Large-Area Epitaxial Monolayer MoS2
Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a...
Uloženo v:
| Vydáno v: | ACS nano Ročník 9; číslo 4; s. 4611 - 4620 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Chemical Society
28.04.2015
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm. |
|---|---|
| AbstractList | Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm. Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm.Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge. This is needed to minimize or even avoid the formation of grain boundaries, detrimental to electrical, optical, and mechanical properties of MoS2 and other 2D semiconductors. Here, we report on the growth of high-quality monolayer MoS2 with control over lattice orientation. We show that the monolayer film is composed of coalescing single islands with limited numbers of lattice orientation due to an epitaxial growth mechanism. Optical absorbance spectra acquired over large areas show significant absorbance in the high-energy part of the spectrum, indicating that MoS2 could also be interesting for harvesting this region of the solar spectrum and fabrication of UV-sensitive photodetectors. Even though the interaction between the growth substrate and MoS2 is strong enough to induce lattice alignment via van der Waals interaction, we can easily transfer the grown material and fabricate devices. Local potential mapping along channels in field-effect transistors shows that the single-crystal MoS2 grains in our film are well connected, with interfaces that do not degrade the electrical conductivity. This is also confirmed by the relatively large and length-independent mobility in devices with a channel length reaching 80 μm. |
| Author | Bertolazzi, Simone Fontcuberta i Morral, Anna Chen, Ming-Wei Dumcenco, Dumitru Marinov, Kolyo Lazić, Predrag Marzari, Nicola Kung, Yen-Cheng Sanchez, Oriol Lopez Kis, Andras Krasnozhon, Daria Gillet, Philippe Gibertini, Marco Radenovic, Aleksandra Ovchinnikov, Dmitry |
| AuthorAffiliation | Institute Ruđer Bošković (IRB) Electrical Engineering Institute Ecole Polytechnique Federale de Lausanne (EPFL) Institute of Materials Institute of Condensed Matter Physics Institute of Bioengineering |
| AuthorAffiliation_xml | – name: Electrical Engineering Institute – name: Institute Ruđer Bošković (IRB) – name: Ecole Polytechnique Federale de Lausanne (EPFL) – name: Institute of Condensed Matter Physics – name: Institute of Materials – name: Institute of Bioengineering |
| Author_xml | – sequence: 1 givenname: Dumitru surname: Dumcenco fullname: Dumcenco, Dumitru – sequence: 2 givenname: Dmitry surname: Ovchinnikov fullname: Ovchinnikov, Dmitry – sequence: 3 givenname: Kolyo surname: Marinov fullname: Marinov, Kolyo – sequence: 4 givenname: Predrag surname: Lazić fullname: Lazić, Predrag – sequence: 5 givenname: Marco surname: Gibertini fullname: Gibertini, Marco – sequence: 6 givenname: Nicola surname: Marzari fullname: Marzari, Nicola – sequence: 7 givenname: Oriol Lopez surname: Sanchez fullname: Sanchez, Oriol Lopez – sequence: 8 givenname: Yen-Cheng surname: Kung fullname: Kung, Yen-Cheng – sequence: 9 givenname: Daria surname: Krasnozhon fullname: Krasnozhon, Daria – sequence: 10 givenname: Ming-Wei surname: Chen fullname: Chen, Ming-Wei – sequence: 11 givenname: Simone surname: Bertolazzi fullname: Bertolazzi, Simone – sequence: 12 givenname: Philippe surname: Gillet fullname: Gillet, Philippe – sequence: 13 givenname: Anna surname: Fontcuberta i Morral fullname: Fontcuberta i Morral, Anna – sequence: 14 givenname: Aleksandra surname: Radenovic fullname: Radenovic, Aleksandra – sequence: 15 givenname: Andras surname: Kis fullname: Kis, Andras email: andras.kis@epfl.ch |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25843548$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1UctKAzEUDVKxD127k4IbQcYmmSQz3Qil1AdUXKjgLtyZSeqUaVKTqdi_N6XTokJX98A9Dzini1rGGoXQOcE3BFMygNwbMPaGZ5jQlByhDhnGIsKpeG_tMSdt1PV-jjFP0kScoDblKYs5SzvocgpupqKRU9CfLMsavkuo-k_W2ArWygX0Qk_RsYbKq7Pm9tDb3eR1_BBNn-8fx6NpBDFjJCoo16AxzvRQxUSoGBKNdZHEWcIYZZAXWKUZz2MomOIFLVRS4CTjNNOp1pzEPXS79V2usoUqcmVqB5VcunIBbi0tlPLvx5Qfcma_ZEjnjPNgcNUYOPu5Ur6Wi9LnqqrAKLvykohECIKJGAbqxe-sfciumUDgW0LurPdOaZmHdurSbqLLShIsNwvIZgHZLBB0g3-6nfVhxfVWER5yblfOhJIPsn8AveqZBg |
| CitedBy_id | crossref_primary_10_1007_s40242_020_0188_x crossref_primary_10_1016_j_cap_2023_11_016 crossref_primary_10_1038_s41467_019_12795_1 crossref_primary_10_1557_adv_2018_657 crossref_primary_10_1002_aelm_201800492 crossref_primary_10_1088_1674_1056_ac8e9b crossref_primary_10_1002_smtd_202000072 crossref_primary_10_1016_j_jlumin_2017_03_031 crossref_primary_10_1002_adpr_202300029 crossref_primary_10_1088_2053_1583_aaf836 crossref_primary_10_1016_j_sse_2019_05_011 crossref_primary_10_1002_smll_201603549 crossref_primary_10_1088_2515_7639_abbdb1 crossref_primary_10_1002_adfm_201703119 crossref_primary_10_1038_s41699_020_0150_2 crossref_primary_10_1038_s41598_017_04350_z crossref_primary_10_1134_S1070427219050021 crossref_primary_10_1063_5_0140861 crossref_primary_10_1134_S1063782620040193 crossref_primary_10_1557_adv_2018_669 crossref_primary_10_1038_s41467_020_19752_3 crossref_primary_10_1063_1_4998284 crossref_primary_10_1063_5_0170017 crossref_primary_10_1016_j_jallcom_2017_11_229 crossref_primary_10_1088_2053_1583_ab0760 crossref_primary_10_1088_0957_4484_27_42_425701 crossref_primary_10_1016_j_actbio_2025_07_037 crossref_primary_10_1002_smtd_202500813 crossref_primary_10_1016_j_jmst_2020_05_079 crossref_primary_10_1007_s12274_018_2128_3 crossref_primary_10_1088_2053_1583_ab42b6 crossref_primary_10_1126_science_aao5360 crossref_primary_10_1038_s41699_021_00244_x crossref_primary_10_1002_admi_201500635 crossref_primary_10_1002_admi_201600687 crossref_primary_10_1116_1_5074201 crossref_primary_10_1002_slct_202001683 crossref_primary_10_1016_j_tsf_2017_10_022 crossref_primary_10_3390_cryst13091373 crossref_primary_10_1016_j_commatsci_2021_111115 crossref_primary_10_1557_s43579_023_00381_y crossref_primary_10_1088_1361_6528_aaea3f crossref_primary_10_1088_2053_1583_ada0b7 crossref_primary_10_1063_5_0214274 crossref_primary_10_1016_j_jcrysgro_2024_128047 crossref_primary_10_1016_j_apsusc_2023_157994 crossref_primary_10_1007_s12274_022_4373_8 crossref_primary_10_1063_5_0241763 crossref_primary_10_1002_smll_201900578 crossref_primary_10_1016_j_jmbbm_2017_07_027 crossref_primary_10_1038_ncomms9616 crossref_primary_10_1016_j_jcrysgro_2017_10_028 crossref_primary_10_1038_s41467_020_20732_w crossref_primary_10_1063_1_4928179 crossref_primary_10_1016_j_apmt_2025_102657 crossref_primary_10_1038_s43586_025_00429_4 crossref_primary_10_1088_1361_6528_ac06f4 crossref_primary_10_1016_j_vibspec_2022_103454 crossref_primary_10_1002_adma_201801164 crossref_primary_10_3390_ma14247590 crossref_primary_10_1007_s12274_022_4384_5 crossref_primary_10_1016_j_nanoen_2018_02_027 crossref_primary_10_1002_adfm_201706950 crossref_primary_10_1016_j_susc_2022_122046 crossref_primary_10_1016_j_apsusc_2017_01_263 crossref_primary_10_1016_j_ccr_2025_216950 crossref_primary_10_1002_smll_202311317 crossref_primary_10_1039_C9NH00260J crossref_primary_10_1063_1_5123776 crossref_primary_10_1007_s10854_017_8417_x crossref_primary_10_1002_admi_202100438 crossref_primary_10_1002_adfm_201601019 crossref_primary_10_1016_j_cplett_2017_05_015 crossref_primary_10_1088_1361_6463_adff92 crossref_primary_10_1002_adma_201702206 crossref_primary_10_1002_smtd_202301782 crossref_primary_10_1002_adma_201603928 crossref_primary_10_1088_2632_959X_acef43 crossref_primary_10_1039_D4NR01772B crossref_primary_10_1116_6_0001685 crossref_primary_10_1016_j_apsusc_2023_156748 crossref_primary_10_1016_j_surfin_2025_107367 crossref_primary_10_1039_C7CS00887B crossref_primary_10_1088_1361_6528_ab2c3a crossref_primary_10_1007_s10853_019_03437_4 crossref_primary_10_1016_j_coelec_2017_03_007 crossref_primary_10_3390_nano14211749 crossref_primary_10_1016_j_nanoen_2018_03_060 crossref_primary_10_1088_2053_1583_ab1e0a crossref_primary_10_1038_s41596_019_0131_0 crossref_primary_10_3390_cryst13091383 crossref_primary_10_1088_1361_6528_aabbb9 crossref_primary_10_1093_nsr_nwab164 crossref_primary_10_1016_j_vacuum_2023_112489 crossref_primary_10_1039_D1QI00187F crossref_primary_10_1007_s10853_021_06708_1 crossref_primary_10_1002_adma_201801586 crossref_primary_10_1038_s41928_020_0460_6 crossref_primary_10_1038_s41467_023_40055_w crossref_primary_10_1002_pssr_202300218 crossref_primary_10_1016_j_molliq_2016_11_045 crossref_primary_10_1039_D5NR02265G crossref_primary_10_1007_s11664_020_07957_7 crossref_primary_10_1021_acs_jpcc_5c03341 crossref_primary_10_1016_j_compositesa_2018_05_009 crossref_primary_10_1039_D5CP02172C crossref_primary_10_1088_1361_648X_acbf19 crossref_primary_10_1063_1_4977697 crossref_primary_10_1088_2053_1583_aabb74 crossref_primary_10_1088_2053_1583_ab53f7 crossref_primary_10_1016_j_inoche_2023_110775 crossref_primary_10_1063_5_0256632 crossref_primary_10_1038_srep21536 crossref_primary_10_1088_2053_1583_abc5a1 crossref_primary_10_1016_j_apsusc_2018_03_165 crossref_primary_10_1088_1361_6528_ab49a2 crossref_primary_10_1063_5_0057417 crossref_primary_10_1002_smtd_202300326 crossref_primary_10_1038_s41578_023_00609_2 crossref_primary_10_1002_advs_202105201 crossref_primary_10_1002_aelm_201900393 crossref_primary_10_1016_j_apsusc_2020_145864 crossref_primary_10_1088_1361_6528_acae28 crossref_primary_10_1016_j_cap_2019_07_007 crossref_primary_10_1002_smll_201603994 crossref_primary_10_1002_smll_202000596 crossref_primary_10_1007_s11433_021_1745_6 crossref_primary_10_1016_j_spmi_2019_03_006 crossref_primary_10_1088_1361_6528_aa6958 crossref_primary_10_1021_acs_jpcc_4c04669 crossref_primary_10_1038_s41467_022_35651_1 crossref_primary_10_1038_s41524_025_01754_8 crossref_primary_10_3390_nano10061161 crossref_primary_10_1063_1_4921580 crossref_primary_10_1016_j_vacuum_2024_113739 crossref_primary_10_1002_admi_202001549 crossref_primary_10_3390_nano11092423 crossref_primary_10_1002_smll_202006262 crossref_primary_10_1038_s41467_024_48522_8 crossref_primary_10_1063_1_4995984 crossref_primary_10_1016_j_spmi_2021_107054 crossref_primary_10_1039_D5TA03784K crossref_primary_10_1038_s41467_021_26230_x crossref_primary_10_1088_2053_1583_abce08 crossref_primary_10_1103_PhysRevApplied_14_034030 crossref_primary_10_1002_admi_202301065 crossref_primary_10_1039_D3MH01362F crossref_primary_10_3390_coatings12050706 crossref_primary_10_1002_pssa_201900722 crossref_primary_10_1016_j_carbon_2020_07_014 crossref_primary_10_1002_cvde_201500060 crossref_primary_10_1016_j_cej_2025_162688 crossref_primary_10_1088_1361_6528_aa60f9 crossref_primary_10_1088_2053_1583_3_1_010401 crossref_primary_10_1002_admi_202201469 crossref_primary_10_1016_j_progsolidstchem_2024_100443 crossref_primary_10_1039_C9NR08753B crossref_primary_10_1088_2053_1583_adf758 crossref_primary_10_1002_admi_202000364 crossref_primary_10_3390_nano13192712 crossref_primary_10_1016_j_ijhydene_2017_12_185 crossref_primary_10_1093_nsr_nwz223 crossref_primary_10_1002_elt2_43 crossref_primary_10_1016_j_jallcom_2024_174916 crossref_primary_10_1063_1_5030643 crossref_primary_10_1002_adma_202205520 crossref_primary_10_1038_s41699_025_00524_w crossref_primary_10_1007_s11433_017_9105_x crossref_primary_10_1088_2053_1583_aac610 crossref_primary_10_1007_s40544_022_0728_0 crossref_primary_10_1371_journal_pone_0154522 crossref_primary_10_1038_s41928_021_00670_1 crossref_primary_10_1002_admi_202201353 crossref_primary_10_1016_j_apsusc_2020_148240 crossref_primary_10_1088_1361_6463_aa6786 crossref_primary_10_1016_j_apmt_2021_100975 crossref_primary_10_1002_adma_202211075 crossref_primary_10_20935_AcadNano7714 crossref_primary_10_1002_adma_201903569 crossref_primary_10_1002_smtd_202401815 crossref_primary_10_1016_j_cap_2020_07_015 crossref_primary_10_1080_01614940_2021_1962493 crossref_primary_10_1002_adma_202202472 crossref_primary_10_1186_s11671_022_03670_y crossref_primary_10_1002_admi_202200030 crossref_primary_10_1016_j_nanoen_2016_10_032 crossref_primary_10_1016_j_jallcom_2020_157374 crossref_primary_10_1088_2053_1583_ab1bc0 crossref_primary_10_1016_j_apsusc_2023_157352 crossref_primary_10_1016_j_nanoen_2019_01_073 crossref_primary_10_3390_app6030078 crossref_primary_10_1016_j_apsusc_2023_157597 crossref_primary_10_1016_j_mseb_2024_117892 crossref_primary_10_1088_2399_6528_abc296 crossref_primary_10_1016_j_cjph_2016_03_003 crossref_primary_10_1016_j_apsusc_2019_03_249 crossref_primary_10_1088_2053_1591_3_7_075009 crossref_primary_10_1016_j_cplett_2017_08_043 crossref_primary_10_1021_acsnano_4c18112 crossref_primary_10_1016_j_scib_2019_01_016 crossref_primary_10_1134_S106378501712015X crossref_primary_10_1146_annurev_matsci_090519_113456 crossref_primary_10_1088_2053_1583_adf567 crossref_primary_10_1007_s11082_018_1512_2 crossref_primary_10_1016_j_matchemphys_2019_122203 crossref_primary_10_1016_j_surfrep_2023_100586 crossref_primary_10_3390_photonics6010003 crossref_primary_10_1002_adma_202005159 crossref_primary_10_3389_fphy_2021_654845 crossref_primary_10_7498_aps_74_20251115 crossref_primary_10_1038_s41467_017_00722_1 crossref_primary_10_1038_s41565_021_00963_8 crossref_primary_10_1016_j_chemphys_2023_111923 crossref_primary_10_1002_admi_201700031 crossref_primary_10_1063_5_0013391 crossref_primary_10_1039_D4NR03935A crossref_primary_10_1103_PhysRevMaterials_6_064005 crossref_primary_10_1016_j_psep_2018_06_025 crossref_primary_10_1021_jacs_5b06643 crossref_primary_10_1007_s40843_019_1270_x crossref_primary_10_3390_nano8020100 crossref_primary_10_1038_s41467_020_14383_0 crossref_primary_10_1002_advs_201600177 crossref_primary_10_1016_j_nantod_2016_08_009 crossref_primary_10_1016_j_chip_2023_100057 crossref_primary_10_1186_s11671_015_1094_x crossref_primary_10_1039_C9NR07799E crossref_primary_10_1063_1_4954172 crossref_primary_10_1088_1361_6528_ab3c9b crossref_primary_10_1016_j_cap_2019_11_021 crossref_primary_10_1088_2053_1583_ac5ec5 crossref_primary_10_1088_1361_6463_aa5256 crossref_primary_10_1116_1_5043621 crossref_primary_10_1016_j_bios_2019_111512 crossref_primary_10_1063_5_0226977 crossref_primary_10_1080_14328917_2022_2109887 crossref_primary_10_1038_nature18593 crossref_primary_10_1088_2053_1583_abc460 crossref_primary_10_1515_nanoph_2022_0159 crossref_primary_10_1002_smll_201603005 crossref_primary_10_1088_2053_1583_aa734a crossref_primary_10_3390_ma13245794 crossref_primary_10_1002_admi_201900220 crossref_primary_10_1016_j_cej_2020_125592 crossref_primary_10_1063_5_0163588 crossref_primary_10_1038_s41565_021_01004_0 crossref_primary_10_1016_j_mattod_2023_11_008 crossref_primary_10_1007_s40843_022_2338_9 crossref_primary_10_1002_smtd_202300165 crossref_primary_10_1016_j_apsusc_2021_150798 crossref_primary_10_1016_j_surfcoat_2024_131577 crossref_primary_10_1557_adv_2020_187 crossref_primary_10_1002_adfm_202207705 crossref_primary_10_1080_15421406_2018_1466234 crossref_primary_10_1021_acsaelm_5c01522 crossref_primary_10_1002_adfm_202414532 crossref_primary_10_1016_j_flatc_2025_100863 crossref_primary_10_1088_2053_1583_aa8678 crossref_primary_10_1002_pssb_201900342 crossref_primary_10_1016_j_cej_2025_164223 crossref_primary_10_1016_j_jallcom_2021_161058 crossref_primary_10_1063_1_5093039 crossref_primary_10_1088_1361_6528_aa510c crossref_primary_10_3390_chemosensors9030049 crossref_primary_10_1088_1361_6528_aa8f15 crossref_primary_10_1002_adma_202102252 crossref_primary_10_1002_admi_202001046 crossref_primary_10_1002_pssb_201600281 crossref_primary_10_1038_s41598_022_20531_x crossref_primary_10_1063_1_4940751 crossref_primary_10_1002_admi_202100913 crossref_primary_10_1038_s41928_021_00685_8 crossref_primary_10_1088_2053_1583_3_4_042001 crossref_primary_10_1063_1_4959254 crossref_primary_10_1002_wcms_1300 crossref_primary_10_3390_nano9111640 crossref_primary_10_1088_2053_1583_ab4c09 crossref_primary_10_1088_0957_4484_26_35_355706 crossref_primary_10_1038_natrevmats_2017_33 crossref_primary_10_1002_adfm_201907860 crossref_primary_10_1088_1361_6463_acdadc crossref_primary_10_1002_advs_202000788 crossref_primary_10_1002_smll_201502392 crossref_primary_10_3390_cryst8060252 crossref_primary_10_1002_adma_201706215 crossref_primary_10_1063_1_4995690 crossref_primary_10_1088_1361_648X_aa9305 crossref_primary_10_1109_TED_2025_3533474 crossref_primary_10_1016_j_jcrysgro_2016_11_020 crossref_primary_10_3390_coatings12081152 crossref_primary_10_1002_adma_202205365 crossref_primary_10_1002_adma_202209968 crossref_primary_10_1088_2053_1583_ac5f6d crossref_primary_10_1002_adma_201807486 crossref_primary_10_1007_s41403_022_00379_3 crossref_primary_10_1016_j_apsusc_2019_02_030 crossref_primary_10_1016_j_jcrysgro_2020_125683 crossref_primary_10_1088_2053_1583_abb959 crossref_primary_10_1038_s41928_019_0256_8 crossref_primary_10_1088_2053_1583_aafd9a crossref_primary_10_1016_j_jcrysgro_2019_01_020 crossref_primary_10_1002_adfm_201604040 crossref_primary_10_1016_j_mssp_2019_104679 crossref_primary_10_1016_j_nanoen_2019_104079 crossref_primary_10_1002_advs_201900446 crossref_primary_10_1109_TED_2019_2924112 crossref_primary_10_1039_D1RA06933K crossref_primary_10_1002_smll_201906892 crossref_primary_10_1002_adfm_201902149 crossref_primary_10_1515_nanoph_2022_0235 crossref_primary_10_1007_s12274_020_3019_y crossref_primary_10_1002_adfm_202303520 crossref_primary_10_1116_6_0003248 crossref_primary_10_1063_1_5051781 crossref_primary_10_1088_2053_1583_ab70ec crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1063_5_0045916 crossref_primary_10_1002_adfm_202311387 crossref_primary_10_1002_adma_201808244 crossref_primary_10_1016_j_surfcoat_2018_05_031 crossref_primary_10_1002_smll_202500980 crossref_primary_10_1002_aisy_202500613 crossref_primary_10_1002_smll_201904369 crossref_primary_10_1080_14686996_2022_2062576 crossref_primary_10_1002_aelm_201600468 crossref_primary_10_1038_srep38394 crossref_primary_10_1016_j_cej_2018_09_021 crossref_primary_10_1063_1_5095451 crossref_primary_10_1088_2053_1583_ab28f2 crossref_primary_10_1016_j_apmt_2020_100734 crossref_primary_10_1038_s41699_023_00373_5 crossref_primary_10_1016_j_apsusc_2024_160856 crossref_primary_10_1021_acsami_5c00308 crossref_primary_10_1063_1_5043098 crossref_primary_10_1016_j_nanoen_2019_104370 crossref_primary_10_3390_electronics4041033 crossref_primary_10_1016_j_sse_2017_12_005 crossref_primary_10_3390_nano10040803 crossref_primary_10_1002_adma_202211855 crossref_primary_10_1016_j_ceramint_2024_05_259 crossref_primary_10_1063_5_0167225 crossref_primary_10_1088_1674_1056_ac9604 crossref_primary_10_1002_admi_201800688 crossref_primary_10_1088_1674_4926_40_6_061003 crossref_primary_10_1088_2053_1583_acf3f9 crossref_primary_10_1016_j_physe_2019_113641 crossref_primary_10_1002_adma_202100260 crossref_primary_10_1016_j_apsusc_2021_150818 crossref_primary_10_1002_adma_201606760 crossref_primary_10_1016_j_jcrysgro_2017_04_012 crossref_primary_10_1007_s10854_025_15198_9 crossref_primary_10_1088_1361_648X_ab071f crossref_primary_10_1002_chem_201803066 crossref_primary_10_1088_2053_1583_aaedc8 crossref_primary_10_1007_s12274_020_2893_7 crossref_primary_10_1016_j_apsusc_2020_148201 crossref_primary_10_1038_s41598_017_16970_6 crossref_primary_10_1016_j_apsusc_2024_159889 crossref_primary_10_3390_lubricants7070057 crossref_primary_10_3390_nano12193262 crossref_primary_10_1016_j_mtphys_2025_101710 crossref_primary_10_1063_5_0008850 crossref_primary_10_1126_science_aab2750 crossref_primary_10_1007_s11467_018_0873_0 crossref_primary_10_1002_advs_202415884 crossref_primary_10_1016_j_apmt_2022_101379 crossref_primary_10_1038_s41427_019_0145_7 crossref_primary_10_1063_1_4962764 crossref_primary_10_1002_adfm_202104174 crossref_primary_10_1021_acsaom_4c00113 crossref_primary_10_1016_j_jlumin_2018_03_052 crossref_primary_10_1002_adma_202402855 crossref_primary_10_1007_s10854_024_13186_z crossref_primary_10_1038_s41467_020_17297_z crossref_primary_10_1088_1361_6463_aa81ae crossref_primary_10_1088_2053_1583_aa7ea2 crossref_primary_10_1002_admi_201900196 crossref_primary_10_1016_j_cpc_2015_08_038 crossref_primary_10_1088_1742_6596_739_1_012014 crossref_primary_10_1007_s11664_017_5937_3 crossref_primary_10_1002_pssa_202000073 crossref_primary_10_1007_s12274_015_0866_z crossref_primary_10_3762_bjnano_10_57 crossref_primary_10_1007_s10311_018_0745_4 crossref_primary_10_1016_j_cclet_2021_10_013 crossref_primary_10_1088_0957_4484_27_17_175703 crossref_primary_10_1088_1361_6641_aaa224 crossref_primary_10_1038_s41586_018_0008_3 crossref_primary_10_1063_5_0103821 crossref_primary_10_1088_1361_6439_ab0726 crossref_primary_10_1016_j_apsusc_2020_148226 crossref_primary_10_1038_s41598_025_13921_4 crossref_primary_10_1016_j_elecom_2016_10_008 crossref_primary_10_1002_adma_202404923 crossref_primary_10_1038_s41598_019_40893_z crossref_primary_10_1016_S1872_5805_21_60078_1 crossref_primary_10_1002_adma_202006601 crossref_primary_10_1016_j_mseb_2021_115047 crossref_primary_10_1002_smsc_202100047 crossref_primary_10_1021_jacs_7b05131 crossref_primary_10_3390_cryst13081275 crossref_primary_10_1038_s41467_023_36286_6 crossref_primary_10_1002_adfm_201807612 crossref_primary_10_1007_s12274_020_3160_7 crossref_primary_10_1002_pssr_201900406 crossref_primary_10_1063_1_4990968 crossref_primary_10_3390_nano14020235 crossref_primary_10_3390_cryst8020070 crossref_primary_10_1002_cphc_202400829 crossref_primary_10_1039_D0RA02014A crossref_primary_10_1088_2515_7639_ab82b3 crossref_primary_10_1002_pssr_202300141 crossref_primary_10_1063_1_5024766 crossref_primary_10_1063_5_0098045 crossref_primary_10_1016_j_mtphys_2020_100273 crossref_primary_10_1002_adfm_202422645 crossref_primary_10_1016_j_tsf_2018_10_015 crossref_primary_10_1039_D3RA04456D crossref_primary_10_1063_1_4942406 crossref_primary_10_1088_1361_648X_ab634b crossref_primary_10_1063_1_5100282 crossref_primary_10_1007_s43939_025_00270_2 crossref_primary_10_1039_C7NH00137A crossref_primary_10_1088_2053_1583_4_1_011009 crossref_primary_10_1002_adsu_202400483 crossref_primary_10_1088_1361_6528_ab5ffd crossref_primary_10_1116_6_0001135 crossref_primary_10_1016_j_surfcoat_2019_06_038 crossref_primary_10_1063_1_4989851 crossref_primary_10_1088_1361_6641_ab4b85 crossref_primary_10_1088_2053_1583_aa5784 crossref_primary_10_1016_j_sna_2019_02_035 crossref_primary_10_1016_j_mssp_2019_01_007 crossref_primary_10_1088_2053_1583_ad3134 crossref_primary_10_3390_pharmaceutics16030360 crossref_primary_10_1557_adv_2019_391 crossref_primary_10_1021_jacs_5b10519 crossref_primary_10_1088_1361_6528_abb5d2 crossref_primary_10_1038_ncomms14948 crossref_primary_10_1007_s12274_021_3668_5 crossref_primary_10_1088_1361_6528_aa9c21 crossref_primary_10_1038_s41586_020_2861_0 crossref_primary_10_3390_electronics6020028 crossref_primary_10_1038_nmat4607 crossref_primary_10_3390_photonics10010059 crossref_primary_10_1002_smll_202200184 crossref_primary_10_1088_1361_6528_abbfd3 crossref_primary_10_1016_j_tsf_2019_137588 crossref_primary_10_1038_s43586_020_00005_y crossref_primary_10_1002_advs_202307839 crossref_primary_10_1063_5_0101317 crossref_primary_10_1063_5_0010849 crossref_primary_10_1002_smll_201600681 crossref_primary_10_1039_C7CP05109C crossref_primary_10_1016_j_apsusc_2018_05_220 crossref_primary_10_1016_j_pcrysgrow_2016_06_002 crossref_primary_10_1002_aenm_201600459 crossref_primary_10_1002_pssb_202200090 crossref_primary_10_1039_D3NR05400D crossref_primary_10_1007_s12274_019_2502_9 crossref_primary_10_1364_PRJ_7_001127 crossref_primary_10_1002_admi_202300455 crossref_primary_10_1134_S0030400X16050180 crossref_primary_10_1016_j_apsusc_2024_160331 crossref_primary_10_1116_1_4982736 crossref_primary_10_1038_s41578_021_00408_7 crossref_primary_10_1002_adfm_202513567 crossref_primary_10_1002_smll_202409004 crossref_primary_10_1038_s41699_020_0146_y crossref_primary_10_1016_j_apsusc_2020_146428 crossref_primary_10_1038_s41467_020_17517_6 crossref_primary_10_1088_1361_648X_ad5a5d crossref_primary_10_1116_1_5132748 crossref_primary_10_1038_s41565_023_01445_9 crossref_primary_10_1016_j_apmt_2021_101234 crossref_primary_10_1002_admi_202100164 crossref_primary_10_1007_s00339_022_05270_0 crossref_primary_10_1007_s40843_019_1265_9 crossref_primary_10_1016_j_jcrysgro_2024_127891 crossref_primary_10_1038_s41524_022_00797_5 crossref_primary_10_1088_1361_648X_aa8933 crossref_primary_10_1016_j_ceramint_2024_03_247 crossref_primary_10_1016_j_mattod_2021_07_023 crossref_primary_10_1007_s11664_018_6443_y crossref_primary_10_1088_2053_1583_ab4f1f crossref_primary_10_1109_TED_2018_2866390 crossref_primary_10_1016_j_apsusc_2020_146418 crossref_primary_10_1002_adfm_202103106 crossref_primary_10_1116_1_5036654 crossref_primary_10_1038_s41467_020_17241_1 crossref_primary_10_1016_j_jpcs_2018_09_039 crossref_primary_10_1088_1361_6528_ab142f crossref_primary_10_1002_adfm_202003732 crossref_primary_10_1080_15421406_2017_1338099 crossref_primary_10_1088_1742_6596_2710_1_012016 crossref_primary_10_1557_s43579_022_00261_x crossref_primary_10_1088_1361_6641_32_2_025013 crossref_primary_10_1002_smll_202100743 crossref_primary_10_1016_j_colsurfa_2021_126546 crossref_primary_10_1016_j_cej_2024_155498 crossref_primary_10_1557_jmr_2019_394 crossref_primary_10_1063_5_0087684 crossref_primary_10_1088_2053_1583_aa6beb crossref_primary_10_1098_rsos_210554 crossref_primary_10_1002_cssc_201902706 crossref_primary_10_1088_1361_6528_ac1b54 crossref_primary_10_1016_j_matchemphys_2025_130701 crossref_primary_10_1088_2053_1583_2_4_044005 crossref_primary_10_1038_s41563_020_00846_8 crossref_primary_10_1063_1_5022769 crossref_primary_10_1051_bioconf_202412922027 crossref_primary_10_1088_2053_1583_aa7ce0 crossref_primary_10_1039_C8NR10315A crossref_primary_10_1016_j_matlet_2022_132355 crossref_primary_10_1080_10584587_2018_1456123 crossref_primary_10_1016_j_apmt_2015_12_003 crossref_primary_10_1063_5_0104873 crossref_primary_10_1016_j_nanoen_2024_109936 crossref_primary_10_1039_C8CS00169C crossref_primary_10_1039_D3NR06678A crossref_primary_10_1103_PhysRevApplied_19_064058 |
| Cites_doi | 10.1103/PhysRevB.59.1758 10.1021/nl903868w 10.1038/nmat3687 10.1021/nl204562j 10.1063/1.114313 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.50.17953 10.1002/smll.201102654 10.1038/nnano.2014.166 10.1021/nn501701a 10.1021/nn2024557 10.1021/nl4046922 10.1038/nnano.2006.171 10.1021/nn403454e 10.1016/j.susc.2009.07.004 10.1103/PhysRevB.79.115409 10.1103/PhysRevB.46.16067 10.1103/PhysRevB.87.041108 10.1021/nn406102h 10.1021/nl2043612 10.1021/nl401938t 10.1103/PhysRevB.84.201401 10.1002/adma.201104798 10.1103/PhysRevLett.92.246401 10.1103/PhysRevLett.77.3865 10.1063/1.105227 10.1103/PhysRevB.47.558 10.1039/c3nr34011b 10.1088/0957-4484/22/12/125706 10.1038/nnano.2013.100 10.1021/ct900365q 10.1021/nl2022288 10.1126/science.1235547 10.1021/nn1003937 10.1021/am508569m 10.1038/nmat3673 10.1126/science.1194975 10.1039/C4NR02142H 10.1021/nl401916s 10.1002/adma.201102584 10.1088/0268-1242/29/6/064008 10.1103/PhysRevLett.105.136805 10.1016/S0022-0248(98)01329-3 10.1038/nature12385 10.1038/nmat3633 10.1021/nn401429w 10.1021/nn3059136 10.1021/j100393a010 10.1103/PhysRevB.85.161403 10.1073/pnas.0502848102 10.1021/nn5003858 10.1103/PhysRevB.83.195131 10.1103/PhysRevB.33.8800 10.1063/1.2335390 10.1021/nn203879f 10.1103/PhysRevB.83.245213 10.1063/1.3521275 |
| ContentType | Journal Article |
| Copyright | Copyright © 2015 American Chemical Society Copyright © 2015 American Chemical Society 2015 American Chemical Society |
| Copyright_xml | – notice: Copyright © 2015 American Chemical Society – notice: Copyright © 2015 American Chemical Society 2015 American Chemical Society |
| DBID | N~. AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1021/acsnano.5b01281 |
| DatabaseName | American Chemical Society (ACS) Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: N~. name: American Chemical Society (ACS) Open Access url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 4620 |
| ExternalDocumentID | PMC4415455 25843548 10_1021_acsnano_5b01281 a235112219 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 N~. P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 5PM |
| ID | FETCH-LOGICAL-a3441-d25faf00bf9e316e3a7f0fd73b74424acd0e8b5c3ad4e5d2de7d07b52bf8ff513 |
| IEDL.DBID | ACS |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Tue Sep 30 16:36:20 EDT 2025 Fri Jul 11 10:20:40 EDT 2025 Thu Apr 03 07:01:08 EDT 2025 Tue Nov 18 21:33:40 EST 2025 Sat Nov 29 02:49:46 EST 2025 Thu Aug 27 13:42:06 EDT 2020 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | two-dimensional materials electronic transport grain boundaries MoS2 epitaxial growth Kelvin probe force microscopy |
| Language | English |
| License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a3441-d25faf00bf9e316e3a7f0fd73b74424acd0e8b5c3ad4e5d2de7d07b52bf8ff513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/10.1021/acsnano.5b01281 |
| PMID | 25843548 |
| PQID | 1676610169 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4415455 proquest_miscellaneous_1676610169 pubmed_primary_25843548 crossref_citationtrail_10_1021_acsnano_5b01281 crossref_primary_10_1021_acsnano_5b01281 acs_journals_10_1021_acsnano_5b01281 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ N~. UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-04-28 |
| PublicationDateYYYYMMDD | 2015-04-28 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2015 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | Brivio J. (ref37/cit37) 2011; 11 Britnell L. (ref42/cit42) 2013; 340 Klimeš J. (ref59/cit59) 2010; 22 Schmidt H. (ref44/cit44) 2014; 14 Kresse G. (ref56/cit56) 1996; 54 Curiotto S. (ref35/cit35) 2009; 603 Perdew J. P. (ref55/cit55) 1986; 33 Lauritsen J. V. (ref36/cit36) 2007; 2 Splendiani A. (ref6/cit6) 2010; 10 Perdew J. P. (ref53/cit53) 1996; 77 Shi Y. (ref28/cit28) 2012; 12 Yu Y. (ref32/cit32) 2013; 3 Bertolazzi S. (ref15/cit15) 2011; 5 Lee C. (ref9/cit9) 2010; 4 Lee Y.-H. (ref20/cit20) 2012; 24 Schäfer H. (ref17/cit17) 1964 Coleman J. N. (ref2/cit2) 2011; 331 Klimeš J. (ref60/cit60) 2011; 83 Zhan Y. (ref19/cit19) 2012; 8 Neugebauer J. (ref62/cit62) 1992; 46 Liu K.-K. (ref18/cit18) 2012; 12 Yazyev O. V. (ref24/cit24) 2014; 9 Mak K. F. (ref7/cit7) 2010; 105 Bakti Utama M. I. (ref26/cit26) 2013; 5 Sabatini R. (ref51/cit51) 2013; 87 Nonnenmacher M. (ref47/cit47) 1991; 58 Liu K. (ref14/cit14) 2014; 8 Smith R. J. (ref3/cit3) 2011; 23 Paolo G. (ref48/cit48) 2009; 21 Blöchl P. E. (ref49/cit49) 1994; 50 Kresse G. (ref57/cit57) 1993; 47 Plechinger G. (ref40/cit40) 2014; 29 Baugher B. (ref46/cit46) 2013; 13 Lin Y.-C. (ref30/cit30) 2014; 8 Najmaei S. (ref23/cit23) 2014; 8 Ago H. (ref29/cit29) 2015; 7 Gonschorek M. (ref31/cit31) 2006; 89 Kresse G. (ref50/cit50) 1999; 59 Chang H.-Y. (ref16/cit16) 2013; 7 Lopez-Sanchez O. (ref12/cit12) 2013; 8 van der Zande A. M. (ref22/cit22) 2013; 12 Yin Z. (ref13/cit13) 2012; 6 Kuc A. (ref8/cit8) 2011; 83 Benameur M. M. (ref10/cit10) 2011; 22 Vydrov O. A. (ref52/cit52) 2010; 133 Islam M. R. (ref39/cit39) 2014; 6 Kam K. K. (ref4/cit4) 1982; 86 Murray É. D. (ref54/cit54) 2009; 5 Geim A. K. (ref43/cit43) 2013; 499 Zhang Y. (ref33/cit33) 2013; 7 Mittendorfer F. (ref61/cit61) 2011; 84 Yoshimoto M. (ref34/cit34) 1995; 67 Novoselov K. S. (ref1/cit1) 2005; 102 ref41/cit41 Ji Q. (ref27/cit27) 2013; 13 Chakraborty B. (ref38/cit38) 2012; 85 Dion M. (ref58/cit58) 2004; 92 Radisavljevic B. (ref45/cit45) 2013; 12 Bertolazzi S. (ref11/cit11) 2013; 7 Lebegue S. (ref5/cit5) 2009; 79 Najmaei S. (ref21/cit21) 2013; 12 Koma A. (ref25/cit25) 1999; 201 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502 21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201 23689610 - Sci Rep. 2013;3:1866 23899342 - Nano Lett. 2013 Aug 14;13(8):3870-7 23748194 - Nat Nanotechnol. 2013 Jul;8(7):497-501 23793161 - Nat Mater. 2013 Sep;12(9):815-20 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5 21197972 - J Chem Phys. 2010 Dec 28;133(24):244103 23668386 - ACS Nano. 2013 Jun 25;7(6):5446-52 22010987 - Nano Lett. 2011 Dec 14;11(12):5148-53 10003746 - Phys Rev B Condens Matter. 1992 Dec 15;46(24):16067-16080 22334392 - Small. 2012 Apr 10;8(7):966-71 25695865 - ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5265-73 18654208 - Nat Nanotechnol. 2007 Jan;2(1):53-8 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 21317494 - Nanotechnology. 2011 Mar 25;22(12):125706 24047054 - ACS Nano. 2013 Oct 22;7(10):8963-71 23510133 - ACS Nano. 2013 Apr 23;7(4):3246-52 25019978 - ACS Nano. 2014 Aug 26;8(8):7930-7 20392077 - ACS Nano. 2010 May 25;4(5):2695-700 24547924 - ACS Nano. 2014 Mar 25;8(3):2504-11 22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91 25030839 - Nanoscale. 2014 Sep 7;6(17):10033-9 26631788 - J Chem Theory Comput. 2009 Oct 13;5(10):2754-62 22467187 - Adv Mater. 2012 May 2;24(17):2320-5 21292974 - Science. 2011 Feb 4;331(6017):568-71 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805 22165908 - ACS Nano. 2012 Jan 24;6(1):74-80 9938293 - Phys Rev B Condens Matter. 1986 Jun 15;33(12):8800-8802 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 24640984 - Nano Lett. 2014;14(4):1909-13 23749265 - Nat Mater. 2013 Aug;12(8):754-9 23887427 - Nature. 2013 Jul 25;499(7459):419-25 25318849 - Sci Rep. 2014 Oct 16;4:6608 22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44 23508233 - Nanoscale. 2013 May 7;5(9):3570-88 23644523 - Nat Mater. 2013 Jun;12(6):554-61 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401 23641062 - Science. 2013 Jun 14;340(6138):1311-4 22087740 - ACS Nano. 2011 Dec 27;5(12):9703-9 21796689 - Adv Mater. 2011 Sep 8;23(34):3944-8 23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6 25152238 - Nat Nanotechnol. 2014 Oct;9(10):755-67 24641706 - ACS Nano. 2014 Apr 22;8(4):3715-23 16027370 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3 |
| References_xml | – volume: 59 start-page: 1758 year: 1999 ident: ref50/cit50 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 10 start-page: 1271 year: 2010 ident: ref6/cit6 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 12 start-page: 815 year: 2013 ident: ref45/cit45 publication-title: Nat. Mater. doi: 10.1038/nmat3687 – volume: 12 start-page: 2784 year: 2012 ident: ref28/cit28 publication-title: Nano Lett. doi: 10.1021/nl204562j – volume: 67 start-page: 2615 year: 1995 ident: ref34/cit34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.114313 – volume: 54 start-page: 11169 year: 1996 ident: ref56/cit56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 50 start-page: 17953 year: 1994 ident: ref49/cit49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 8 start-page: 966 year: 2012 ident: ref19/cit19 publication-title: Small doi: 10.1002/smll.201102654 – volume: 9 start-page: 755 year: 2014 ident: ref24/cit24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.166 – volume: 8 start-page: 7930 year: 2014 ident: ref23/cit23 publication-title: ACS Nano doi: 10.1021/nn501701a – volume: 6 start-page: 74 year: 2012 ident: ref13/cit13 publication-title: ACS Nano doi: 10.1021/nn2024557 – volume: 14 start-page: 1909 year: 2014 ident: ref44/cit44 publication-title: Nano Lett. doi: 10.1021/nl4046922 – volume: 2 start-page: 53 year: 2007 ident: ref36/cit36 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.171 – volume-title: Chemical Transport Reactions year: 1964 ident: ref17/cit17 – volume: 7 start-page: 8963 year: 2013 ident: ref33/cit33 publication-title: ACS Nano doi: 10.1021/nn403454e – volume: 603 start-page: 2688 year: 2009 ident: ref35/cit35 publication-title: Surf. Sci. doi: 10.1016/j.susc.2009.07.004 – volume: 79 start-page: 115409 year: 2009 ident: ref5/cit5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.115409 – volume: 46 start-page: 16067 year: 1992 ident: ref62/cit62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.16067 – volume: 87 start-page: 041108 year: 2013 ident: ref51/cit51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.041108 – volume: 8 start-page: 2504 year: 2014 ident: ref14/cit14 publication-title: ACS Nano doi: 10.1021/nn406102h – volume: 12 start-page: 1538 year: 2012 ident: ref18/cit18 publication-title: Nano Lett. doi: 10.1021/nl2043612 – volume: 13 start-page: 3870 year: 2013 ident: ref27/cit27 publication-title: Nano Lett. doi: 10.1021/nl401938t – volume: 84 start-page: 201401 year: 2011 ident: ref61/cit61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.201401 – volume: 24 start-page: 2320 year: 2012 ident: ref20/cit20 publication-title: Adv. Mater. (Weinheim, Ger.) doi: 10.1002/adma.201104798 – volume: 92 start-page: 246401 year: 2004 ident: ref58/cit58 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.246401 – volume: 77 start-page: 3865 year: 1996 ident: ref53/cit53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 58 start-page: 2921 year: 1991 ident: ref47/cit47 publication-title: Appl. Phys. Lett. doi: 10.1063/1.105227 – volume: 47 start-page: 558 year: 1993 ident: ref57/cit57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 5 start-page: 3570 year: 2013 ident: ref26/cit26 publication-title: Nanoscale doi: 10.1039/c3nr34011b – volume: 22 start-page: 125706 year: 2011 ident: ref10/cit10 publication-title: Nanotechnology doi: 10.1088/0957-4484/22/12/125706 – volume: 8 start-page: 497 year: 2013 ident: ref12/cit12 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.100 – volume: 5 start-page: 2754 year: 2009 ident: ref54/cit54 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct900365q – volume: 11 start-page: 5148 year: 2011 ident: ref37/cit37 publication-title: Nano Lett. doi: 10.1021/nl2022288 – volume: 340 start-page: 1311 year: 2013 ident: ref42/cit42 publication-title: Science doi: 10.1126/science.1235547 – volume: 4 start-page: 2695 year: 2010 ident: ref9/cit9 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 7 start-page: 5265 year: 2015 ident: ref29/cit29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am508569m – volume: 12 start-page: 754 year: 2013 ident: ref21/cit21 publication-title: Nat. Mater. doi: 10.1038/nmat3673 – volume: 331 start-page: 568 year: 2011 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.1194975 – volume: 3 year: 2013 ident: ref32/cit32 publication-title: Sci. Rep. – volume: 6 start-page: 10033 year: 2014 ident: ref39/cit39 publication-title: Nanoscale doi: 10.1039/C4NR02142H – volume: 13 start-page: 4212 year: 2013 ident: ref46/cit46 publication-title: Nano Lett. doi: 10.1021/nl401916s – volume: 22 start-page: 022201 year: 2010 ident: ref59/cit59 publication-title: J. Phys.: Condens. Matter – volume: 21 start-page: 395502 year: 2009 ident: ref48/cit48 publication-title: J. Phys.: Condens. Matter – volume: 23 start-page: 3944 year: 2011 ident: ref3/cit3 publication-title: Adv. Mater. (Weinheim, Ger.) doi: 10.1002/adma.201102584 – volume: 29 start-page: 064008 year: 2014 ident: ref40/cit40 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/29/6/064008 – volume: 105 start-page: 136805 year: 2010 ident: ref7/cit7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 201 start-page: 236 year: 1999 ident: ref25/cit25 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)01329-3 – volume: 499 start-page: 419 year: 2013 ident: ref43/cit43 publication-title: Nature doi: 10.1038/nature12385 – volume: 12 start-page: 554 year: 2013 ident: ref22/cit22 publication-title: Nat. Mater. doi: 10.1038/nmat3633 – volume: 7 start-page: 5446 year: 2013 ident: ref16/cit16 publication-title: ACS Nano doi: 10.1021/nn401429w – volume: 7 start-page: 3246 year: 2013 ident: ref11/cit11 publication-title: ACS Nano doi: 10.1021/nn3059136 – volume: 86 start-page: 463 year: 1982 ident: ref4/cit4 publication-title: J. Phys. Chem. doi: 10.1021/j100393a010 – volume: 85 start-page: 161403 year: 2012 ident: ref38/cit38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.161403 – volume: 102 start-page: 10451 year: 2005 ident: ref1/cit1 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0502848102 – volume: 8 start-page: 3715 year: 2014 ident: ref30/cit30 publication-title: ACS Nano doi: 10.1021/nn5003858 – volume: 83 start-page: 195131 year: 2011 ident: ref60/cit60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.195131 – volume: 33 start-page: 8800 year: 1986 ident: ref55/cit55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.8800 – volume: 89 year: 2006 ident: ref31/cit31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2335390 – volume: 5 start-page: 9703 year: 2011 ident: ref15/cit15 publication-title: ACS Nano doi: 10.1021/nn203879f – volume: 83 start-page: 245213 year: 2011 ident: ref8/cit8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.245213 – ident: ref41/cit41 – volume: 133 start-page: 244103 year: 2010 ident: ref52/cit52 publication-title: J. Chem. Phys. doi: 10.1063/1.3521275 – reference: 21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201 – reference: 23644523 - Nat Mater. 2013 Jun;12(6):554-61 – reference: 23930826 - Nano Lett. 2013 Sep 11;13(9):4212-6 – reference: 20392077 - ACS Nano. 2010 May 25;4(5):2695-700 – reference: 20229981 - Nano Lett. 2010 Apr 14;10(4):1271-5 – reference: 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805 – reference: 24641706 - ACS Nano. 2014 Apr 22;8(4):3715-23 – reference: 25695865 - ACS Appl Mater Interfaces. 2015 Mar 11;7(9):5265-73 – reference: 23748194 - Nat Nanotechnol. 2013 Jul;8(7):497-501 – reference: 9984901 - Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 – reference: 21796689 - Adv Mater. 2011 Sep 8;23(34):3944-8 – reference: 21317494 - Nanotechnology. 2011 Mar 25;22(12):125706 – reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 – reference: 10004490 - Phys Rev B Condens Matter. 1993 Jan 1;47(1):558-561 – reference: 16027370 - Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10451-3 – reference: 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401 – reference: 9976227 - Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 – reference: 24640984 - Nano Lett. 2014;14(4):1909-13 – reference: 23899342 - Nano Lett. 2013 Aug 14;13(8):3870-7 – reference: 23510133 - ACS Nano. 2013 Apr 23;7(4):3246-52 – reference: 23689610 - Sci Rep. 2013;3:1866 – reference: 22087740 - ACS Nano. 2011 Dec 27;5(12):9703-9 – reference: 23641062 - Science. 2013 Jun 14;340(6138):1311-4 – reference: 18654208 - Nat Nanotechnol. 2007 Jan;2(1):53-8 – reference: 22642717 - Nano Lett. 2012 Jun 13;12(6):2784-91 – reference: 23887427 - Nature. 2013 Jul 25;499(7459):419-25 – reference: 23668386 - ACS Nano. 2013 Jun 25;7(6):5446-52 – reference: 22165908 - ACS Nano. 2012 Jan 24;6(1):74-80 – reference: 25030839 - Nanoscale. 2014 Sep 7;6(17):10033-9 – reference: 23793161 - Nat Mater. 2013 Sep;12(9):815-20 – reference: 22010987 - Nano Lett. 2011 Dec 14;11(12):5148-53 – reference: 25019978 - ACS Nano. 2014 Aug 26;8(8):7930-7 – reference: 23749265 - Nat Mater. 2013 Aug;12(8):754-9 – reference: 25318849 - Sci Rep. 2014 Oct 16;4:6608 – reference: 22369470 - Nano Lett. 2012 Mar 14;12(3):1538-44 – reference: 22467187 - Adv Mater. 2012 May 2;24(17):2320-5 – reference: 22334392 - Small. 2012 Apr 10;8(7):966-71 – reference: 23508233 - Nanoscale. 2013 May 7;5(9):3570-88 – reference: 21197972 - J Chem Phys. 2010 Dec 28;133(24):244103 – reference: 9938293 - Phys Rev B Condens Matter. 1986 Jun 15;33(12):8800-8802 – reference: 26631788 - J Chem Theory Comput. 2009 Oct 13;5(10):2754-62 – reference: 21292974 - Science. 2011 Feb 4;331(6017):568-71 – reference: 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502 – reference: 24547924 - ACS Nano. 2014 Mar 25;8(3):2504-11 – reference: 25152238 - Nat Nanotechnol. 2014 Oct;9(10):755-67 – reference: 10003746 - Phys Rev B Condens Matter. 1992 Dec 15;46(24):16067-16080 – reference: 24047054 - ACS Nano. 2013 Oct 22;7(10):8963-71 |
| SSID | ssj0057876 |
| Score | 2.656495 |
| Snippet | Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and... |
| SourceID | pubmedcentral proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4611 |
| Title | Large-Area Epitaxial Monolayer MoS2 |
| URI | http://dx.doi.org/10.1021/acsnano.5b01281 https://www.ncbi.nlm.nih.gov/pubmed/25843548 https://www.proquest.com/docview/1676610169 https://pubmed.ncbi.nlm.nih.gov/PMC4415455 |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals (2020 Collection) customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s9aAH34_6KBV78JKa7GazybGUFg9ShCr0FvaJBUnFWvHkb3c2TWsfFPQSAtlZdnZnMt8wyzcA9SiW6EJR4gWaCM9dYPQEFYHHtON_4xKDksybTfBuN-73k8dfsujlCj4J7oQaZSIbNpjMqz4l2CQIcp0xN1u96U_X2V00KSBjgowoYsbiszKBC0NqtBiGVrDl8hXJuZjT2fvHavdhtwCWtebEEg5gw2SHsDNHN3gENw_u2rfXRJxYa7tuIV9ofDX0akxvEXnjW48cw3On_dS694omCbinCGU8TZgV1velTQwNIkMFt77VnEoehiQUSvsmlkxRoUPDNNGGa59LRqSNrWUBPYFyNszMGdQ0oivlG81sFIWaJFIliBYFlVSFKC8qUEf10sLIR2levyZBWuicFjpXoDHd2lQVROOu38XreoHbmcDbhGNj_dDr6Vml6AeuuCEyMxzjYiKOUMNxy1TgdHJ2s8kIoiyKqVkF-MKpzgY4ju3FL9ngJefadulmyNj531S_gG0EVMxVm0h8CeWP97G5gi31-TEYvVehxPtxNbdbfHa_Gz_m2ulr |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXB74_5WdEHXzrbpGnaxyHKxFkEJ-ytJE2CA-lkVfHJv91L181NGehbaZOQSy6933GX3wGchZHEIxTGrq-IcG0Coyuo8F2mLP8bl2iUZFlsgidJ1OnE9zPgDe_C4CQKHKkog_jf7AL-Bb7LRd6rM1kGf2ZhnoWBb92t5LM-_Pda9QsHcWT0kxFMjMh8fg1grVFWTFqjXxDzZ6bkmOm5Xv3_pNdgpYKZTmOgF-swo_MNWB4jH9yE05ZNAncbiBqdK1s75ANV0cEzjs4u4nB8eiBb8Hh91b5sulXJBFxhBDauIswI43nSxJr6oaaCG88oTiUPAhKITHk6kiyjQgWaKaI0Vx6XjEgTGcN8ug1zeS_Xu-AoxFqZpxUzYRgoEsssRuwoqKRZgP1FDc5QvLRS-SIto9nETyuZ00rmGtSHK5xmFe24rX7xPL3D-ajDy4BxY3rTk-GWpXgqbKhD5Lr3hpMJOQIPyzRTg53BFo4GI4i5KDpqNeATmztqYBm3J7_k3aeSeds6nwFje38T_RgWm-27Vtq6SW73YQmhFrNxKBIdwNxr_00fwkL2_tot-kelEn8BpR3wEQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90iuiD3x_zc6IPvnS2SdO0j0M3FMcQVNhbSZoEB9LJuol_vpe2G5tjIL6VNgm55K73Oy75HcB1EEo0oSByPEWEYw8wOoIKz2HK8r9xiU5J5sUmeKcTdrvRc3kpzN6FwUlkOFKWJ_GtVX8qUzIMeLf4PhVpv85kngBahhWG7txqd-PuZfz_tSoYFLlkjJURUEwIfeYGsB4pyWY90hzM_H1acsr9tLb-N_Ft2CzhZq1R6McOLOl0FzamSAj34KptD4M7DUSPtaatIfKNKllDW8egF_E4Pr2QfXhrNV_vHpyydAKuNAIcRxFmhHFdaSJNvUBTwY1rFKeS-z7xRaJcHUqWUKF8zRRRmiuXS0akCY1hHj2AStpP9RHUFGKuxNWKmSDwFYlkEiGGFFTSxMf-ogrXKF5cqn4W51lt4sWlzHEpcxXq41WOk5J-3FbB-Fjc4WbS4bNg3ljc9HK8bTFah015iFT3RziZgCMAsYwzVTgstnEyGEHsRTFgqwKf2eBJA8u8Pfsl7b3nDNw2CPUZO_6b6Bew9nzfituPnacTWEfExWw6ioSnUBkORvoMVpOvYS8bnOd6_AMCA_JI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Area+Epitaxial+Monolayer+MoS2&rft.jtitle=ACS+nano&rft.au=Dumcenco%2C+Dumitru&rft.au=Ovchinnikov%2C+Dmitry&rft.au=Marinov%2C+Kolyo&rft.au=Lazi%C4%87%2C+Predrag&rft.date=2015-04-28&rft.pub=American+Chemical+Society&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=4&rft.spage=4611&rft.epage=4620&rft_id=info:doi/10.1021%2Facsnano.5b01281&rft_id=info%3Apmid%2F25843548&rft.externalDocID=PMC4415455 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |