High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes

Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant ha...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS applied materials & interfaces Ročník 8; číslo 24; s. 15700 - 15709
Hlavní autoři: Yan, Jing, Jeong, Young Gyu
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 22.06.2016
Témata:
ISSN:1944-8252
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.
AbstractList Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient micro/nanosystems and mobile/portable electronics. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators, capacitors, sensors, etc. In this study, polydimethylsiloxane (PDMS)-based flexible composites including BaTiO3 nanofibers with different alignment modes were manufactured and their piezoelectric performance was examined. For the study, BaTiO3 nanofibers were prepared by an electrospinning technique utilizing a sol-gel precursor and following calcination process, and they were then aligned vertically or horizontally or randomly in PDMS matrix-based nanogenerators. The morphological structures of BaTiO3 nanofibers and their nanogenerators were analyzed by using SEM images. The crystal structures of the nanogenerators before and after poling were characterized by X-ray diffraction. The dielectric and piezoelectric properties of the nanogenerators were investigated as a function of the nanofiber alignment mode. The nanogenerator with BaTiO3 nanofibers aligned vertically in the PDMS matrix sheet achieved high piezoelectric performance of an output power of 0.1841 μW with maximum voltage of 2.67 V and current of 261.40 nA under a low mechanical stress of 0.002 MPa, in addition to a high dielectric constant of 40.23 at 100 Hz. The harvested energy could thus power a commercial LED directly or be stored into capacitors after rectification.
Author Jeong, Young Gyu
Yan, Jing
Author_xml – sequence: 1
  givenname: Jing
  surname: Yan
  fullname: Yan, Jing
  organization: Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University , Daejeon 34134, Republic of Korea
– sequence: 2
  givenname: Young Gyu
  surname: Jeong
  fullname: Jeong, Young Gyu
  organization: Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University , Daejeon 34134, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27237223$$D View this record in MEDLINE/PubMed
BookMark eNo1kD1PwzAYhC0Eoh-wMiKPLAHndWInYymUIhXaocyRnbwuRold7FQCfj0FynR3ek433IgcO--QkIuUXacM0htVR9XZa6H3QcojMkzLLEsKyGFARjG-MSY4sPyUDEAClwB8SNzcbl7pCoPxoVOuRjpr8cPqFunK4pfHFus-2Jo-K-c36DCo3odItYrYUO_orVrbJf_FxmrcI-vonTUGA7qeTlq7cd2Pe_INxjNyYlQb8fygY_Iyu19P58li-fA4nSwSxbO8T7TWUEsoTCkFgqhzA3lqGiEFQ86Q8QZFrtLSCIEN1xyVxrQQeZYxXhSigTG5-tvdBv--w9hXnY01tq1y6HexSmVZAoNMyn318lDd6Q6bahtsp8Jn9f8RfAMQ7moQ
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acsami.6b02177
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 15709
ExternalDocumentID 27237223
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
EJD
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a345t-bbb2c728f976e26c5f251fd6760e30e03de65a19f66ed3b3eabe18654403886d2
IEDL.DBID 7X8
ISICitedReferencesCount 207
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378584800093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Thu Jul 10 19:01:49 EDT 2025
Thu Jan 02 23:09:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords BaTiO3 nanofiber
piezoelectricity
nanogenerator
electrospinning
polydimethylsiloxane
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a345t-bbb2c728f976e26c5f251fd6760e30e03de65a19f66ed3b3eabe18654403886d2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27237223
PQID 1799202477
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1799202477
pubmed_primary_27237223
PublicationCentury 2000
PublicationDate 2016-06-22
PublicationDateYYYYMMDD 2016-06-22
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2016
SSID ssj0063205
Score 2.5776424
Snippet Piezoelectric nanogenerators, harvesting energy from mechanical stimuli in our living environments, hold great promise to power sustainable self-sufficient...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 15700
Title High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes
URI https://www.ncbi.nlm.nih.gov/pubmed/27237223
https://www.proquest.com/docview/1799202477
Volume 8
WOSCitedRecordID wos000378584800093&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWAMsDA-1FeMhJr1MSO7WRC5VGxUDIUqVvlJ4pUJYUUBr4e3ySlLEhISFGWxFJkX18f-56cg9CVorGJVEIDpjULYiZUIImzgfHvs5jKREe6NpsQw2EyHqdZe-BWtbTKRU6sE7UpNZyR90C5zG_UYyGuZ68BuEZBdbW10FhFHeqhDFC6xPi7isApCdlCqJFEPakrMNXhCnC4-B1S1kvLYPu_H7WDtlpQiftNFOyiFVvsoc0fUoP7qABCB86WvwngAUhhqqnFWW4_y8YOJ9fYp9vypdaiBh8eDKucwWWBb-Qof6L1YwcskwrnBb5r7VXmuD_NX2piAQZ3teoAPQ_uR7cPQeu1EEgas3mglCJakMR5eGIJ18x54OMMFzy0NLQhNZYzGaWOc2uoolYqGyWcxTHIyXBDDtFaURb2GGHiSOqM81BMmpgnSQp7RCLhUtKEURddLjpz4mMZChSysOV7NVl2ZxcdNSMymTWiGxMiCBUey5z8ofUp2vC4hgOji5Az1HF-JttztK4_5nn1dlEHib8Ps8cvM6rLEw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Performance+Flexible+Piezoelectric+Nanogenerators+based+on+BaTiO3+Nanofibers+in+Different+Alignment+Modes&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Yan%2C+Jing&rft.au=Jeong%2C+Young+Gyu&rft.date=2016-06-22&rft.eissn=1944-8252&rft.volume=8&rft.issue=24&rft.spage=15700&rft_id=info:doi/10.1021%2Facsami.6b02177&rft_id=info%3Apmid%2F27237223&rft_id=info%3Apmid%2F27237223&rft.externalDocID=27237223