Mechanism Regulating Self-Intercalation in Layered Materials
Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assemb...
Gespeichert in:
| Veröffentlicht in: | Nano letters Jg. 23; H. 8; S. 3623 - 3629 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
American Chemical Society
26.04.2023
|
| Schlagworte: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials. |
|---|---|
| AbstractList | Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by
calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials. Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials.Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials. Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property modulation, thereby opening an avenue for exploring new physics and devising novel applications, but the mechanism governing intercalant assembly patterns and properties remains unclear. Based on extensive structural search and energetics analysis by ab initio calculations, we reveal a Sabatier-like principle that dictates spatial arrangement of self-intercalated atoms in transition metal dichalcogenides. We further construct a robust descriptor quantifying that strong intercalant-host interactions favor a monodispersing phase of intercalated atoms that may exhibit ferromagnetism, while weak interactions lead to a trimer phase with attenuated or quenched magnetism, which further evolves into tetramer and hexagonal phases at increasing intercalant density. These findings elucidate the mechanism underpinning experimental observations and paves the way for rational design and precise control of self-intercalation in layered materials. |
| Author | Chen, Changfeng Zhang, Peikun Xue, Minmin Guo, Wanlin Zhang, Zhuhua |
| AuthorAffiliation | State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science Department of Physics and Astronomy |
| AuthorAffiliation_xml | – name: Department of Physics and Astronomy – name: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science |
| Author_xml | – sequence: 1 givenname: Peikun surname: Zhang fullname: Zhang, Peikun organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science – sequence: 2 givenname: Minmin orcidid: 0000-0002-6629-6436 surname: Xue fullname: Xue, Minmin organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science – sequence: 3 givenname: Changfeng surname: Chen fullname: Chen, Changfeng email: changfeng.chen@unlv.edu organization: Department of Physics and Astronomy – sequence: 4 givenname: Wanlin surname: Guo fullname: Guo, Wanlin email: wlguo@nuaa.edu.cn organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science – sequence: 5 givenname: Zhuhua orcidid: 0000-0001-6406-0959 surname: Zhang fullname: Zhang, Zhuhua email: chuwazhang@nuaa.edu.cn organization: State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37043360$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkE1PwkAQhjcGI4L-A2N69FKc_ShsjRdD_CCBmPhx3gzbAUvKFnfbA__eVsCDBz3NZud9JjNPj3Vc6YixCw4DDoJfow0Dh64sqKoG0gJoMTpipzyREA_TVHR-3lp1WS-EFQCkMoET1pUjUFIO4ZTdzsh-oMvDOnqhZV1glbtl9ErFIp64irzF9qt0Ue6iKW7JUxbNsGnkWIQzdrxoCp3va5-9P9y_jZ_i6fPjZHw3jVEqXcVczJVICBQhWUj5HCVqSK1Omz2ExMwqriFTc81HCc9gNMxsKocodCKFyED22dVu7saXnzWFyqzzYKko0FFZByM0AFdaJ230ch-t52vKzMbna_Rbc7i4CdzsAtaXIXhaGJtX3ydWHvPCcDCtXtPoNQe9Zq-3gdUv-DD_Hwx2WNtdlbV3ja2_kS_vCpH1 |
