A Note on the Complexity of Classical and Intuitionistic Proofs

We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an elementary function f such that if φ is a cut-free LK proof of ⊢ A with symbol complexity ≤ c, then there exists a cut-free LJ proof...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science s. 657 - 666
Hlavní autoři: Baaz, Matthias, Leitsch, Alexander, Reis, Giselle
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.07.2015
Témata:
ISSN:1043-6871
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an elementary function f such that if φ is a cut-free LK proof of ⊢ A with symbol complexity ≤ c, then there exists a cut-free LJ proof of 1⊢ ⊣⊣A with symbol complexity ≤ f(c)". This follows from the more general result: "There is an elementary function f such that if φ is a cut-free LK proof of A ⊢ with symbol complexity ≤ c, then there exists a cut-free LJ proof of A ⊢ with symbol complexity ≤ f(c)". The result is proved using a suitable variant of cut-elimination by resolution (CERES) and subsumption.
AbstractList We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an elementary function f such that if φ is a cut-free LK proof of ⊢ A with symbol complexity ≤ c, then there exists a cut-free LJ proof of 1⊢ ⊣⊣A with symbol complexity ≤ f(c)". This follows from the more general result: "There is an elementary function f such that if φ is a cut-free LK proof of A ⊢ with symbol complexity ≤ c, then there exists a cut-free LJ proof of A ⊢ with symbol complexity ≤ f(c)". The result is proved using a suitable variant of cut-elimination by resolution (CERES) and subsumption.
Author Baaz, Matthias
Reis, Giselle
Leitsch, Alexander
Author_xml – sequence: 1
  givenname: Matthias
  surname: Baaz
  fullname: Baaz, Matthias
  email: baaz@logic.at
– sequence: 2
  givenname: Alexander
  surname: Leitsch
  fullname: Leitsch, Alexander
  email: leitsch@logic.at
– sequence: 3
  givenname: Giselle
  surname: Reis
  fullname: Reis, Giselle
  email: giselle.reis@inria.fr
BookMark eNotzMtKAzEUANAIFWxrd-7c5Aem3pt3VlIGHwODCuq6xEyCkemkTCLYv3ehq7M7K7KY8hQIuULYIoK96bv2dcsA5VapM7Kx2qDQ1hqjpViQJYLgjTIaL8iqlC8AYErAktzu6FOugeaJ1s9A23w4juEn1RPNkbajKyV5N1I3DbSb6neqKU-p1OTpy5xzLJfkPLqxhM2_a_J-f_fWPjb980PX7vrGcaFqM7BBSgUgP7yJinupGYsgg8cQjJfogA2WO4gDGlAGfUTutDBMi8AG5vmaXP-9KYSwP87p4ObTXqMWlgH_Bd4qSR4
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/LICS.2015.66
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9781479988754
1479988758
EndPage 666
ExternalDocumentID 7174920
Genre orig-research
GroupedDBID --Z
23M
29P
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-a346t-d2d556005bc8f63c5722f05ec1ee8c51a02d93a0fd180681cf13a748274e2d2c3
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380427100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-6871
IngestDate Wed Aug 27 02:33:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a346t-d2d556005bc8f63c5722f05ec1ee8c51a02d93a0fd180681cf13a748274e2d2c3
OpenAccessLink https://inria.hal.science/hal-01208346
PageCount 10
ParticipantIDs ieee_primary_7174920
PublicationCentury 2000
PublicationDate 20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 20150701
  day: 01
PublicationDecade 2010
PublicationTitle 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science
PublicationTitleAbbrev LICS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002640
ssj0002179874
Score 1.9225767
Snippet We show an effective cut-free variant of Glivenko's theorem extended to formulas with weak quantifiers (those without eigenvariable conditions): "There is an...
SourceID ieee
SourceType Publisher
StartPage 657
SubjectTerms Calculus
classical logic
complexity
Complexity theory
Computer science
Context
Geometry
Glivenko's theorem
intuitionistic logic
Merging
Title A Note on the Complexity of Classical and Intuitionistic Proofs
URI https://ieeexplore.ieee.org/document/7174920
WOSCitedRecordID wos000380427100058&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVp6NCpH0npNxo61oktWZY0lRIaGggh0A-yBUU6QRe7pE6h_746xXU7dOlmjG3MHfJ7J797R8h1yqWREkIGnHdJLn2RGGVXiVgJ4ZhZ5Sb2cb9M5WymFgs975CbthcGAKL4DAZ4GP_lu8pucKtsGEqPXLNQoO9IWWx7tdr9FIbOW0hlmq9wAPrGiYAnRagKWtG7Hk4no0cUdYkBeiP-GqoSMWW8_7-3OSD9n-Y8Om9h55B0oDwi-9_TGWizWHvk9o7OqhpoVdJA8ihegOaX9SetPI2zMDE_1JSOTgLwROlWdG3Gpwdo7JPn8f3T6CFpxiUkhudFnTjmBPIXsbLKF9wKyZhPBdgMQFmRmZQ5zU3qXabSQmXWZ9xItAHNgTlm-THpllUJJ4R64FmmA5VVGnKBfjG60IHquXBLnipzSnoYj-Xb1hFj2YTi7O_T52QPo70VuV6Qbr3ewCXZtR_16_v6KqbxC6Eqmj8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF1KFfRUtRW_3YNH0272I9k9iYilxRgKVumtbPYDvCRSU8F_7-42Rg9evIWQhDDD5r3ZvHkDwBUiqUxT4zKgrY5oapNIclVErGBMY1lQGfq4X7I0z_liIWYdcN32whhjgvjMDP1h-JevK7X2W2UjV3pQgV2BvsUoxWjTrdXuqGDvveXJTPMddlDfeBGQKHF1QSt7F6NsevfkZV1s6N0Rf41VCagy7v3vffbA4Kc9D85a4NkHHVMegN73fAbYLNc-uLmFeVUbWJXQ0TzoL_D2l_UnrCwM0zB9hqAsNZw66AnireDb7J_uwHEAnsf387tJ1AxMiCShSR1prJlnMKxQ3CZEsRRji5hRsTFcsVgirAWRyOqYo4THysZEpt4IlBqssSKHoFtWpTkC0BoSx8KRWS4MZd4xRiTCkT3tbqGIy2PQ9_FYvm08MZZNKE7-Pn0Jdibzx2yZTfOHU7DrI7-RvJ6Bbr1am3OwrT7q1_fVRUjpF9zDnYY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+30th+Annual+ACM%2FIEEE+Symposium+on+Logic+in+Computer+Science&rft.atitle=A+Note+on+the+Complexity+of+Classical+and+Intuitionistic+Proofs&rft.au=Baaz%2C+Matthias&rft.au=Leitsch%2C+Alexander&rft.au=Reis%2C+Giselle&rft.date=2015-07-01&rft.pub=IEEE&rft.issn=1043-6871&rft.spage=657&rft.epage=666&rft_id=info:doi/10.1109%2FLICS.2015.66&rft.externalDocID=7174920
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-6871&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-6871&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-6871&client=summon