqSK1Omz2ExMwqriFTc81HCc9gNMxsKocodCKFyED22dVu7saXnzWFyqzzYKko0FFZByM0AFdaJ230ch-t52vKzMbna_Rbc7i4CdzsAtaXIXhaGJtX3ydWHvPCcDCtXtPoNQe9Zq-3gdUv-DD_Hwx2WNtdlbV3ja2_kS_vCpH1
CitedBy_id crossref_primary_10_1088_2053_1583_ad2193
crossref_primary_10_1002_smll_202401559
crossref_primary_10_1038_s41597_024_04008_2
crossref_primary_10_1039_D4TA08896D
crossref_primary_10_1021_acsnano_5c07577
crossref_primary_10_1002_adfm_202401304
crossref_primary_10_1016_j_ijhydene_2025_150812
crossref_primary_10_1063_5_0277493
crossref_primary_10_1039_D5NR00921A
crossref_primary_10_1016_j_mattod_2024_10_002
crossref_primary_10_1002_smtd_202402196
crossref_primary_10_1038_s41467_025_60127_3
crossref_primary_10_1021_jacs_5c00925
Cites_doi 10.1103/PhysRevLett.125.036804
10.1103/PhysRevLett.77.3865
10.1002/jcc.21759
10.1038/s41467-019-08468-8
10.1021/acs.nanolett.2c01710
10.1002/smm2.1013
10.1063/5.0068018
10.1016/j.ensm.2021.09.030
10.1021/acs.nanolett.1c05022
10.1103/PhysRevLett.125.047202
10.1016/j.apsusc.2022.154378
10.1103/PhysRevB.59.1758
10.1038/s41586-020-2241-9
10.1002/adfm.202208528
10.1038/s41586-019-1013-x
10.1002/ange.202115939
10.1038/s41565-018-0298-5
10.1002/jcc.24300
10.1002/smll.202201975
10.1038/s41563-019-0463-8
10.1007/s10853-022-06929-y
10.1002/adma.202207276
10.1002/adma.201705542
10.1039/C5CS00758E
10.1103/PhysRevB.47.558
10.1021/acs.nanolett.1c01156
10.1021/acsami.8b10449
10.1016/S0364-5916(02)80006-2
10.1021/acsanm.2c00632
10.1002/adma.201200489
10.1021/acs.nanolett.2c04362
10.1126/sciadv.aay4092
10.1038/nchem.1589
10.1016/j.jmmm.2021.168988
10.1002/adma.201808213
10.1038/s41586-022-04846-3
10.1021/acsnano.0c02712
10.1038/s41565-019-0405-2
10.1002/smtd.202100567
10.1557/S0883769400068093
10.1126/science.abi9828
10.1038/ncomms5224
10.1021/jacs.9b06929
10.1103/PhysRevLett.125.217002
10.1021/acs.jpcc.5b00317
10.1038/nmat4251
10.1038/ncomms14548
10.1039/D2TC03228G
10.1038/s41578-022-00473-6
10.1088/0256-307X/37/10/107506
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.125.097003
10.1103/PhysRevLett.129.266401
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.nanolett.3c00827
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 3629
ExternalDocumentID 37043360
10_1021_acs_nanolett_3c00827
b14253937
Genre Journal Article
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ACBEA
CITATION
CUPRZ
NPM
7X8
ID FETCH-LOGICAL-a348t-12b425e04eaec091ba3a809c8937023adc4180d4b81751d076dc936a285322d03
IEDL.DBID ACS
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972007200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Wed Oct 01 17:02:56 EDT 2025
Thu Jan 02 22:52:39 EST 2025
Sat Nov 29 04:20:03 EST 2025
Tue Nov 18 21:39:57 EST 2025
Thu Jul 06 08:30:38 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords ab initio calculation
phase control
transition metal dichalcogenide
self-intercalation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a348t-12b425e04eaec091ba3a809c8937023adc4180d4b81751d076dc936a285322d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6629-6436