| CitedBy_id | crossref_primary_10_1088_2053_1583_ad2193 crossref_primary_10_1002_smll_202401559 crossref_primary_10_1038_s41597_024_04008_2 crossref_primary_10_1039_D4TA08896D crossref_primary_10_1021_acsnano_5c07577 crossref_primary_10_1002_adfm_202401304 crossref_primary_10_1016_j_ijhydene_2025_150812 crossref_primary_10_1063_5_0277493 crossref_primary_10_1039_D5NR00921A crossref_primary_10_1016_j_mattod_2024_10_002 crossref_primary_10_1002_smtd_202402196 crossref_primary_10_1038_s41467_025_60127_3 crossref_primary_10_1021_jacs_5c00925 |
| Cites_doi | 10.1103/PhysRevLett.125.036804 10.1103/PhysRevLett.77.3865 10.1002/jcc.21759 10.1038/s41467-019-08468-8 10.1021/acs.nanolett.2c01710 10.1002/smm2.1013 10.1063/5.0068018 10.1016/j.ensm.2021.09.030 10.1021/acs.nanolett.1c05022 10.1103/PhysRevLett.125.047202 10.1016/j.apsusc.2022.154378 10.1103/PhysRevB.59.1758 10.1038/s41586-020-2241-9 10.1002/adfm.202208528 10.1038/s41586-019-1013-x 10.1002/ange.202115939 10.1038/s41565-018-0298-5 10.1002/jcc.24300 10.1002/smll.202201975 10.1038/s41563-019-0463-8 10.1007/s10853-022-06929-y 10.1002/adma.202207276 10.1002/adma.201705542 10.1039/C5CS00758E 10.1103/PhysRevB.47.558 10.1021/acs.nanolett.1c01156 10.1021/acsami.8b10449 10.1016/S0364-5916(02)80006-2 10.1021/acsanm.2c00632 10.1002/adma.201200489 10.1021/acs.nanolett.2c04362 10.1126/sciadv.aay4092 10.1038/nchem.1589 10.1016/j.jmmm.2021.168988 10.1002/adma.201808213 10.1038/s41586-022-04846-3 10.1021/acsnano.0c02712 10.1038/s41565-019-0405-2 10.1002/smtd.202100567 10.1557/S0883769400068093 10.1126/science.abi9828 10.1038/ncomms5224 10.1021/jacs.9b06929 10.1103/PhysRevLett.125.217002 10.1021/acs.jpcc.5b00317 10.1038/nmat4251 10.1038/ncomms14548 10.1039/D2TC03228G 10.1038/s41578-022-00473-6 10.1088/0256-307X/37/10/107506 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.125.097003 10.1103/PhysRevLett.129.266401 |
| ContentType | Journal Article |
| Copyright | 2023 American Chemical Society |
| Copyright_xml | – notice: 2023 American Chemical Society |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/acs.nanolett.3c00827 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1530-6992 |
| EndPage | 3629 |
| ExternalDocumentID | 37043360 10_1021_acs_nanolett_3c00827 b14253937 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI ABFRP ABMVS ABPTK ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ PK8 RNS ROL TN5 UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI ACBEA CITATION CUPRZ NPM 7X8 |
| ID | FETCH-LOGICAL-a348t-12b425e04eaec091ba3a809c8937023adc4180d4b81751d076dc936a285322d03 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972007200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Wed Oct 01 17:02:56 EDT 2025 Thu Jan 02 22:52:39 EST 2025 Sat Nov 29 04:20:03 EST 2025 Tue Nov 18 21:39:57 EST 2025 Thu Jul 06 08:30:38 EDT 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | ab initio calculation phase control transition metal dichalcogenide self-intercalation |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a348t-12b425e04eaec091ba3a809c8937023adc4180d4b81751d076dc936a285322d03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6629-6436 0000-0001-6406-0959 |
| PMID | 37043360 |
| PQID | 2800148850 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2800148850 pubmed_primary_37043360 crossref_citationtrail_10_1021_acs_nanolett_3c00827 crossref_primary_10_1021_acs_nanolett_3c00827 acs_journals_10_1021_acs_nanolett_3c00827 |
| PublicationCentury | 2000 |
| PublicationDate | 20230426 2023-04-26 2023-Apr-26 |
| PublicationDateYYYYMMDD | 2023-04-26 |
| PublicationDate_xml | – month: 04 year: 2023 text: 20230426 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2023 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref24/cit24 doi: 10.1103/PhysRevLett.125.036804 – ident: ref50/cit50 doi: 10.1103/PhysRevLett.77.3865 – ident: ref51/cit51 doi: 10.1002/jcc.21759 – ident: ref2/cit2 doi: 10.1038/s41467-019-08468-8 – ident: ref10/cit10 doi: 10.1021/acs.nanolett.2c01710 – ident: ref17/cit17 doi: 10.1002/smm2.1013 – ident: ref43/cit43 doi: 10.1063/5.0068018 – ident: ref33/cit33 doi: 10.1016/j.ensm.2021.09.030 – ident: ref11/cit11 doi: 10.1021/acs.nanolett.1c05022 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.125.047202 – ident: ref30/cit30 doi: 10.1016/j.apsusc.2022.154378 – ident: ref49/cit49 doi: 10.1103/PhysRevB.59.1758 – ident: ref40/cit40 doi: 10.1038/s41586-020-2241-9 – ident: ref39/cit39 doi: 10.1002/adfm.202208528 – ident: ref5/cit5 doi: 10.1038/s41586-019-1013-x – ident: ref28/cit28 doi: 10.1002/ange.202115939 – ident: ref3/cit3 doi: 10.1038/s41565-018-0298-5 – ident: ref52/cit52 doi: 10.1002/jcc.24300 – ident: ref44/cit44 doi: 10.1002/smll.202201975 – ident: ref34/cit34 doi: 10.1038/s41563-019-0463-8 – ident: ref32/cit32 doi: 10.1007/s10853-022-06929-y – ident: ref37/cit37 doi: 10.1002/adma.202207276 – ident: ref38/cit38 doi: 10.1002/adma.201705542 – ident: ref13/cit13 doi: 10.1039/C5CS00758E – ident: ref47/cit47 doi: 10.1103/PhysRevB.47.558 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.1c01156 – ident: ref27/cit27 doi: 10.1021/acsami.8b10449 – ident: ref46/cit46 doi: 10.1016/S0364-5916(02)80006-2 – ident: ref31/cit31 doi: 10.1021/acsanm.2c00632 – ident: ref19/cit19 doi: 10.1002/adma.201200489 – ident: ref45/cit45 doi: 10.1021/acs.nanolett.2c04362 – ident: ref22/cit22 doi: 10.1126/sciadv.aay4092 – ident: ref1/cit1 doi: 10.1038/nchem.1589 – ident: ref41/cit41 doi: 10.1016/j.jmmm.2021.168988 – ident: ref14/cit14 doi: 10.1002/adma.201808213 – ident: ref21/cit21 doi: 10.1038/s41586-022-04846-3 – ident: ref42/cit42 doi: 10.1021/acsnano.0c02712 – ident: ref4/cit4 doi: 10.1038/s41565-019-0405-2 – ident: ref25/cit25 doi: 10.1002/smtd.202100567 – ident: ref15/cit15 doi: 10.1557/S0883769400068093 – ident: ref53/cit53 doi: 10.1126/science.abi9828 – ident: ref20/cit20 doi: 10.1038/ncomms5224 – ident: ref23/cit23 doi: 10.1021/jacs.9b06929 – ident: ref7/cit7 doi: 10.1103/PhysRevLett.125.217002 – ident: ref6/cit6 doi: 10.1021/acs.jpcc.5b00317 – ident: ref26/cit26 doi: 10.1038/nmat4251 – ident: ref29/cit29 doi: 10.1038/ncomms14548 – ident: ref35/cit35 doi: 10.1039/D2TC03228G – ident: ref16/cit16 doi: 10.1038/s41578-022-00473-6 – ident: ref36/cit36 doi: 10.1088/0256-307X/37/10/107506 – ident: ref48/cit48 doi: 10.1103/PhysRevB.54.11169 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.125.097003 – ident: ref9/cit9 doi: 10.1103/PhysRevLett.129.266401 |
| SSID | ssj0009350 |
| Score | 2.496089 |
| Snippet | Recent experimental breakthrough demonstrated a powerful synthesis approach for intercalating the van der Waals gap of layered materials to achieve property... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3623 |
| Title | Mechanism Regulating Self-Intercalation in Layered Materials |
| URI | http://dx.doi.org/10.1021/acs.nanolett.3c00827 https://www.ncbi.nlm.nih.gov/pubmed/37043360 https://www.proquest.com/docview/2800148850 |
| Volume | 23 |
| WOSCitedRecordID | wos000972007200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62etCD70d9lBW8eEjNJtvdLHgpxeLBFrEKvS2TbAqFupXuVvDfO9ndtioU6TUkIZkH802GzEfIjau4hqYJ0MWlpoiINVWhADrE9MIHkCpoDnOyiaDXk4NB-LxMFP9W8Ll7BzptJJBM8BpZQ2gbs4IK2eSIdC1VQ6vdXzbZFTkjKzoxpkSh9OZf5VbsYgOSTn8HpBUoM482nb11z7lPdktc6bQKQzggGyY5JDs_ug0ekfuusd98R-m781Iw0OOw0zfjIc3fBVFbuZqcUeI8wZcl8XS6kBUmekzeOg-v7UdakidQEJ7MqMsVuqNhngGjERQoECBZqC0-wTgNsfZcyWJPSQQQbswCP9ah8IFj_OY8ZuKEVJNJYs6Io4QB25ee2WbtytKl-yF40rWTIdSsRm7x8lFp_GmU17W5G9nBuUSiUiI1IubSjnTZhdySYYz_WUUXqz6KLhz_zL-eKzJCd7E1EEjMZJZGXNqkUMomnvq00PBiRxSMJ4TPzte4zwXZtgT0tr7E_UtSzaYzc0W29Gc2Sqd1UgkGsp4b6TdxQOOZ |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qFdQH76OeEXzxIZpkc2zAFxFLxbaIB_QtTDZbKGgqJhX8987kqPogoq_L7rI7BzOzw34fwLEdOwo9HZCLS2VSRqzMOBRoDqm88BFlHHjDgmwi6PflYBDeNsCr_8LQITLaKSua-J_oAvYZj6WYjuk2-alQHLqCGZj1yH645rq4vP_E2hUFMSv5MlVGoXTrH3M_7MJxSWXf49IPyWYRdNrL_zzuCixVWaZxUZrFKjR0ugaLX7AH1-G8p_nT7yh7Nu5KPnoaNu7109AsXglJd4XSjFFqdPGdKT2NHualwW7AY_vq4bJjVlQKJgpX5qbtxOSc2nI1akUpQowCpRUqzlYoamOiXFtaiRtLSifsxAr8RIXCR4eiueMkltiEZjpO9TYYsdDIKPUWQ7fHTJ7uh-hKmydjqKwWnNDlo8oVsqjocjt2xIO1RKJKIi0QtdAjVWGSMzXG0y-rzOmqlxKT45f5R7U-I3Ie7ohgqseTLHIkl4hSenTqrVLR0x1JMK4QvrXzh_scwnznodeNutf9m11YYGp67jw5_h4089eJ3oc59ZaPsteDwmI_AAx46yA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5aRfTg-1GfK3jxsLq72UcWvEi1KLalWIXeltlsCoW6Ld2t4L93Zh-1HkoRryEJyUyG-ZIh38fYlRlaEhzlYYgLqSMilnroc9B7eL1wAUToOb1MbMJrtUS367dnpL5wEQnOlGRFfIrqUdQrGAbMW2qPIR7ijtIbLil9ectsxaHiE6GiWueHb5dn4qwYz3g78oVd_pqbMwvlJpn8zk1zAGeWeOpb_1jyNtss0KZ2nx-PHbak4l22McNBuMfumoo-__aTD-0116XHZq2jBj09ey1EH2bO0_qx1oAvkvbUmpDmB3efvdcf32pPeiGpoAO3RaqbVohBqgxbgZIIFULgIAxfEmrB7A2RtE1hRHYoEFaYkeG5kfS5CxZmdcuKDH7AKvEwVkdMC7kCYqs3iMI9JBF11wdbmNQZfGlU2TVuPihCIgmyardlBtRYWiQoLFJlvDR8IAtucpLIGCwYpU9HjXJujgX9L0ufBhhEVBmBWA0nSWAJuioK4eCqD3NnT2dEw9icu8bxH_ZzwdbaD_Wg8dx6OWHrpFBPBSjLPWWVdDxRZ2xVfqb9ZHyeHdpvqU3tmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+Regulating+Self-Intercalation+in+Layered+Materials&rft.jtitle=Nano+letters&rft.au=Zhang%2C+Peikun&rft.au=Xue%2C+Minmin&rft.au=Chen%2C+Changfeng&rft.au=Guo%2C+Wanlin&rft.date=2023-04-26&rft.eissn=1530-6992&rft.volume=23&rft.issue=8&rft.spage=3623&rft_id=info:doi/10.1021%2Facs.nanolett.3c00827&rft_id=info%3Apmid%2F37043360&rft.externalDocID=37043360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |