Large-Area Epitaxial Monolayer MoS2

Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS nano Ročník 9; číslo 4; s. 4611 - 4620
Hlavní autoři: Dumcenco, Dumitru, Ovchinnikov, Dmitry, Marinov, Kolyo, Lazić, Predrag, Gibertini, Marco, Marzari, Nicola, Sanchez, Oriol Lopez, Kung, Yen-Cheng, Krasnozhon, Daria, Chen, Ming-Wei, Bertolazzi, Simone, Gillet, Philippe, Fontcuberta i Morral, Anna, Radenovic, Aleksandra, Kis, Andras
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Chemical Society 28.04.2015
Témata:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm.
AbstractList Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm.
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm.Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm.
Author Bertolazzi, Simone
Fontcuberta i Morral, Anna
Chen, Ming-Wei
Dumcenco, Dumitru
Marinov, Kolyo
Lazić, Predrag
Marzari, Nicola
Kung, Yen-Cheng
Sanchez, Oriol Lopez
Kis, Andras
Krasnozhon, Daria
Gillet, Philippe
Gibertini, Marco
Radenovic, Aleksandra
Ovchinnikov, Dmitry
AuthorAffiliation Institute Ruđer Bošković (IRB)
Electrical Engineering Institute
Ecole Polytechnique Federale de Lausanne (EPFL)
Institute of Materials
Institute of Condensed Matter Physics
Institute of Bioengineering
AuthorAffiliation_xml – name: Electrical Engineering Institute
– name: Institute Ruđer Bošković (IRB)
– name: Ecole Polytechnique Federale de Lausanne (EPFL)
– name: Institute of Condensed Matter Physics
– name: Institute of Materials
– name: Institute of Bioengineering
Author_xml – sequence: 1
  givenname: Dumitru
  surname: Dumcenco
  fullname: Dumcenco, Dumitru
– sequence: 2
  givenname: Dmitry
  surname: Ovchinnikov
  fullname: Ovchinnikov, Dmitry
– sequence: 3
  givenname: Kolyo
  surname: Marinov
  fullname: Marinov, Kolyo
– sequence: 4
  givenname: Predrag
  surname: Lazić
  fullname: Lazić, Predrag
– sequence: 5
  givenname: Marco
  surname: Gibertini
  fullname: Gibertini, Marco
– sequence: 6
  givenname: Nicola
  surname: Marzari
  fullname: Marzari, Nicola
– sequence: 7
  givenname: Oriol Lopez
  surname: Sanchez
  fullname: Sanchez, Oriol Lopez
– sequence: 8
  givenname: Yen-Cheng
  surname: Kung
  fullname: Kung, Yen-Cheng
– sequence: 9
  givenname: Daria
  surname: Krasnozhon
  fullname: Krasnozhon, Daria
– sequence: 10
  givenname: Ming-Wei
  surname: Chen
  fullname: Chen, Ming-Wei
– sequence: 11
  givenname: Simone
  surname: Bertolazzi
  fullname: Bertolazzi, Simone
– sequence: 12
  givenname: Philippe
  surname: Gillet
  fullname: Gillet, Philippe
– sequence: 13
  givenname: Anna
  surname: Fontcuberta i Morral
  fullname: Fontcuberta i Morral, Anna
– sequence: 14
  givenname: Aleksandra
  surname: Radenovic
  fullname: Radenovic, Aleksandra
– sequence: 15
  givenname: Andras
  surname: Kis
  fullname: Kis, Andras
  email: andras.kis@epfl.ch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25843548$$D View this record in MEDLINE/PubMed
BookMark eNp1UctKAzEUDVKxD127k4IbQcYmmSQz3Qil1AdUXKjgLtyZSeqUaVKTqdi_N6XTokJX98A9Dzini1rGGoXQOcE3BFMygNwbMPaGZ5jQlByhDhnGIsKpeG_tMSdt1PV-jjFP0kScoDblKYs5SzvocgpupqKRU9CfLMsavkuo-k_W2ArWygX0Qk_RsYbKq7Pm9tDb3eR1_BBNn-8fx6NpBDFjJCoo16AxzvRQxUSoGBKNdZHEWcIYZZAXWKUZz2MomOIFLVRS4CTjNNOp1pzEPXS79V2usoUqcmVqB5VcunIBbi0tlPLvx5Qfcma_ZEjnjPNgcNUYOPu5Ur6Wi9LnqqrAKLvykohECIKJGAbqxe-sfciumUDgW0LurPdOaZmHdurSbqLLShIsNwvIZgHZLBB0g3-6nfVhxfVWER5yblfOhJIPsn8AveqZBg
CitedBy_id crossref_primary_10_1007_s40242_020_0188_x
crossref_primary_10_1016_j_cap_2023_11_016
crossref_primary_10_1038_s41467_019_12795_1
crossref_primary_10_1557_adv_2018_657
crossref_primary_10_1002_aelm_201800492
crossref_primary_10_1088_1674_1056_ac8e9b
crossref_primary_10_1002_smtd_202000072
crossref_primary_10_1016_j_jlumin_2017_03_031
crossref_primary_10_1002_adpr_202300029
crossref_primary_10_1088_2053_1583_aaf836
crossref_primary_10_1016_j_sse_2019_05_011
crossref_primary_10_1002_smll_201603549
crossref_primary_10_1088_2515_7639_abbdb1
crossref_primary_10_1002_adfm_201703119
crossref_primary_10_1038_s41699_020_0150_2
crossref_primary_10_1038_s41598_017_04350_z
crossref_primary_10_1134_S1070427219050021
crossref_primary_10_1063_5_0140861
crossref_primary_10_1134_S1063782620040193
crossref_primary_10_1557_adv_2018_669
crossref_primary_10_1038_s41467_020_19752_3
crossref_primary_10_1063_1_4998284
crossref_primary_10_1063_5_0170017
crossref_primary_10_1016_j_jallcom_2017_11_229
crossref_primary_10_1088_2053_1583_ab0760
crossref_primary_10_1088_0957_4484_27_42_425701
crossref_primary_10_1016_j_actbio_2025_07_037
crossref_primary_10_1002_smtd_202500813
crossref_primary_10_1016_j_jmst_2020_05_079
crossref_primary_10_1007_s12274_018_2128_3
crossref_primary_10_1088_2053_1583_ab42b6
crossref_primary_10_1126_science_aao5360
crossref_primary_10_1038_s41699_021_00244_x
crossref_primary_10_1002_admi_201500635
crossref_primary_10_1002_admi_201600687
crossref_primary_10_1116_1_5074201
crossref_primary_10_1002_slct_202001683
crossref_primary_10_1016_j_tsf_2017_10_022
crossref_primary_10_3390_cryst13091373
crossref_primary_10_1016_j_commatsci_2021_111115
crossref_primary_10_1557_s43579_023_00381_y
crossref_primary_10_1088_1361_6528_aaea3f
crossref_primary_10_1088_2053_1583_ada0b7
crossref_primary_10_1063_5_0214274
crossref_primary_10_1016_j_jcrysgro_2024_128047
crossref_primary_10_1016_j_apsusc_2023_157994
crossref_primary_10_1007_s12274_022_4373_8
crossref_primary_10_1063_5_0241763
crossref_primary_10_1002_smll_201900578
crossref_primary_10_1016_j_jmbbm_2017_07_027
crossref_primary_10_1038_ncomms9616
crossref_primary_10_1016_j_jcrysgro_2017_10_028
crossref_primary_10_1038_s41467_020_20732_w
crossref_primary_10_1063_1_4928179