0000-0001-6406-0959
PMID 37043360
PQID 2800148850
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2800148850
pubmed_primary_37043360
crossref_citationtrail_10_1021_acs_nanolett_3c00827
crossref_primary_10_1021_acs_nanolett_3c00827
acs_journals_10_1021_acs_nanolett_3c00827
PublicationCentury 2000
PublicationDate 20230426
2023-04-26
2023-Apr-26
PublicationDateYYYYMMDD 2023-04-26
PublicationDate_xml – month: 04
  year: 2023
  text: 20230426
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1103/PhysRevLett.125.036804
– ident: ref50/cit50
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref51/cit51
  doi: 10.1002/jcc.21759
– ident: ref2/cit2
  doi: 10.1038/s41467-019-08468-8
– ident: ref10/cit10
  doi: 10.1021/acs.nanolett.2c01710
– ident: ref17/cit17
  doi: 10.1002/smm2.1013
– ident: ref43/cit43
  doi: 10.1063/5.0068018
– ident: ref33/cit33
  doi: 10.1016/j.ensm.2021.09.030
– ident: ref11/cit11
  doi: 10.1021/acs.nanolett.1c05022
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.125.047202
– ident: ref30/cit30
  doi: 10.1016/j.apsusc.2022.154378
– ident: ref49/cit49
  doi: 10.1103/PhysRevB.59.1758
– ident: ref40/cit40
  doi: 10.1038/s41586-020-2241-9
– ident: ref39/cit39
  doi: 10.1002/adfm.202208528
– ident: ref5/cit5
  doi: 10.1038/s41586-019-1013-x
– ident: ref28/cit28
  doi: 10.1002/ange.202115939
– ident: ref3/cit3
  doi: 10.1038/s41565-018-0298-5
– ident: ref52/cit52
  doi: 10.1002/jcc.24300
– ident: ref44/cit44
  doi: 10.1002/smll.202201975
– ident: ref34/cit34
  doi: 10.1038/s41563-019-0463-8
– ident: ref32/cit32
  doi: 10.1007/s10853-022-06929-y
– ident: ref37/cit37
  doi: 10.1002/adma.202207276
– ident: ref38/cit38
  doi: 10.1002/adma.201705542
– ident: ref13/cit13
  doi: 10.1039/C5CS00758E
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.47.558
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.1c01156
– ident: ref27/cit27
  doi: 10.1021/acsami.8b10449
– ident: ref46/cit46
  doi: 10.1016/S0364-5916(02)80006-2
– ident: ref31/cit31
  doi: 10.1021/acsanm.2c00632
– ident: ref19/cit19
  doi: 10.1002/adma.201200489
– ident: ref45/cit45
  doi: 10.1021/acs.nanolett.2c04362
– ident: ref22/cit22
  doi: 10.1126/sciadv.aay4092
– ident: ref1/cit1
  doi: 10.1038/nchem.1589
– ident: ref41/cit41
  doi: 10.1016/j.jmmm.2021.168988
– ident: ref14/cit14
  doi: 10.1002/adma.201808213
– ident: ref21/cit21
  doi: 10.1038/s41586-022-04846-3
– ident: ref42/cit42
  doi: 10.1021/acsnano.0c02712
– ident: ref4/cit4
  doi: 10.1038/s41565-019-0405-2
– ident: ref25/cit25
  doi: 10.1002/smtd.202100567
– ident: ref15/cit15
  doi: 10.1557/S0883769400068093
– ident: ref53/cit53
  doi: 10.1126/science.abi9828
– ident: ref20/cit20
  doi: 10.1038/ncomms5224
– ident: ref23/cit23
  doi: 10.1021/jacs.9b06929
– ident: ref7/cit7
  doi: 10.1103/PhysRevLett.125.217002
– ident: ref6/cit6
  doi: 10.1021/acs.jpcc.5b00317
– ident: ref26/cit26
  doi: 10.1038/nmat4251
– ident: ref29/cit29
  doi: 10.1038/ncomms14548
– ident: ref35/cit35
  doi: 10.1039/D2TC03228G
– ident: ref16/cit16
  doi: 10.1038/s41578-022-00473-6
– ident: ref36/cit36
  doi: 10.1088/0256-307X/37/10/107506
– ident: ref48/cit48
  doi: 10.1103/PhysRevB.54.11169
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.125.097003
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.129.266401
SSID ssj0009350
Score 2.496089
Snippet Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3623
Title Mechanism Regulating Self-Intercalation in Layered Materials
URI http://dx.doi.org/10.1021/acs.nanolett.3c00827
https://www.ncbi.nlm.nih.gov/pubmed/37043360
https://www.proquest.com/docview/2800148850
Volume 23
WOSCitedRecordID wos000972007200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62etCD70d9lBW8eEjNJtvdLHgpxeLBFrEKvS2TbAqFupXuVvDfO9ndtioU6TUkIZkH802GzEfIjau4hqYJ0MWlpoiINVWhADrE9MIHkCpoDnOyiaDXk4NB-LxMFP9W8Ll7BzptJJBM8BpZQ2gbs4IK2eSIdC1VQ6vdXzbZFTkjKzoxpkSh9OZf5VbsYgOSTn8HpBUoM482nb11z7lPdktc6bQKQzggGyY5JDs_ug0ekfuusd98R-m781Iw0OOw0zfjIc3fBVFbuZqcUeI8wZcl8XS6kBUmekzeOg-v7UdakidQEJ7MqMsVuqNhngGjERQoECBZqC0-wTgNsfZcyWJPSQQQbswCP9ah8IFj_OY8ZuKEVJNJYs6Io4QB25ee2WbtytKl-yF40rWTIdSsRm7x8lFp_GmU17W5G9nBuUSiUiI1IubSjnTZhdySYYz_WUUXqz6KLhz_zL-eKzJCd7E1EEjMZJZGXNqkUMomnvq00PBiRxSMJ4TPzte4zwXZtgT0tr7E_UtSzaYzc0W29Gc2Sqd1UgkGsp4b6TdxQOOZ
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qFdQH76OeEXzxIZpkc2zAFxFLxbaIB_QtTDZbKGgqJhX8987kqPogoq_L7rI7BzOzw34fwLEdOwo9HZCLS2VSRqzMOBRoDqm88BFlHHjDgmwi6PflYBDeNsCr_8LQITLaKSua-J_oAvYZj6WYjuk2-alQHLqCGZj1yH645rq4vP_E2hUFMSv5MlVGoXTrH3M_7MJxSWXf49IPyWYRdNrL_zzuCixVWaZxUZrFKjR0ugaLX7AH1-G8p_nT7yh7Nu5KPnoaNu7109AsXglJd4XSjFFqdPGdKT2NHualwW7AY_vq4bJjVlQKJgpX5qbtxOSc2nI1akUpQowCpRUqzlYoamOiXFtaiRtLSifsxAr8RIXCR4eiueMkltiEZjpO9TYYsdDIKPUWQ7fHTJ7uh-hKmydjqKwWnNDlo8oVsqjocjt2xIO1RKJKIi0QtdAjVWGSMzXG0y-rzOmqlxKT45f5R7U-I3Ie7ohgqseTLHIkl4hSenTqrVLR0x1JMK4QvrXzh_scwnznodeNutf9m11YYGp67jw5_h4089eJ3oc59ZaPsteDwmI_AAx46yA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTg-1GfK3jxsLq72UcWvEi1KLalWIXeltlsCoW6Ld2t4L93Zh-1HkoRryEJyUyG-ZIh38fYlRlaEhzlYYgLqSMilnroc9B7eL1wAUToOb1MbMJrtUS367dnpL5wEQnOlGRFfIrqUdQrGAbMW2qPIR7ijtIbLil9ectsxaHiE6GiWueHb5dn4qwYz3g78oVd_pqbMwvlJpn8zk1zAGeWeOpb_1jyNtss0KZ2nx-PHbak4l22McNBuMfumoo-__aTD-0116XHZq2jBj09ey1EH2bO0_qx1oAvkvbUmpDmB3efvdcf32pPeiGpoAO3RaqbVohBqgxbgZIIFULgIAxfEmrB7A2RtE1hRHYoEFaYkeG5kfS5CxZmdcuKDH7AKvEwVkdMC7kCYqs3iMI9JBF11wdbmNQZfGlU2TVuPihCIgmyardlBtRYWiQoLFJlvDR8IAtucpLIGCwYpU9HjXJujgX9L0ufBhhEVBmBWA0nSWAJuioK4eCqD3NnT2dEw9icu8bxH_ZzwdbaD_Wg8dx6OWHrpFBPBSjLPWWVdDxRZ2xVfqb9ZHyeHdpvqU3tmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+Regulating+Self-Intercalation+in+Layered+Materials&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Peikun&rft.au=Xue%2C+Minmin&rft.au=Chen%2C+Changfeng&rft.au=Guo%2C+Wanlin&rft.date=2023-04-26&rft.eissn=1530-6992&rft.volume=23&rft.issue=8&rft.spage=3623&rft_id=info:doi/10.1021%2Facs.nanolett.3c00827&rft_id=info%3Apmid%2F37043360&rft.externalDocID=37043360
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon