Parsing-based sarcasm sentiment recognition in Twitter data

Sentiment Analysis is a technique to identify people's opinion, attitude, sentiment, and emotion towards any specific target such as individuals, events, topics, product, organizations, services etc. Sarcasm is a special kind of sentiment that comprise of words which mean the opposite of what y...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) s. 1373 - 1380
Hlavní autoři: Bharti, Santosh Kumar, Babu, Korra Sathya, Jena, Sanjay Kumar
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: ACM 25.08.2015
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sentiment Analysis is a technique to identify people's opinion, attitude, sentiment, and emotion towards any specific target such as individuals, events, topics, product, organizations, services etc. Sarcasm is a special kind of sentiment that comprise of words which mean the opposite of what you really want to say (especially in order to insult or wit someone, to show irritation, or to be funny). People often expressed it verbally through the use of heavy tonal stress and certain gestural clues like rolling of the eyes. These tonal and gestural clues are obviously not available for expressing sarcasm in text, making its detection reliant upon other factors. In this paper, two approaches to detect sarcasm in the text of Twitter data were proposed. The first is a parsing-based lexicon generation algorithm (PBLGA) and the second was to detect sarcasm based on the occurrence of the interjection word. The combination of two approaches is also shown and compared with the existing state-of-the-art approach to detect sarcasm. First approach attains a 0.89, 0.81 and 0.84 precision, recall and f - score respectively. Second approach attains 0.85, 0.96 and 0.90 precision, recall and f - score respectively in tweets with sarcastic hashtag.
AbstractList Sentiment Analysis is a technique to identify people's opinion, attitude, sentiment, and emotion towards any specific target such as individuals, events, topics, product, organizations, services etc. Sarcasm is a special kind of sentiment that comprise of words which mean the opposite of what you really want to say (especially in order to insult or wit someone, to show irritation, or to be funny). People often expressed it verbally through the use of heavy tonal stress and certain gestural clues like rolling of the eyes. These tonal and gestural clues are obviously not available for expressing sarcasm in text, making its detection reliant upon other factors. In this paper, two approaches to detect sarcasm in the text of Twitter data were proposed. The first is a parsing-based lexicon generation algorithm (PBLGA) and the second was to detect sarcasm based on the occurrence of the interjection word. The combination of two approaches is also shown and compared with the existing state-of-the-art approach to detect sarcasm. First approach attains a 0.89, 0.81 and 0.84 precision, recall and f - score respectively. Second approach attains 0.85, 0.96 and 0.90 precision, recall and f - score respectively in tweets with sarcastic hashtag.
Author Babu, Korra Sathya
Bharti, Santosh Kumar
Jena, Sanjay Kumar
Author_xml – sequence: 1
  givenname: Santosh Kumar
  surname: Bharti
  fullname: Bharti, Santosh Kumar
  email: 513cs1037@nitrkl.ac.in
  organization: Comput. Sci. Eng., Nat. Inst. of Technol., Rourkela, India
– sequence: 2
  givenname: Korra Sathya
  surname: Babu
  fullname: Babu, Korra Sathya
  email: ksathyababu@nitrkl.ac.in
  organization: Comput. Sci. Eng., Nat. Inst. of Technol., Rourkela, India
– sequence: 3
  givenname: Sanjay Kumar
  surname: Jena
  fullname: Jena, Sanjay Kumar
  email: skjena@nitrkl.ac.in
  organization: Comput. Sci. Eng., Nat. Inst. of Technol., Rourkela, India
BookMark eNotjMFKAzEUACPYg9aePXjJD2x9STb7EjxJUSsU9NCey9vs2xJws5IExL-3opeZw8Bci8s0JxbiVsFaqdbeawcOPa5_7RVciJVHdw5gjLMtXomHd8olplPTU-FBFsqByiQLpxqnM2TmMJ9SrHFOMia5_4q1cpYDVboRi5E-Cq_-vRSH56f9Ztvs3l5eN4-7hkzb1cYbhdoGbbFDQkWgghqdVWQAIXBQ_aig9R301DtyFsfOQEc8DkaDZ22W4u7vG5n5-JnjRPn7iC0Y1Mb8AKpiQ7M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1145/2808797.2808910
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781450338547
1450338542
EndPage 1380
ExternalDocumentID 7403723
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-a346t-931725c25767a71a01c1f851a3070cec1bf104960bab8a857f6306aefd3209e23
IEDL.DBID RIE
ISICitedReferencesCount 98
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000371793500208&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jun 29 18:35:55 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a346t-931725c25767a71a01c1f851a3070cec1bf104960bab8a857f6306aefd3209e23
PageCount 8
ParticipantIDs ieee_primary_7403723
PublicationCentury 2000
PublicationDate 2015-08-25
PublicationDateYYYYMMDD 2015-08-25
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-25
  day: 25
PublicationDecade 2010
PublicationTitle 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
PublicationTitleAbbrev ASONAM
PublicationYear 2015
Publisher ACM
Publisher_xml – name: ACM
Score 2.027641
Snippet Sentiment Analysis is a technique to identify people's opinion, attitude, sentiment, and emotion towards any specific target such as individuals, events,...
SourceID ieee
SourceType Publisher
StartPage 1373
SubjectTerms Feature extraction
Media
Meteorology
Natural language processing
Opinion mining
Parsing
Pragmatics
Sarcasm
Sentiment
Tagging
Tweets
Twitter
Title Parsing-based sarcasm sentiment recognition in Twitter data
URI https://ieeexplore.ieee.org/document/7403723
WOSCitedRecordID wos000371793500208&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQMToBbxlgdG3CaOE9tiRFRMVYcidasc-yx1IEF9wN_v2a0KAwtTrEiW5ed3n33fHcBjqGjpBrLcKqwkl2gCr4kmcKm8zjFYgiiXkk2oyUTP52bagaejFgYRk_MZDmMxveX71m3jVdlIyaxQouhCV6lqr9U6ROvJZTkSOtPKqGH8mqiI_ZUuJaHF-Ox_7ZzD4Ed2x6ZHQLmADjZ9eJ7axOd5xBvP1rQw7fqDRc1QCszPji5AbcOWDZt9L6NAh0XXzwG8j19nL2_8kPGA20JWG24IzUXpIglQVuU2y10eyCaycWc6dHkdiD4R6ahtra0uVajI5LcYfCEyg6K4hF7TNngFTKGn0Q7OofaSKtvS1l57o42gM06Ja-jHji8-90EtFoc-3_z9-xZOyVIo42WqKO-gt1lt8R5O3NdmuV49pJnYAQ0sjAI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7qA_Sk0opvc_Bo2t1ssknwKJaKtfRQobeSTSbQg1vpQ_--SVqqBy-eNiyEkOc3XzLfDMCdL8PS9cFyK7HklKP2tAo0gXLpVI7eBIiyKdmEHAzUeKyHDbjfamEQMTmfYTsW01u-m9lVvCrrSJ4VkhU7sCc4Z9larbWJ15Nz0WEqU1LLdvzqqIn9lTAl4UX36H8tHUPrR3hHhltIOYEG1k14GJrE6GlEHEcWYWmaxTuJqqEUmp9snYBmNZnWZPQ1jRIdEp0_W_DWfRo99ugm5wE1BS-XVAc8Z8JGGiCNzE2W29wHq8jEvWnR5pUPBCrQjspUyighfRmMfoPeFSzTyIpT2K1nNZ4BkejCeHtrUTkeKhthKqecVpqFU06yc2jGjk8-1mEtJps-X_z9-xYOeqPX_qT_PHi5hMNgN4h4tcrEFewu5yu8hn37uZwu5jdpVr4BhlmPSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining+%28ASONAM%29&rft.atitle=Parsing-based+sarcasm+sentiment+recognition+in+Twitter+data&rft.au=Bharti%2C+Santosh+Kumar&rft.au=Babu%2C+Korra+Sathya&rft.au=Jena%2C+Sanjay+Kumar&rft.date=2015-08-25&rft.pub=ACM&rft.spage=1373&rft.epage=1380&rft_id=info:doi/10.1145%2F2808797.2808910&rft.externalDocID=7403723