crossref_primary_10_1016_j_apmt_2025_102657
crossref_primary_10_1038_s43586_025_00429_4
crossref_primary_10_1088_1361_6528_ac06f4
crossref_primary_10_1016_j_vibspec_2022_103454
crossref_primary_10_1002_adma_201801164
crossref_primary_10_3390_ma14247590
crossref_primary_10_1007_s12274_022_4384_5
crossref_primary_10_1016_j_nanoen_2018_02_027
crossref_primary_10_1002_adfm_201706950
crossref_primary_10_1016_j_susc_2022_122046
crossref_primary_10_1016_j_apsusc_2017_01_263
crossref_primary_10_1016_j_ccr_2025_216950
crossref_primary_10_1002_smll_202311317
crossref_primary_10_1039_C9NH00260J
crossref_primary_10_1063_1_5123776
crossref_primary_10_1007_s10854_017_8417_x
crossref_primary_10_1002_admi_202100438
crossref_primary_10_1002_adfm_201601019
crossref_primary_10_1016_j_cplett_2017_05_015
crossref_primary_10_1088_1361_6463_adff92
crossref_primary_10_1002_adma_201702206
crossref_primary_10_1002_smtd_202301782
crossref_primary_10_1002_adma_201603928
crossref_primary_10_1088_2632_959X_acef43
crossref_primary_10_1039_D4NR01772B
crossref_primary_10_1116_6_0001685
crossref_primary_10_1016_j_apsusc_2023_156748
crossref_primary_10_1016_j_surfin_2025_107367
crossref_primary_10_1039_C7CS00887B
crossref_primary_10_1088_1361_6528_ab2c3a
crossref_primary_10_1007_s10853_019_03437_4
crossref_primary_10_1016_j_coelec_2017_03_007
crossref_primary_10_3390_nano14211749
crossref_primary_10_1016_j_nanoen_2018_03_060
crossref_primary_10_1088_2053_1583_ab1e0a
crossref_primary_10_1038_s41596_019_0131_0
crossref_primary_10_3390_cryst13091383
crossref_primary_10_1088_1361_6528_aabbb9
crossref_primary_10_1093_nsr_nwab164
crossref_primary_10_1016_j_vacuum_2023_112489
crossref_primary_10_1039_D1QI00187F
crossref_primary_10_1007_s10853_021_06708_1
crossref_primary_10_1002_adma_201801586
crossref_primary_10_1038_s41928_020_0460_6
crossref_primary_10_1038_s41467_023_40055_w
crossref_primary_10_1002_pssr_202300218
crossref_primary_10_1016_j_molliq_2016_11_045
crossref_primary_10_1039_D5NR02265G
crossref_primary_10_1007_s11664_020_07957_7
crossref_primary_10_1021_acs_jpcc_5c03341
crossref_primary_10_1016_j_compositesa_2018_05_009
crossref_primary_10_1039_D5CP02172C
crossref_primary_10_1088_1361_648X_acbf19
crossref_primary_10_1063_1_4977697
crossref_primary_10_1088_2053_1583_aabb74
crossref_primary_10_1088_2053_1583_ab53f7
crossref_primary_10_1016_j_inoche_2023_110775
crossref_primary_10_1063_5_0256632
crossref_primary_10_1038_srep21536
crossref_primary_10_1088_2053_1583_abc5a1
crossref_primary_10_1016_j_apsusc_2018_03_165
crossref_primary_10_1088_1361_6528_ab49a2
crossref_primary_10_1063_5_0057417
crossref_primary_10_1002_smtd_202300326
crossref_primary_10_1038_s41578_023_00609_2
crossref_primary_10_1002_advs_202105201
crossref_primary_10_1002_aelm_201900393
crossref_primary_10_1016_j_apsusc_2020_145864
crossref_primary_10_1088_1361_6528_acae28
crossref_primary_10_1016_j_cap_2019_07_007
crossref_primary_10_1002_smll_201603994
crossref_primary_10_1002_smll_202000596
crossref_primary_10_1007_s11433_021_1745_6
crossref_primary_10_1016_j_spmi_2019_03_006
crossref_primary_10_1088_1361_6528_aa6958
crossref_primary_10_1021_acs_jpcc_4c04669
crossref_primary_10_1038_s41467_022_35651_1
crossref_primary_10_1038_s41524_025_01754_8
crossref_primary_10_3390_nano10061161
crossref_primary_10_1063_1_4921580
crossref_primary_10_1016_j_vacuum_2024_113739
crossref_primary_10_1002_admi_202001549
crossref_primary_10_3390_nano11092423
crossref_primary_10_1002_smll_202006262
crossref_primary_10_1038_s41467_024_48522_8
crossref_primary_10_1063_1_4995984
crossref_primary_10_1016_j_spmi_2021_107054
crossref_primary_10_1039_D5TA03784K
crossref_primary_10_1038_s41467_021_26230_x
crossref_primary_10_1088_2053_1583_abce08
crossref_primary_10_1103_PhysRevApplied_14_034030
crossref_primary_10_1002_admi_202301065
crossref_primary_10_1039_D3MH01362F
crossref_primary_10_3390_coatings12050706
crossref_primary_10_1002_pssa_201900722
crossref_primary_10_1016_j_carbon_2020_07_014
crossref_primary_10_1002_cvde_201500060
crossref_primary_10_1016_j_cej_2025_162688
crossref_primary_10_1088_1361_6528_aa60f9
crossref_primary_10_1088_2053_1583_3_1_010401
crossref_primary_10_1002_admi_202201469
crossref_primary_10_1016_j_progsolidstchem_2024_100443
crossref_primary_10_1039_C9NR08753B
crossref_primary_10_1088_2053_1583_adf758
crossref_primary_10_1002_admi_202000364
crossref_primary_10_3390_nano13192712
crossref_primary_10_1016_j_ijhydene_2017_12_185
crossref_primary_10_1093_nsr_nwz223
crossref_primary_10_1002_elt2_43
crossref_primary_10_1016_j_jallcom_2024_174916
crossref_primary_10_1063_1_5030643
crossref_primary_10_1002_adma_202205520
crossref_primary_10_1038_s41699_025_00524_w
crossref_primary_10_1007_s11433_017_9105_x
crossref_primary_10_1088_2053_1583_aac610
crossref_primary_10_1007_s40544_022_0728_0
crossref_primary_10_1371_journal_pone_0154522
crossref_primary_10_1038_s41928_021_00670_1
crossref_primary_10_1002_admi_202201353
crossref_primary_10_1016_j_apsusc_2020_148240
crossref_primary_10_1088_1361_6463_aa6786
crossref_primary_10_1016_j_apmt_2021_100975
crossref_primary_10_1002_adma_202211075
crossref_primary_10_20935_AcadNano7714
crossref_primary_10_1002_adma_201903569
crossref_primary_10_1002_smtd_202401815
crossref_primary_10_1016_j_cap_2020_07_015
crossref_primary_10_1080_01614940_2021_1962493
crossref_primary_10_1002_adma_202202472
crossref_primary_10_1186_s11671_022_03670_y
crossref_primary_10_1002_admi_202200030
crossref_primary_10_1016_j_nanoen_2016_10_032
crossref_primary_10_1016_j_jallcom_2020_157374
crossref_primary_10_1088_2053_1583_ab1bc0
crossref_primary_10_1016_j_apsusc_2023_157352
crossref_primary_10_1016_j_nanoen_2019_01_073
crossref_primary_10_3390_app6030078
crossref_primary_10_1016_j_apsusc_2023_157597
crossref_primary_10_1016_j_mseb_2024_117892
crossref_primary_10_1088_2399_6528_abc296
crossref_primary_10_1016_j_cjph_2016_03_003
crossref_primary_10_1016_j_apsusc_2019_03_249
crossref_primary_10_1088_2053_1591_3_7_075009
crossref_primary_10_1016_j_cplett_2017_08_043
crossref_primary_10_1021_acsnano_4c18112
crossref_primary_10_1016_j_scib_2019_01_016
crossref_primary_10_1134_S106378501712015X
crossref_primary_10_1146_annurev_matsci_090519_113456
crossref_primary_10_1088_2053_1583_adf567
crossref_primary_10_1007_s11082_018_1512_2
crossref_primary_10_1016_j_matchemphys_2019_122203
crossref_primary_10_1016_j_surfrep_2023_100586
crossref_primary_10_3390_photonics6010003
crossref_primary_10_1002_adma_202005159
crossref_primary_10_3389_fphy_2021_654845
crossref_primary_10_7498_aps_74_20251115
crossref_primary_10_1038_s41467_017_00722_1
crossref_primary_10_1038_s41565_021_00963_8
crossref_primary_10_1016_j_chemphys_2023_111923
crossref_primary_10_1002_admi_201700031
crossref_primary_10_1063_5_0013391
crossref_primary_10_1039_D4NR03935A
crossref_primary_10_1103_PhysRevMaterials_6_064005
crossref_primary_10_1016_j_psep_2018_06_025
crossref_primary_10_1021_jacs_5b06643
crossref_primary_10_1007_s40843_019_1270_x
crossref_primary_10_3390_nano8020100
crossref_primary_10_1038_s41467_020_14383_0
crossref_primary_10_1002_advs_201600177
crossref_primary_10_1016_j_nantod_2016_08_009
crossref_primary_10_1016_j_chip_2023_100057
crossref_primary_10_1186_s11671_015_1094_x
crossref_primary_10_1039_C9NR07799E
crossref_primary_10_1063_1_4954172
crossref_primary_10_1088_1361_6528_ab3c9b
crossref_primary_10_1016_j_cap_2019_11_021
crossref_primary_10_1088_2053_1583_ac5ec5
crossref_primary_10_1088_1361_6463_aa5256
crossref_primary_10_1116_1_5043621
crossref_primary_10_1016_j_bios_2019_111512
crossref_primary_10_1063_5_0226977
crossref_primary_10_1080_14328917_2022_2109887
crossref_primary_10_1038_nature18593
crossref_primary_10_1088_2053_1583_abc460
crossref_primary_10_1515_nanoph_2022_0159
crossref_primary_10_1002_smll_201603005
crossref_primary_10_1088_2053_1583_aa734a
crossref_primary_10_3390_ma13245794
crossref_primary_10_1002_admi_201900220
crossref_primary_10_1016_j_cej_2020_125592
crossref_primary_10_1063_5_0163588
crossref_primary_10_1038_s41565_021_01004_0
crossref_primary_10_1016_j_mattod_2023_11_008
crossref_primary_10_1007_s40843_022_2338_9
crossref_primary_10_1002_smtd_202300165
crossref_primary_10_1016_j_apsusc_2021_150798
crossref_primary_10_1016_j_surfcoat_2024_131577
crossref_primary_10_1557_adv_2020_187
crossref_primary_10_1002_adfm_202207705
crossref_primary_10_1080_15421406_2018_1466234
crossref_primary_10_1021_acsaelm_5c01522
crossref_primary_10_1002_adfm_202414532
crossref_primary_10_1016_j_flatc_2025_100863
crossref_primary_10_1088_2053_1583_aa8678
crossref_primary_10_1002_pssb_201900342
crossref_primary_10_1016_j_cej_2025_164223
crossref_primary_10_1016_j_jallcom_2021_161058
crossref_primary_10_1063_1_5093039
crossref_primary_10_1088_1361_6528_aa510c
crossref_primary_10_3390_chemosensors9030049
crossref_primary_10_1088_1361_6528_aa8f15
crossref_primary_10_1002_adma_202102252
crossref_primary_10_1002_admi_202001046
crossref_primary_10_1002_pssb_201600281
crossref_primary_10_1038_s41598_022_20531_x
crossref_primary_10_1063_1_4940751
crossref_primary_10_1002_admi_202100913
crossref_primary_10_1038_s41928_021_00685_8
crossref_primary_10_1088_2053_1583_3_4_042001
crossref_primary_10_1063_1_4959254
crossref_primary_10_1002_wcms_1300
crossref_primary_10_3390_nano9111640
crossref_primary_10_1088_2053_1583_ab4c09
crossref_primary_10_1088_0957_4484_26_35_355706
crossref_primary_10_1038_natrevmats_2017_33
crossref_primary_10_1002_adfm_201907860
crossref_primary_10_1088_1361_6463_acdadc
crossref_primary_10_1002_advs_202000788
crossref_primary_10_1002_smll_201502392
crossref_primary_10_3390_cryst8060252
crossref_primary_10_1002_adma_201706215
crossref_primary_10_1063_1_4995690
crossref_primary_10_1088_1361_648X_aa9305
crossref_primary_10_1109_TED_2025_3533474
crossref_primary_10_1016_j_jcrysgro_2016_11_020
crossref_primary_10_3390_coatings12081152
crossref_primary_10_1002_adma_202205365
crossref_primary_10_1002_adma_202209968
crossref_primary_10_1088_2053_1583_ac5f6d
crossref_primary_10_1002_adma_201807486
crossref_primary_10_1007_s41403_022_00379_3
crossref_primary_10_1016_j_apsusc_2019_02_030
crossref_primary_10_1016_j_jcrysgro_2020_125683
crossref_primary_10_1088_2053_1583_abb959
crossref_primary_10_1038_s41928_019_0256_8
crossref_primary_10_1088_2053_1583_aafd9a
crossref_primary_10_1016_j_jcrysgro_2019_01_020
crossref_primary_10_1002_adfm_201604040
crossref_primary_10_1016_j_mssp_2019_104679
crossref_primary_10_1016_j_nanoen_2019_104079
crossref_primary_10_1002_advs_201900446
crossref_primary_10_1109_TED_2019_2924112
crossref_primary_10_1039_D1RA06933K
crossref_primary_10_1002_smll_201906892
crossref_primary_10_1002_adfm_201902149
crossref_primary_10_1515_nanoph_2022_0235
crossref_primary_10_1007_s12274_020_3019_y
crossref_primary_10_1002_adfm_202303520
crossref_primary_10_1116_6_0003248
crossref_primary_10_1063_1_5051781
crossref_primary_10_1088_2053_1583_ab70ec
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1063_5_0045916
crossref_primary_10_1002_adfm_202311387
crossref_primary_10_1002_adma_201808244
crossref_primary_10_1016_j_surfcoat_2018_05_031
crossref_primary_10_1002_smll_202500980
crossref_primary_10_1002_aisy_202500613
crossref_primary_10_1002_smll_201904369
crossref_primary_10_1080_14686996_2022_2062576
crossref_primary_10_1002_aelm_201600468
crossref_primary_10_1038_srep38394
crossref_primary_10_1016_j_cej_2018_09_021
crossref_primary_10_1063_1_5095451
crossref_primary_10_1088_2053_1583_ab28f2
crossref_primary_10_1016_j_apmt_2020_100734
crossref_primary_10_1038_s41699_023_00373_5
crossref_primary_10_1016_j_apsusc_2024_160856
crossref_primary_10_1021_acsami_5c00308
crossref_primary_10_1063_1_5043098
crossref_primary_10_1016_j_nanoen_2019_104370
crossref_primary_10_3390_electronics4041033
crossref_primary_10_1016_j_sse_2017_12_005
crossref_primary_10_3390_nano10040803
crossref_primary_10_1002_adma_202211855
crossref_primary_10_1016_j_ceramint_2024_05_259
crossref_primary_10_1063_5_0167225
crossref_primary_10_1088_1674_1056_ac9604
crossref_primary_10_1002_admi_201800688
crossref_primary_10_1088_1674_4926_40_6_061003
crossref_primary_10_1088_2053_1583_acf3f9
crossref_primary_10_1016_j_physe_2019_113641
crossref_primary_10_1002_adma_202100260
crossref_primary_10_1016_j_apsusc_2021_150818
crossref_primary_10_1002_adma_201606760
crossref_primary_10_1016_j_jcrysgro_2017_04_012
crossref_primary_10_1007_s10854_025_15198_9
crossref_primary_10_1088_1361_648X_ab071f
crossref_primary_10_1002_chem_201803066
crossref_primary_10_1088_2053_1583_aaedc8
crossref_primary_10_1007_s12274_020_2893_7
crossref_primary_10_1016_j_apsusc_2020_148201
crossref_primary_10_1038_s41598_017_16970_6
crossref_primary_10_1016_j_apsusc_2024_159889
crossref_primary_10_3390_lubricants7070057
crossref_primary_10_3390_nano12193262
crossref_primary_10_1016_j_mtphys_2025_101710
crossref_primary_10_1063_5_0008850
crossref_primary_10_1126_science_aab2750
crossref_primary_10_1007_s11467_018_0873_0
crossref_primary_10_1002_advs_202415884
crossref_primary_10_1016_j_apmt_2022_101379
crossref_primary_10_1038_s41427_019_0145_7
crossref_primary_10_1063_1_4962764
crossref_primary_10_1002_adfm_202104174
crossref_primary_10_1021_acsaom_4c00113
crossref_primary_10_1016_j_jlumin_2018_03_052
crossref_primary_10_1002_adma_202402855
crossref_primary_10_1007_s10854_024_13186_z
crossref_primary_10_1038_s41467_020_17297_z
crossref_primary_10_1088_1361_6463_aa81ae
crossref_primary_10_1088_2053_1583_aa7ea2
crossref_primary_10_1002_admi_201900196
crossref_primary_10_1016_j_cpc_2015_08_038
crossref_primary_10_1088_1742_6596_739_1_012014
crossref_primary_10_1007_s11664_017_5937_3
crossref_primary_10_1002_pssa_202000073
crossref_primary_10_1007_s12274_015_0866_z
crossref_primary_10_3762_bjnano_10_57
crossref_primary_10_1007_s10311_018_0745_4
crossref_primary_10_1016_j_cclet_2021_10_013
crossref_primary_10_1088_0957_4484_27_17_175703
crossref_primary_10_1088_1361_6641_aaa224
crossref_primary_10_1038_s41586_018_0008_3
crossref_primary_10_1063_5_0103821
crossref_primary_10_1088_1361_6439_ab0726
crossref_primary_10_1016_j_apsusc_2020_148226
crossref_primary_10_1038_s41598_025_13921_4
crossref_primary_10_1016_j_elecom_2016_10_008
crossref_primary_10_1002_adma_202404923
crossref_primary_10_1038_s41598_019_40893_z
crossref_primary_10_1016_S1872_5805_21_60078_1
crossref_primary_10_1002_adma_202006601
crossref_primary_10_1016_j_mseb_2021_115047
crossref_primary_10_1002_smsc_202100047
crossref_primary_10_1021_jacs_7b05131
crossref_primary_10_3390_cryst13081275
crossref_primary_10_1038_s41467_023_36286_6
crossref_primary_10_1002_adfm_201807612
crossref_primary_10_1007_s12274_020_3160_7
crossref_primary_10_1002_pssr_201900406
crossref_primary_10_1063_1_4990968
crossref_primary_10_3390_nano14020235
crossref_primary_10_3390_cryst8020070
crossref_primary_10_1002_cphc_202400829
crossref_primary_10_1039_D0RA02014A
crossref_primary_10_1088_2515_7639_ab82b3
crossref_primary_10_1002_pssr_202300141
crossref_primary_10_1063_1_5024766
crossref_primary_10_1063_5_0098045
crossref_primary_10_1016_j_mtphys_2020_100273
crossref_primary_10_1002_adfm_202422645
crossref_primary_10_1016_j_tsf_2018_10_015
crossref_primary_10_1039_D3RA04456D
crossref_primary_10_1063_1_4942406
crossref_primary_10_1088_1361_648X_ab634b
crossref_primary_10_1063_1_5100282
crossref_primary_10_1007_s43939_025_00270_2
crossref_primary_10_1039_C7NH00137A
crossref_primary_10_1088_2053_1583_4_1_011009
crossref_primary_10_1002_adsu_202400483
crossref_primary_10_1088_1361_6528_ab5ffd
crossref_primary_10_1116_6_0001135
crossref_primary_10_1016_j_surfcoat_2019_06_038
crossref_primary_10_1063_1_4989851
crossref_primary_10_1088_1361_6641_ab4b85
crossref_primary_10_1088_2053_1583_aa5784
crossref_primary_10_1016_j_sna_2019_02_035
crossref_primary_10_1016_j_mssp_2019_01_007
crossref_primary_10_1088_2053_1583_ad3134
crossref_primary_10_3390_pharmaceutics16030360
crossref_primary_10_1557_adv_2019_391
crossref_primary_10_1021_jacs_5b10519
crossref_primary_10_1088_1361_6528_abb5d2
crossref_primary_10_1038_ncomms14948
crossref_primary_10_1007_s12274_021_3668_5
crossref_primary_10_1088_1361_6528_aa9c21
crossref_primary_10_1038_s41586_020_2861_0
crossref_primary_10_3390_electronics6020028
crossref_primary_10_1038_nmat4607
crossref_primary_10_3390_photonics10010059
crossref_primary_10_1002_smll_202200184
crossref_primary_10_1088_1361_6528_abbfd3
crossref_primary_10_1016_j_tsf_2019_137588
crossref_primary_10_1038_s43586_020_00005_y
crossref_primary_10_1002_advs_202307839
crossref_primary_10_1063_5_0101317
crossref_primary_10_1063_5_0010849
crossref_primary_10_1002_smll_201600681
crossref_primary_10_1039_C7CP05109C
crossref_primary_10_1016_j_apsusc_2018_05_220
crossref_primary_10_1016_j_pcrysgrow_2016_06_002
crossref_primary_10_1002_aenm_201600459
crossref_primary_10_1002_pssb_202200090
crossref_primary_10_1039_D3NR05400D
crossref_primary_10_1007_s12274_019_2502_9
