From Opinion Mining to Financial Argument Mining
Opinion mining is a prevalent research issue in many domains. In the financial domain, however, it is still in the early stages. Most of the researches on this topic only focus on the coarse-grained market sentiment analysis, i.e., 2-way classification for bullish/bearish. Thanks to the recent finan...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | eBook |
| Language: | English |
| Published: |
Singapore
Springer Nature
2021
Springer Ministry of Science and Technology of Taiwan |
| Edition: | 1 |
| Series: | SpringerBriefs in Computer Science |
| Subjects: | |
| ISBN: | 9789811628818, 9811628815, 9789811628801, 9811628807 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Table of Contents:
- Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Opinion Mining and Sentiment Analysis -- 1.2 Financial Opinion Mining -- 1.3 Why Study Financial Opinion Mining? -- 1.4 Overview of the Book -- References -- 2 Modeling Financial Opinions -- 2.1 Opinion Components -- 2.1.1 Target Entity -- 2.1.2 Market Sentiment -- 2.1.3 Opinion Holder -- 2.1.4 Publishing Time and Validity Period -- 2.1.5 Market Information -- 2.1.6 Aspect -- 2.1.7 Elementary Argumentative Units -- 2.1.8 Opinion Quality -- 2.1.9 Influence -- 2.2 Argumentation Structure in Opinions -- 2.3 Argumentation Structure Among Opinions -- 2.4 Relations Among Opinions and Target Entities -- 2.5 Summary -- References -- 3 Sources and Corpora -- 3.1 Insiders -- 3.2 Professionals -- 3.3 Social Media Users -- 3.4 Journalists -- 3.5 Summary -- References -- 4 Organizing Financial Opinions -- 4.1 Component Extraction -- 4.1.1 Target Entity and Opinion Holder -- 4.1.2 Market Sentiment and Aspect -- 4.1.3 Temporal Information -- 4.1.4 Elementary Argumentative Units -- 4.2 Relation Linking and Quality Evaluation -- 4.3 Influence Power Estimation and Implicit Information Inference -- 4.4 Summary -- References -- 5 Numerals in Financial Narratives -- 5.1 Numeral Understanding -- 5.2 Numeral Attachment -- 5.3 Improving Financial Opinion Mining via Numeral-Related Tasks -- 5.4 Summary -- References -- 6 FinTech Applications -- 6.1 Information Provision -- 6.2 Personalized Recommendation -- 6.3 Improving Employee Efficiency -- 6.4 Summary -- References -- 7 Perspectives and Conclusion -- 7.1 Future Directions -- 7.2 Conclusion -- References