crossref_primary_10_1364_PRJ_7_001127
crossref_primary_10_1002_admi_202300455
crossref_primary_10_1134_S0030400X16050180
crossref_primary_10_1016_j_apsusc_2024_160331
crossref_primary_10_1116_1_4982736
crossref_primary_10_1038_s41578_021_00408_7
crossref_primary_10_1002_adfm_202513567
crossref_primary_10_1002_smll_202409004
crossref_primary_10_1038_s41699_020_0146_y
crossref_primary_10_1016_j_apsusc_2020_146428
crossref_primary_10_1038_s41467_020_17517_6
crossref_primary_10_1088_1361_648X_ad5a5d
crossref_primary_10_1116_1_5132748
crossref_primary_10_1038_s41565_023_01445_9
crossref_primary_10_1016_j_apmt_2021_101234
crossref_primary_10_1002_admi_202100164
crossref_primary_10_1007_s00339_022_05270_0
crossref_primary_10_1007_s40843_019_1265_9
crossref_primary_10_1016_j_jcrysgro_2024_127891
crossref_primary_10_1038_s41524_022_00797_5
crossref_primary_10_1088_1361_648X_aa8933
crossref_primary_10_1016_j_ceramint_2024_03_247
crossref_primary_10_1016_j_mattod_2021_07_023
crossref_primary_10_1007_s11664_018_6443_y
crossref_primary_10_1088_2053_1583_ab4f1f
crossref_primary_10_1109_TED_2018_2866390
crossref_primary_10_1016_j_apsusc_2020_146418
crossref_primary_10_1002_adfm_202103106
crossref_primary_10_1116_1_5036654
crossref_primary_10_1038_s41467_020_17241_1
crossref_primary_10_1016_j_jpcs_2018_09_039
crossref_primary_10_1088_1361_6528_ab142f
crossref_primary_10_1002_adfm_202003732
crossref_primary_10_1080_15421406_2017_1338099
crossref_primary_10_1088_1742_6596_2710_1_012016
crossref_primary_10_1557_s43579_022_00261_x
crossref_primary_10_1088_1361_6641_32_2_025013
crossref_primary_10_1002_smll_202100743
crossref_primary_10_1016_j_colsurfa_2021_126546
crossref_primary_10_1016_j_cej_2024_155498
crossref_primary_10_1557_jmr_2019_394
crossref_primary_10_1063_5_0087684
crossref_primary_10_1088_2053_1583_aa6beb
crossref_primary_10_1098_rsos_210554
crossref_primary_10_1002_cssc_201902706
crossref_primary_10_1088_1361_6528_ac1b54
crossref_primary_10_1016_j_matchemphys_2025_130701
crossref_primary_10_1088_2053_1583_2_4_044005
crossref_primary_10_1038_s41563_020_00846_8
crossref_primary_10_1063_1_5022769
crossref_primary_10_1051_bioconf_202412922027
crossref_primary_10_1088_2053_1583_aa7ce0
crossref_primary_10_1039_C8NR10315A
crossref_primary_10_1016_j_matlet_2022_132355
crossref_primary_10_1080_10584587_2018_1456123
crossref_primary_10_1016_j_apmt_2015_12_003
crossref_primary_10_1063_5_0104873
crossref_primary_10_1016_j_nanoen_2024_109936
crossref_primary_10_1039_C8CS00169C
crossref_primary_10_1039_D3NR06678A
crossref_primary_10_1103_PhysRevApplied_19_064058
Cites_doi 10.1103/PhysRevB.59.1758
10.1021/nl903868w
10.1038/nmat3687
10.1021/nl204562j
10.1063/1.114313
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.50.17953
10.1002/smll.201102654
10.1038/nnano.2014.166
10.1021/nn501701a
10.1021/nn2024557
10.1021/nl4046922
10.1038/nnano.2006.171
10.1021/nn403454e
10.1016/j.susc.2009.07.004
10.1103/PhysRevB.79.115409
10.1103/PhysRevB.46.16067
10.1103/PhysRevB.87.041108
10.1021/nn406102h
10.1021/nl2043612
10.1021/nl401938t
10.1103/PhysRevB.84.201401
10.1002/adma.201104798
10.1103/PhysRevLett.92.246401
10.1103/PhysRevLett.77.3865
10.1063/1.105227
10.1103/PhysRevB.47.558
10.1039/c3nr34011b
10.1088/0957-4484/22/12/125706
10.1038/nnano.2013.100
10.1021/ct900365q
10.1021/nl2022288
10.1126/science.1235547
10.1021/nn1003937
10.1021/am508569m
10.1038/nmat3673
10.1126/science.1194975
10.1039/C4NR02142H
10.1021/nl401916s
10.1002/adma.201102584
10.1088/0268-1242/29/6/064008
10.1103/PhysRevLett.105.136805
10.1016/S0022-0248(98)01329-3
10.1038/nature12385
10.1038/nmat3633
10.1021/nn401429w
10.1021/nn3059136
10.1021/j100393a010
10.1103/PhysRevB.85.161403
10.1073/pnas.0502848102
10.1021/nn5003858
10.1103/PhysRevB.83.195131
10.1103/PhysRevB.33.8800
10.1063/1.2335390
10.1021/nn203879f
10.1103/PhysRevB.83.245213
10.1063/1.3521275
ContentType Journal Article
Copyright Copyright © 2015 American Chemical Society
Copyright © 2015 American Chemical Society 2015 American Chemical Society
Copyright_xml – notice: Copyright © 2015 American Chemical Society
– notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society
DBID N~.
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1021/acsnano.5b01281
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: N~.
  name: American Chemical Society (ACS) Open Access
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 4620
ExternalDocumentID PMC4415455
25843548
10_1021_acsnano_5b01281
a235112219
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
N~.
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
5PM
ID FETCH-LOGICAL-a3441-d25faf00bf9e316e3a7f0fd73b74424acd0e8b5c3ad4e5d2de7d07b52bf8ff513
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Tue Sep 30 16:36:20 EDT 2025
Fri Jul 11 10:20:40 EDT 2025
Thu Apr 03 07:01:08 EDT 2025
Tue Nov 18 21:33:40 EST 2025
Sat Nov 29 02:49:46 EST 2025
Thu Aug 27 13:42:06 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords two-dimensional materials
electronic transport
grain boundaries
MoS2
epitaxial growth
Kelvin probe force microscopy
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3441-d25faf00bf9e316e3a7f0fd73b74424acd0e8b5c3ad4e5d2de7d07b52bf8ff513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://dx.doi.org/10.1021/acsnano.5b01281
PMID 25843548
PQID 1676610169
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4415455
proquest_miscellaneous_1676610169
pubmed_primary_25843548
crossref_citationtrail_10_1021_acsnano_5b01281
crossref_primary_10_1021_acsnano_5b01281
acs_journals_10_1021_acsnano_5b01281
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
N~.
UI2
PublicationCentury 2000
PublicationDate 2015-04-28
PublicationDateYYYYMMDD 2015-04-28
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Brivio J. (ref37/cit37) 2011; 11
Britnell L. (ref42/cit42) 2013; 340
Klimeš J. (ref59/cit59) 2010; 22
Schmidt H. (ref44/cit44) 2014; 14
Kresse G. (ref56/cit56) 1996; 54
Curiotto S. (ref35/cit35) 2009; 603
Perdew J. P. (ref55/cit55) 1986; 33
Lauritsen J. V. (ref36/cit36) 2007; 2
Splendiani A. (ref6/cit6) 2010; 10
Perdew J. P. (ref53/cit53) 1996; 77
Shi Y. (ref28/cit28) 2012; 12
Yu Y. (ref32/cit32) 2013; 3
Bertolazzi S. (ref15/cit15) 2011; 5
Lee C. (ref9/cit9) 2010; 4
Lee Y.-H. (ref20/cit20) 2012; 24
Schäfer H. (ref17/cit17) 1964
Coleman J. N. (ref2/cit2) 2011; 331
Klimeš J. (ref60/cit60) 2011; 83
Zhan Y. (ref19/cit19) 2012; 8
Neugebauer J. (ref62/cit62) 1992; 46
Liu K.-K. (ref18/cit18) 2012; 12
Yazyev O. V. (ref24/cit24) 2014; 9
Mak K. F. (ref7/cit7) 2010; 105
Bakti Utama M. I. (ref26/cit26) 2013; 5
Sabatini R. (ref51/cit51) 2013; 87
Nonnenmacher M. (ref47/cit47) 1991; 58
Liu K. (ref14/cit14) 2014; 8
Smith R. J. (ref3/cit3) 2011; 23
Paolo G. (ref48/cit48) 2009; 21
Blöchl P. E. (ref49/cit49) 1994; 50
Kresse G. (ref57/cit57) 1993; 47
Plechinger G. (ref40/cit40) 2014; 29
Baugher B. (ref46/cit46) 2013; 13
Lin Y.-C. (ref30/cit30) 2014; 8
Najmaei S. (ref23/cit23) 2014; 8
Ago H. (ref29/cit29) 2015; 7
Gonschorek M. (ref31/cit31) 2006; 89
Kresse G. (ref50/cit50) 1999; 59
Chang H.-Y. (ref16/cit16) 2013; 7
Lopez-Sanchez O. (ref12/cit12) 2013; 8
van der Zande A. M. (ref22/cit22) 2013; 12
Yin Z. (ref13/cit13) 2012; 6
Kuc A. (ref8/cit8) 2011; 83
Benameur M. M. (ref10/cit10) 2011; 22
Vydrov O. A. (ref52/cit52) 2010; 133
Islam M. R. (ref39/cit39) 2014; 6
Kam K. K. (ref4/cit4) 1982; 86
Murray É. D. (ref54/cit54) 2009; 5
Geim A. K. (ref43/cit43) 2013; 499
Zhang Y. (ref33/cit33) 2013; 7
Mittendorfer F. (ref61/cit61) 2011; 84
Yoshimoto M. (ref34/cit34) 1995; 67
Novoselov K. S. (ref1/cit1) 2005; 102
ref41/cit41
Ji Q. (ref27/cit27) 2013; 13
Chakraborty B. (ref38/cit38) 2012; 85
Dion M. (ref58/cit58) 2004; 92
Radisavljevic B. (ref45/cit45) 2013; 12
Bertolazzi S. (ref11/cit11) 2013; 7
Lebegue S. (ref5/cit5) 2009; 79
Najmaei S. (ref21/cit21) 2013; 12
Koma A. (ref25/cit25) 1999; 201
21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201
23689610 - Sci Rep. 2013;3:1866
23899342 - Nano Lett. 2013 Aug 14;13(8):3870-7
23748194 - Nat Nanotechnol. 2013 Jul;8(7):497-501
23793161 - Nat Mater. 2013 Sep;12(9):815-20
9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5
21197972 - J Chem Phys. 2010 Dec 28;133(24):244103
23668386 - ACS Nano. 2013 Jun 25;7(6):5446-52
22010987 - Nano Lett. 2011 Dec 14;11(12):5148-53
10003746 - Phys Rev B Condens Matter. 1992 Dec 15;46(24):16067-16080
22334392 - Small. 2012 Apr 10;8(7):966-71
25695865 - ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5265-73
18654208 - Nat Nanotechnol. 2007 Jan;2(1):53-8
10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
21317494 - Nanotechnology. 2011 Mar 25;22(12):125706
24047054 - ACS Nano. 2013 Oct 22;7(10):8963-71
23510133 - ACS Nano. 2013 Apr 23;7(4):3246-52
25019978 - ACS Nano. 2014 Aug 26;8(8):7930-7
20392077 - ACS Nano. 2010 May 25;4(5):2695-700
24547924 - ACS Nano. 2014 Mar 25;8(3):2504-11
22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91
25030839 - Nanoscale. 2014 Sep 7;6(17):10033-9
26631788 - J Chem Theory Comput. 2009 Oct 13;5(10):2754-62
22467187 - Adv Mater. 2012 May 2;24(17):2320-5
21292974 - Science. 2011 Feb 4;331(6017):568-71
21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805
22165908 - ACS Nano. 2012 Jan 24;6(1):74-80
9938293 - Phys Rev B Condens Matter. 1986 Jun 15;33(12):8800-8802
9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
24640984 - Nano Lett. 2014;14(4):1909-13
23749265 - Nat Mater. 2013 Aug;12(8):754-9
23887427 - Nature. 2013 Jul 25;499(7459):419-25
25318849 - Sci Rep. 2014 Oct 16;4:6608
22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44
23508233 - Nanoscale. 2013 May 7;5(9):3570-88
23644523 - Nat Mater. 2013 Jun;12(6):554-61
15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401
23641062 - Science. 2013 Jun 14;340(6138):1311-4
22087740 - ACS Nano. 2011 Dec 27;5(12):9703-9
21796689 - Adv Mater. 2011 Sep 8;23(34):3944-8
23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6
25152238 - Nat Nanotechnol. 2014 Oct;9(10):755-67
24641706 - ACS Nano. 2014 Apr 22;8(4):3715-23
16027370 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3
References_xml – volume: 59
  start-page: 1758
  year: 1999
  ident: ref50/cit50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 10
  start-page: 1271
  year: 2010
  ident: ref6/cit6
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 12
  start-page: 815
  year: 2013
  ident: ref45/cit45
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3687
– volume: 12
  start-page: 2784
  year: 2012
  ident: ref28/cit28
  publication-title: Nano Lett.
  doi: 10.1021/nl204562j
– volume: 67
  start-page: 2615
  year: 1995
  ident: ref34/cit34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.114313
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref56/cit56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 50
  start-page: 17953
  year: 1994
  ident: ref49/cit49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 8
  start-page: 966
  year: 2012
  ident: ref19/cit19
  publication-title: Small
  doi: 10.1002/smll.201102654
– volume: 9
  start-page: 755
  year: 2014
  ident: ref24/cit24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.166
– volume: 8
  start-page: 7930
  year: 2014
  ident: ref23/cit23
  publication-title: ACS Nano
  doi: 10.1021/nn501701a
– volume: 6
  start-page: 74
  year: 2012
  ident: ref13/cit13
  publication-title: ACS Nano
  doi: 10.1021/nn2024557
– volume: 14
  start-page: 1909
  year: 2014
  ident: ref44/cit44
  publication-title: Nano Lett.
  doi: 10.1021/nl4046922
– volume: 2
  start-page: 53
  year: 2007
  ident: ref36/cit36
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.171
– volume-title: Chemical Transport Reactions
  year: 1964
  ident: ref17/cit17
– volume: 7
  start-page: 8963
  year: 2013
  ident: ref33/cit33
  publication-title: ACS Nano
  doi: 10.1021/nn403454e
– volume: 603
  start-page: 2688
  year: 2009
  ident: ref35/cit35
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2009.07.004
– volume: 79
  start-page: 115409
  year: 2009
  ident: ref5/cit5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.115409
– volume: 46
  start-page: 16067
  year: 1992
  ident: ref62/cit62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.16067
– volume: 87
  start-page: 041108
  year: 2013
  ident: ref51/cit51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.041108
– volume: 8
  start-page: 2504
  year: 2014
  ident: ref14/cit14
  publication-title: ACS Nano
  doi: 10.1021/nn406102h
– volume: 12
  start-page: 1538
  year: 2012
  ident: ref18/cit18
  publication-title: Nano Lett.
  doi: 10.1021/nl2043612
– volume: 13
  start-page: 3870
  year: 2013
  ident: ref27/cit27
  publication-title: Nano Lett.
  doi: 10.1021/nl401938t
– volume: 84
  start-page: 201401
  year: 2011
  ident: ref61/cit61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.201401
– volume: 24
  start-page: 2320
  year: 2012
  ident: ref20/cit20
  publication-title: Adv. Mater. (Weinheim, Ger.)
  doi: 10.1002/adma.201104798
– volume: 92
  start-page: 246401
  year: 2004
  ident: ref58/cit58
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref53/cit53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 58
  start-page: 2921
  year: 1991
  ident: ref47/cit47
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.105227
– volume: 47
  start-page: 558
  year: 1993
  ident: ref57/cit57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 5
  start-page: 3570
  year: 2013
  ident: ref26/cit26
  publication-title: Nanoscale
  doi: 10.1039/c3nr34011b
– volume: 22
  start-page: 125706
  year: 2011
  ident: ref10/cit10
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/12/125706
– volume: 8
  start-page: 497
  year: 2013
  ident: ref12/cit12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.100
– volume: 5
  start-page: 2754
  year: 2009
  ident: ref54/cit54
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900365q
– volume: 11
  start-page: 5148
  year: 2011
  ident: ref37/cit37
  publication-title: Nano Lett.
  doi: 10.1021/nl2022288
– volume: 340
  start-page: 1311
  year: 2013
  ident: ref42/cit42
  publication-title: Science
  doi: 10.1126/science.1235547
– volume: 4
  start-page: 2695
  year: 2010
  ident: ref9/cit9
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 7
  start-page: 5265
  year: 2015
  ident: ref29/cit29
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am508569m
– volume: 12
  start-page: 754
  year: 2013
  ident: ref21/cit21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3673
– volume: 331
  start-page: 568
  year: 2011
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.1194975
– volume: 3
  year: 2013
  ident: ref32/cit32
  publication-title: Sci. Rep.
– volume: 6
  start-page: 10033
  year: 2014
  ident: ref39/cit39
  publication-title: Nanoscale
  doi: 10.1039/C4NR02142H
– volume: 13
  start-page: 4212
  year: 2013
  ident: ref46/cit46
  publication-title: Nano Lett.
  doi: 10.1021/nl401916s
– volume: 22
  start-page: 022201
  year: 2010
  ident: ref59/cit59
  publication-title: J. Phys.: Condens. Matter
– volume: 21
  start-page: 395502
  year: 2009
  ident: ref48/cit48
  publication-title: J. Phys.: Condens. Matter
– volume: 23
  start-page: 3944
  year: 2011
  ident: ref3/cit3
  publication-title: Adv. Mater. (Weinheim, Ger.)
  doi: 10.1002/adma.201102584
– volume: 29
  start-page: 064008
  year: 2014
  ident: ref40/cit40
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/29/6/064008
– volume: 105
  start-page: 136805
  year: 2010
  ident: ref7/cit7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.136805
– volume: 201
  start-page: 236
  year: 1999
  ident: ref25/cit25
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(98)01329-3
– volume: 499
  start-page: 419
  year: 2013
  ident: ref43/cit43
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 12
  start-page: 554
  year: 2013
  ident: ref22/cit22
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3633
– volume: 7
  start-page: 5446
  year: 2013
  ident: ref16/cit16
  publication-title: ACS Nano
  doi: 10.1021/nn401429w
– volume: 7
  start-page: 3246
  year: 2013
  ident: ref11/cit11
  publication-title: ACS Nano
  doi: 10.1021/nn3059136
– volume: 86
  start-page: 463
  year: 1982
  ident: ref4/cit4
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100393a010
– volume: 85
  start-page: 161403
  year: 2012
  ident: ref38/cit38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.161403
– volume: 102
  start-page: 10451
  year: 2005
  ident: ref1/cit1
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0502848102
– volume: 8
  start-page: 3715
  year: 2014
  ident: ref30/cit30
  publication-title: ACS Nano
  doi: 10.1021/nn5003858
– volume: 83
  start-page: 195131
  year: 2011
  ident: ref60/cit60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.195131
– volume: 33
  start-page: 8800
  year: 1986
  ident: ref55/cit55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.33.8800
– volume: 89
  year: 2006
  ident: ref31/cit31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2335390
– volume: 5
  start-page: 9703
  year: 2011
  ident: ref15/cit15
  publication-title: ACS Nano
  doi: 10.1021/nn203879f
– volume: 83
  start-page: 245213
  year: 2011
  ident: ref8/cit8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.245213
– ident: ref41/cit41
– volume: 133
  start-page: 244103
  year: 2010
  ident: ref52/cit52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3521275
– reference: 21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201
– reference: 23644523 - Nat Mater. 2013 Jun;12(6):554-61
– reference: 23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6
– reference: 20392077 - ACS Nano. 2010 May 25;4(5):2695-700
– reference: 20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5
– reference: 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805
– reference: 24641706 - ACS Nano. 2014 Apr 22;8(4):3715-23
– reference: 25695865 - ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5265-73
– reference: 23748194 - Nat Nanotechnol. 2013 Jul;8(7):497-501
– reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186
– reference: 21796689 - Adv Mater. 2011 Sep 8;23(34):3944-8
– reference: 21317494 - Nanotechnology. 2011 Mar 25;22(12):125706
– reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
– reference: 10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561
– reference: 16027370 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3
– reference: 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401
– reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979
– reference: 24640984 - Nano Lett. 2014;14(4):1909-13
– reference: 23899342 - Nano Lett. 2013 Aug 14;13(8):3870-7
– reference: 23510133 - ACS Nano. 2013 Apr 23;7(4):3246-52
– reference: 23689610 - Sci Rep. 2013;3:1866
– reference: 22087740 - ACS Nano. 2011 Dec 27;5(12):9703-9
– reference: 23641062 - Science. 2013 Jun 14;340(6138):1311-4
– reference: 18654208 - Nat Nanotechnol. 2007 Jan;2(1):53-8
– reference: 22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91
– reference: 23887427 - Nature. 2013 Jul 25;499(7459):419-25
– reference: 23668386 - ACS Nano. 2013 Jun 25;7(6):5446-52
– reference: 22165908 - ACS Nano. 2012 Jan 24;6(1):74-80
– reference: 25030839 - Nanoscale. 2014 Sep 7;6(17):10033-9
– reference: 23793161 - Nat Mater. 2013 Sep;12(9):815-20
– reference: 22010987 - Nano Lett. 2011 Dec 14;11(12):5148-53
– reference: 25019978 - ACS Nano. 2014 Aug 26;8(8):7930-7
– reference: 23749265 - Nat Mater. 2013 Aug;12(8):754-9
– reference: 25318849 - Sci Rep. 2014 Oct 16;4:6608
– reference: 22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44
– reference: 22467187 - Adv Mater. 2012 May 2;24(17):2320-5
– reference: 22334392 - Small. 2012 Apr 10;8(7):966-71
– reference: 23508233 - Nanoscale. 2013 May 7;5(9):3570-88
– reference: 21197972 - J Chem Phys. 2010 Dec 28;133(24):244103
– reference: 9938293 - Phys Rev B Condens Matter. 1986 Jun 15;33(12):8800-8802
– reference: 26631788 - J Chem Theory Comput. 2009 Oct 13;5(10):2754-62
– reference: 21292974 - Science. 2011 Feb 4;331(6017):568-71
– reference: 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
– reference: 24547924 - ACS Nano. 2014 Mar 25;8(3):2504-11
– reference: 25152238 - Nat Nanotechnol. 2014 Oct;9(10):755-67
– reference: 10003746 - Phys Rev B Condens Matter. 1992 Dec 15;46(24):16067-16080
– reference: 24047054 - ACS Nano. 2013 Oct 22;7(10):8963-71
SSID ssj0057876
Score 2.656495
Snippet Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4611
Title Large-Area Epitaxial Monolayer MoS2
URI http://dx.doi.org/10.1021/acsnano.5b01281
https://www.ncbi.nlm.nih.gov/pubmed/25843548
https://www.proquest.com/docview/1676610169
https://pubmed.ncbi.nlm.nih.gov/PMC4415455
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals (2020 Collection)
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s9aAH34_6KBV78JKa7GazybGUFg9ShCr0FvaJBUnFWvHkb3c2TWsfFPQSAtlZdnZnMt8wyzcA9SiW6EJR4gWaCM9dYPQEFYHHtON_4xKDksybTfBuN-73k8dfsujlCj4J7oQaZSIbNpjMqz4l2CQIcp0xN1u96U_X2V00KSBjgowoYsbiszKBC0NqtBiGVrDl8hXJuZjT2fvHavdhtwCWtebEEg5gw2SHsDNHN3gENw_u2rfXRJxYa7tuIV9ofDX0akxvEXnjW48cw3On_dS694omCbinCGU8TZgV1velTQwNIkMFt77VnEoehiQUSvsmlkxRoUPDNNGGa59LRqSNrWUBPYFyNszMGdQ0oivlG81sFIWaJFIliBYFlVSFKC8qUEf10sLIR2levyZBWuicFjpXoDHd2lQVROOu38XreoHbmcDbhGNj_dDr6Vml6AeuuCEyMxzjYiKOUMNxy1TgdHJ2s8kIoiyKqVkF-MKpzgY4ju3FL9ngJefadulmyNj531S_gG0EVMxVm0h8CeWP97G5gi31-TEYvVehxPtxNbdbfHa_Gz_m2ulr
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXB74_5WdEHXzrbpGnaxyHKxFkEJ-ytJE2CA-lkVfHJv91L181NGehbaZOQSy6933GX3wGchZHEIxTGrq-IcG0Coyuo8F2mLP8bl2iUZFlsgidJ1OnE9zPgDe_C4CQKHKkog_jf7AL-Bb7LRd6rM1kGf2ZhnoWBb92t5LM-_Pda9QsHcWT0kxFMjMh8fg1grVFWTFqjXxDzZ6bkmOm5Xv3_pNdgpYKZTmOgF-swo_MNWB4jH9yE05ZNAncbiBqdK1s75ANV0cEzjs4u4nB8eiBb8Hh91b5sulXJBFxhBDauIswI43nSxJr6oaaCG88oTiUPAhKITHk6kiyjQgWaKaI0Vx6XjEgTGcN8ug1zeS_Xu-AoxFqZpxUzYRgoEsssRuwoqKRZgP1FDc5QvLRS-SIto9nETyuZ00rmGtSHK5xmFe24rX7xPL3D-ajDy4BxY3rTk-GWpXgqbKhD5Lr3hpMJOQIPyzRTg53BFo4GI4i5KDpqNeATmztqYBm3J7_k3aeSeds6nwFje38T_RgWm-27Vtq6SW73YQmhFrNxKBIdwNxr_00fwkL2_tot-kelEn8BpR3wEQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90iuiD3x_zc6IPvnS2SdO0j0M3FMcQVNhbSZoEB9LJuol_vpe2G5tjIL6VNgm55K73Oy75HcB1EEo0oSByPEWEYw8wOoIKz2HK8r9xiU5J5sUmeKcTdrvRc3kpzN6FwUlkOFKWJ_GtVX8qUzIMeLf4PhVpv85kngBahhWG7txqd-PuZfz_tSoYFLlkjJURUEwIfeYGsB4pyWY90hzM_H1acsr9tLb-N_Ft2CzhZq1R6McOLOl0FzamSAj34KptD4M7DUSPtaatIfKNKllDW8egF_E4Pr2QfXhrNV_vHpyydAKuNAIcRxFmhHFdaSJNvUBTwY1rFKeS-z7xRaJcHUqWUKF8zRRRmiuXS0akCY1hHj2AStpP9RHUFGKuxNWKmSDwFYlkEiGGFFTSxMf-ogrXKF5cqn4W51lt4sWlzHEpcxXq41WOk5J-3FbB-Fjc4WbS4bNg3ljc9HK8bTFah015iFT3RziZgCMAsYwzVTgstnEyGEHsRTFgqwKf2eBJA8u8Pfsl7b3nDNw2CPUZO_6b6Bew9nzfituPnacTWEfExWw6ioSnUBkORvoMVpOvYS8bnOd6_AMCA_JI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Area+Epitaxial+Monolayer+MoS2&rft.jtitle=ACS+nano&rft.au=Dumcenco%2C+Dumitru&rft.au=Ovchinnikov%2C+Dmitry&rft.au=Marinov%2C+Kolyo&rft.au=Lazi%C4%87%2C+Predrag&rft.date=2015-04-28&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=4&rft.spage=4611&rft.epage=4620&rft_id=info:doi/10.1021%2Facsnano.5b01281&rft_id=info%3Apmid%2F25843548&rft.externalDocID=PMC4415455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon