A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi’an metro, China
Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of tunnel construction. In recent years, the excavation behaviour of shield TBMs has been a popular topic in the literature given the large volume...
Gespeichert in:
| Veröffentlicht in: | Acta geotechnica Jg. 16; H. 12; S. 4061 - 4080 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1861-1125, 1861-1133 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of tunnel construction. In recent years, the excavation behaviour of shield TBMs has been a popular topic in the literature given the large volume of data automatically collected by modern shields. These datasets provide an excellent opportunity to apply advanced data analysis techniques to improve predictions of shield tunnelling excavation behaviour. In this study, a framework to develop machine learning (ML)-based regression models for predicting the behaviour of an earth pressure balance (EPB) shield machine using tunnelling parameters is proposed. The feasibility of four ML algorithms, namely Linear Regression (LR), Decision Tree Regression (DTR), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR), to predict EPB shield excavation behaviour is explored through their application to a recent tunnelling case history in sandy soils. The results show that the misestimates were primarily attributed to a reduction of screw conveyor rotational speed (SCRS), induced by a lower injection volume, the artificial manipulation of penetration rate (PR), the local variations of total jacking load, and the use of ‘breakout’ cutterwheel torque (CT). The GBR model provided the best performance, while LR often performs the worst due to its inability to handle highly nonlinear relationships. DTR prevented the overfitting problem by using a lower max depth parameter towards sacrificing its accuracy. The performance of SVR was seriously affected by loss functions. The proposed optimisation scheme that prevents the over-smoothing problem during the STL decomposition elevates further the prediction accuracy. |
|---|---|
| AbstractList | Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of tunnel construction. In recent years, the excavation behaviour of shield TBMs has been a popular topic in the literature given the large volume of data automatically collected by modern shields. These datasets provide an excellent opportunity to apply advanced data analysis techniques to improve predictions of shield tunnelling excavation behaviour. In this study, a framework to develop machine learning (ML)-based regression models for predicting the behaviour of an earth pressure balance (EPB) shield machine using tunnelling parameters is proposed. The feasibility of four ML algorithms, namely Linear Regression (LR), Decision Tree Regression (DTR), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR), to predict EPB shield excavation behaviour is explored through their application to a recent tunnelling case history in sandy soils. The results show that the misestimates were primarily attributed to a reduction of screw conveyor rotational speed (SCRS), induced by a lower injection volume, the artificial manipulation of penetration rate (PR), the local variations of total jacking load, and the use of ‘breakout’ cutterwheel torque (CT). The GBR model provided the best performance, while LR often performs the worst due to its inability to handle highly nonlinear relationships. DTR prevented the overfitting problem by using a lower max depth parameter towards sacrificing its accuracy. The performance of SVR was seriously affected by loss functions. The proposed optimisation scheme that prevents the over-smoothing problem during the STL decomposition elevates further the prediction accuracy. |
| Author | Bai, Xue-Dong Cheng, Wen-Chieh Li, Ge |
| Author_xml | – sequence: 1 givenname: Xue-Dong surname: Bai fullname: Bai, Xue-Dong organization: School of Civil Engineering, Xi’an University of Architecture and Technology – sequence: 2 givenname: Wen-Chieh orcidid: 0000-0002-1902-7815 surname: Cheng fullname: Cheng, Wen-Chieh email: w-c.cheng@xauat.edu.cn organization: School of Civil Engineering, Xi’an University of Architecture and Technology, Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT) – sequence: 3 givenname: Ge surname: Li fullname: Li, Ge organization: School of Civil Engineering, Xi’an University of Architecture and Technology |
| BookMark | eNp9kEtuFDEQhi2USOTBBViVxJYGP7rdPezCKBCkSLAAiZ1VscvTjrrtwfZEyi5bjsD1OEk6DA-JRVZVUtVXf-k7ZgcxRWLsueCvBOf96yJE2_KGS9FwoQbV9E_YkRi0aIRQ6uBvL7un7LiUa861kq0-Yt_PwKZ5ixlruCEodeduIXlwwXvKFCvMaMcQCSbCHEPcAE6blEMd5wIhwjaTC7Y-DM4_vYUyBpocXNGINyHt8htAsFj-XMYKdST4Gn7e_cAIM9WcXsJ6CcBTduhxKvTsdz1hX96df15fNJcf339Yn102qFpZG_KaOmsH2Q168LZznVWO65VYeeXblROu06ikJ2dxGERnJddXLfat8qgFaXXCXuzvbnP6tqNSzfXyZ1wijdRc9atOSr5syf2WzamUTN5sc5gx3xrBzYNys1duFuXml3LTL9DwH2RDXcSmWDOG6XFU7dGy5MQN5X9fPULdA2QsmeI |
| CitedBy_id | crossref_primary_10_1007_s11440_022_01602_9 crossref_primary_10_1631_jzus_A2300377 crossref_primary_10_1016_j_undsp_2024_07_001 crossref_primary_10_1088_1755_1315_1334_1_012040 crossref_primary_10_1016_j_envpol_2023_122039 crossref_primary_10_1016_j_autcon_2022_104457 crossref_primary_10_1016_j_conbuildmat_2023_130579 crossref_primary_10_3389_feart_2022_998798 crossref_primary_10_1016_j_tust_2023_105056 crossref_primary_10_3390_eng4020087 crossref_primary_10_1016_j_jece_2022_108479 crossref_primary_10_1007_s11440_023_02011_2 crossref_primary_10_1016_j_jclepro_2023_136734 crossref_primary_10_1007_s11709_023_0942_5 crossref_primary_10_1007_s44290_025_00240_w crossref_primary_10_1016_j_tust_2023_105129 crossref_primary_10_1016_j_tust_2024_105745 crossref_primary_10_1016_j_aei_2025_103465 crossref_primary_10_1016_j_tust_2022_104495 crossref_primary_10_3389_feart_2022_994862 crossref_primary_10_1016_j_enggeo_2022_106880 crossref_primary_10_1016_j_heliyon_2024_e30458 crossref_primary_10_1007_s11440_023_01902_8 crossref_primary_10_1007_s10064_024_03965_7 crossref_primary_10_1016_j_tust_2022_104769 crossref_primary_10_1016_j_eswa_2023_122459 crossref_primary_10_3389_fmats_2022_1007855 crossref_primary_10_3390_geosciences13030082 crossref_primary_10_1016_j_jenvman_2023_117617 crossref_primary_10_3389_feart_2023_1165685 crossref_primary_10_1007_s11440_024_02271_6 crossref_primary_10_1016_j_jhazmat_2022_130417 crossref_primary_10_3390_coatings15050564 crossref_primary_10_1016_j_autcon_2024_105882 crossref_primary_10_3389_fmats_2022_967871 crossref_primary_10_1007_s11440_023_02179_7 crossref_primary_10_1007_s11440_023_02110_0 crossref_primary_10_1016_j_engfailanal_2022_106056 crossref_primary_10_1016_j_cscm_2025_e04370 crossref_primary_10_1038_s41598_025_05589_7 crossref_primary_10_1016_j_conbuildmat_2023_134637 crossref_primary_10_3389_fbioe_2022_889717 crossref_primary_10_1016_j_coldregions_2022_103766 crossref_primary_10_1061_IJGNAI_GMENG_7960 crossref_primary_10_3390_smartcities8010006 crossref_primary_10_1016_j_eti_2023_103485 crossref_primary_10_1016_j_seppur_2023_124361 crossref_primary_10_1155_2022_2373133 crossref_primary_10_1007_s00603_022_02977_7 crossref_primary_10_1007_s12517_021_08583_1 crossref_primary_10_1016_j_envpol_2022_120947 crossref_primary_10_1007_s43452_025_01218_2 crossref_primary_10_1016_j_tust_2024_105907 crossref_primary_10_1016_j_engfracmech_2022_108334 crossref_primary_10_1016_j_tust_2024_105840 crossref_primary_10_1016_j_tust_2024_105768 crossref_primary_10_1016_j_tust_2025_106633 crossref_primary_10_1155_2022_4010301 crossref_primary_10_1016_j_still_2022_105382 crossref_primary_10_3389_fbioe_2021_750258 crossref_primary_10_3389_fbioe_2023_1146858 crossref_primary_10_1016_j_eti_2023_103228 crossref_primary_10_32604_cmes_2024_052210 crossref_primary_10_3390_ma15093087 crossref_primary_10_1038_s41598_024_65351_3 crossref_primary_10_1016_j_conbuildmat_2022_128580 crossref_primary_10_3389_fmicb_2022_1001464 crossref_primary_10_3389_feart_2022_947335 crossref_primary_10_1080_10589759_2024_2319257 crossref_primary_10_3389_feart_2022_989331 crossref_primary_10_1016_j_conbuildmat_2023_130395 crossref_primary_10_3389_fchem_2022_892090 crossref_primary_10_1007_s10064_022_02640_z crossref_primary_10_1016_j_eswa_2024_125484 crossref_primary_10_1007_s11440_023_01850_3 crossref_primary_10_1061_JCEMD4_COENG_14719 crossref_primary_10_3389_feart_2022_1071228 crossref_primary_10_1007_s00603_024_04012_3 |
| Cites_doi | 10.1038/s41598-021-99318-5 10.1016/j.jrmge.2021.05.004 10.1007/s10462-021-09967-1 10.1007/s10706-018-0705-6 10.1002/geot.201800009 10.1016/j.ijrmms.2012.06.005 10.1016/j.compgeo.2014.01.002 10.1016/j.autcon.2018.03.030 10.1016/j.gsf.2021.101177 10.1007/s11440-013-0295-7 10.1016/j.tust.2020.103404 10.1016/j.tust.2017.06.020 10.1061/(ASCE)EM.1943-7889.0001657 10.1016/j.tust.2011.01.001 10.1016/j.autcon.2021.103779 10.1016/j.tust.2018.02.006 10.1016/S0893-6080(03)00209-0 10.1016/j.tust.2014.01.006 10.1007/s11440-010-0118-z 10.1016/j.tust.2021.103870 10.1007/s12205-019-0266-0 10.1007/s11440-015-0406-8 10.1016/S0167-9473(01)00065-2 10.1007/s11431-013-5302-6 10.1016/j.tust.2021.103908 10.1016/j.gsf.2019.12.003 10.1016/j.trgeo.2019.100264 10.1007/s12205-021-2263-3 10.1016/j.tust.2020.103699 10.1007/s11431-016-6096-0 10.1016/j.ijrmms.2014.09.012 10.1016/j.tust.2013.03.010 10.3390/app9194139 10.1016/j.mlwa.2021.100020 10.3390/app9040780 10.1016/j.undsp.2019.12.003 10.1007/s11440-018-0702-1 10.1002/(SICI)1096-9853(199901)23:1<23::AID-NAG956>3.0.CO;2-Z 10.1007/s10064-019-01477-3 10.1061/(ASCE)MT.1943-5533.0003782 10.1016/j.ijrmms.2014.04.021 10.1016/j.clay.2019.105134 10.1016/j.tust.2019.103110 10.1016/j.tust.2016.05.009 10.1016/j.enbuild.2017.04.032 10.1016/j.tust.2005.12.131 10.1016/j.autcon.2018.12.022 10.1016/j.gsf.2020.03.007 10.1016/j.tust.2020.103592 10.1016/j.tust.2018.09.036 10.1016/j.tust.2015.06.003 10.1016/j.tust.2012.08.006 10.1016/j.sandf.2018.11.005 10.1007/BF00994018 10.1007/s11440-016-0453-9 10.1016/j.tust.2013.09.012 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s11440-021-01383-7 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: Proquest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1861-1133 |
| EndPage | 4080 |
| ExternalDocumentID | 10_1007_s11440_021_01383_7 |
| GrantInformation_xml | – fundername: Education Department of Shaanxi Province grantid: 2020TD-005 funderid: http://dx.doi.org/10.13039/501100009103 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- MM- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PCBAR PF0 PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-a342t-ef6e5cc825868fc5d5c3d06919f3f49d1d56a32fedca8815c206b4a743fa61e63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710318800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-1125 |
| IngestDate | Fri Nov 14 03:53:01 EST 2025 Sat Nov 29 03:35:00 EST 2025 Tue Nov 18 21:17:31 EST 2025 Fri Feb 21 02:47:33 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Excavation behaviour Gradient boosting regression Shield tunnelling Machine learning Over-smoothing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-ef6e5cc825868fc5d5c3d06919f3f49d1d56a32fedca8815c206b4a743fa61e63 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0000-0002-1902-7815 |
| PQID | 2603795220 |
| PQPubID | 54451 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_2603795220 crossref_primary_10_1007_s11440_021_01383_7 crossref_citationtrail_10_1007_s11440_021_01383_7 springer_journals_10_1007_s11440_021_01383_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20211200 2021-12-00 20211201 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationTitle | Acta geotechnica |
| PublicationTitleAbbrev | Acta Geotech |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Ochmański, Modoni, Bzówka (CR36) 2018; 75 Pan, Liu, Kong, Liu, Peng, Liu (CR40) 2019; 14 Stavropoulou, Xiroudakis, Exadaktylos (CR42) 2010; 5 Zhang, Huang, Huang, Cai, Kang (CR47) 2013; 56 Abu-Farsakh, Voyiadjis (CR1) 1999; 23 Zhang, Su, Qin, Cai, Hou, Kang (CR48) 2016; 59 Cleveland, Cleveland, McRae, Terpenning (CR11) 1990; 6 CR35 CR34 CR33 Zhang, Zhou (CR45) 2017; 69 Bai, Cheng, Ong, Li (CR5) 2021; 25 Hasanpour (CR22) 2014; 57 CR30 Wu, Shao (CR60) 2019; 145 Cho, Jeon, Jeong, Chang (CR14) 2013; 35 de Oliveira, Thewes, Diederichs, Langmaack (CR16) 2018; 11 Pombeiro, Santos, Carreira, Silva, Sousa (CR38) 2017; 146 Hou, Liu, Yang (CR25) 2021 Mahdevari, Shahriar, Yagiz, Shirazi (CR32) 2014; 72 CR4 Salimi, Rostami, Moormann, Delisio (CR41) 2016; 58 CR7 Persons (CR39) 1919 CR9 Fargnoli, Boldini, Amorosi (CR19) 2015; 49 Hasanpour, Rostami, Ünver (CR23) 2014; 40 Chalimourda, Schölkopf, Smola (CR10) 2004; 17 CR44 Elbaz, Shen, Zhou, Yuan, Xu (CR17) 2019; 9 Qiao, Shao, Liu, Wei (CR57) 2019; 83 Cardu, Iabichino, Oreste, Rispoli (CR13) 2017; 12 Entacher, Lorenz, Galler (CR18) 2014; 70 Chen, Zhang, Kang, Zhong, Liu, Wu (CR6) 2019; 59 Aydan, Hasanpour (CR3) 2019; 78 Chen, Shao, Wei (CR59) 2021; 33 Chang, Choi, Bae, Jeon (CR12) 2006; 21 Sun, Shi, Zhang, Zhao, Sun (CR43) 2018; 92 Zhang, Li, Wu, Li, Liu, Liu (CR53) 2020; 6 Xue, Cheng, Wang, Song (CR55) 2021; 25 Hollmann, Thewes (CR24) 2013; 37 Hu, Cheng, Wen, Rahman (CR56) 2021; 203 Amorosi, Boldini, Falcone (CR2) 2014; 9 Zhou, Kang, Xie, Wang, Zhang (CR46) 2019; 23 CR15 Ghasemi, Gholizadeh (CR21) 2018 CR54 Zhang, Wu, Zhong, Li, Wang (CR51) 2021; 12 Friedman (CR20) 2002; 38 Pelia, Picchio, Martinelli, Dal Negro (CR37) 2015; 11 Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (CR52) 2020; 11 Mahdevari, Torabi, Monjezi (CR31) 2012; 55 CR29 CR27 Zhang, Li, Li, Liu, Chen, Ding (CR50) 2021 Xue, Cheng, Wang (CR58) 2021 Li, Li (CR28) 2019; 9 Jung, Choi, Chun, Park, Lee (CR26) 2011; 26 Zhang, Liu, Tan (CR49) 2019; 100 Copur, Aydin, Bilgin, Balci, Tumac, Dayanc (CR8) 2014; 42 1383_CR4 R Hasanpour (1383_CR22) 2014; 57 1383_CR54 HS Jung (1383_CR26) 2011; 26 JZ Zhang (1383_CR45) 2017; 69 K Wu (1383_CR60) 2019; 145 XD Bai (1383_CR5) 2021; 25 1383_CR15 1383_CR7 A Chalimourda (1383_CR10) 2004; 17 1383_CR9 B Li (1383_CR28) 2019; 9 Ö Aydan (1383_CR3) 2019; 78 D Pelia (1383_CR37) 2015; 11 SK Hou (1383_CR25) 2021 A Amorosi (1383_CR2) 2014; 9 1383_CR44 DGG de Oliveira (1383_CR16) 2018; 11 WM Persons (1383_CR39) 1919 Y Pan (1383_CR40) 2019; 14 MY Abu-Farsakh (1383_CR1) 1999; 23 A Salimi (1383_CR41) 2016; 58 W Zhang (1383_CR50) 2021 ZF Xue (1383_CR55) 2021; 25 K Elbaz (1383_CR17) 2019; 9 W Sun (1383_CR43) 2018; 92 H Pombeiro (1383_CR38) 2017; 146 JW Cho (1383_CR14) 2013; 35 1383_CR35 RP Chen (1383_CR6) 2019; 59 1383_CR34 1383_CR33 V Fargnoli (1383_CR19) 2015; 49 S Mahdevari (1383_CR31) 2012; 55 Q Zhang (1383_CR48) 2016; 59 WL Hu (1383_CR56) 2021; 203 M Ochmański (1383_CR36) 2018; 75 WG Zhang (1383_CR52) 2020; 11 S Chang (1383_CR12) 2006; 21 R Hasanpour (1383_CR23) 2014; 40 1383_CR30 S Mahdevari (1383_CR32) 2014; 72 S Zhou (1383_CR46) 2019; 23 QL Zhang (1383_CR49) 2019; 100 RJ Qiao (1383_CR57) 2019; 83 E Ghasemi (1383_CR21) 2018 R Cleveland (1383_CR11) 1990; 6 1383_CR27 JH Friedman (1383_CR20) 2002; 38 1383_CR29 M Entacher (1383_CR18) 2014; 70 M Stavropoulou (1383_CR42) 2010; 5 WW Chen (1383_CR59) 2021; 33 FS Hollmann (1383_CR24) 2013; 37 WG Zhang (1383_CR53) 2020; 6 ZF Xue (1383_CR58) 2021 W Zhang (1383_CR51) 2021; 12 H Copur (1383_CR8) 2014; 42 M Cardu (1383_CR13) 2017; 12 Q Zhang (1383_CR47) 2013; 56 |
| References_xml | – year: 1919 ident: CR39 publication-title: Indices of business conditions: an index of general business conditions – ident: CR4 – volume: 59 start-page: 284 year: 2019 end-page: 295 ident: CR6 article-title: Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods publication-title: Soils Found – volume: 42 start-page: 1 year: 2014 end-page: 14 ident: CR8 article-title: Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model publication-title: Tunn Undergr Space Technol – volume: 9 start-page: 780 year: 2019 ident: CR17 article-title: Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm publication-title: Appl Sci – year: 2021 ident: CR58 article-title: Effect of straw reinforcement on the shearing and creep behaviours of Quaternary loess publication-title: Sci Rep doi: 10.1038/s41598-021-99318-5 – volume: 92 start-page: 23 year: 2018 end-page: 34 ident: CR43 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom Constr – volume: 9 start-page: 581 year: 2014 end-page: 596 ident: CR2 article-title: Numerical prediction of tunnel performance during centrifuge dynamic tests publication-title: Acta Geotech – ident: CR35 – ident: CR29 – ident: CR54 – volume: 56 start-page: 2259 year: 2013 end-page: 2267 ident: CR47 article-title: Theoretical model for loads prediction on shield tunneling machine with consideration of soil-rock interbedded ground publication-title: Sci China Technol Sci – volume: 12 start-page: 469 year: 2021 end-page: 477 ident: CR51 article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization publication-title: Geosci Front – volume: 14 start-page: 1249 year: 2019 end-page: 1268 ident: CR40 article-title: Full-scale linear cutting test in Chongqing Sandstone and the comparison with field TBM excavation performance publication-title: Acta Geotech – year: 2021 ident: CR25 article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.05.004 – volume: 38 start-page: 367 issue: 4 year: 2002 end-page: 378 ident: CR20 article-title: Stochastic gradient boosting publication-title: Comput Stat Data Anal – volume: 72 start-page: 214 year: 2014 end-page: 229 ident: CR32 article-title: A support vector regression model for predicting tunnel boring machine penetration rates publication-title: Int J Rock Mech Min Sci – ident: CR15 – volume: 23 start-page: 3180 year: 2019 end-page: 3187 ident: CR46 article-title: An approach integrating dimensional analysis and field data for predicting the load on tunneling machine publication-title: KSCE J Civ Eng – volume: 11 start-page: 1061 issue: 5 year: 2015 end-page: 1074 ident: CR37 article-title: Laboratory tests on soil conditioning of clayey soil publication-title: Acta Geotech – volume: 21 start-page: 271 issue: 3–4 year: 2006 ident: CR12 article-title: Performance prediction of TBM disc cutting on granitic rock by the linear cutting test publication-title: Tunn Undergr Space Technol – volume: 12 start-page: 293 year: 2017 end-page: 304 ident: CR13 article-title: Experimental and analytical studies of the parameters influencing the action of TBM disc tools in tunnelling publication-title: Acta Geotech – ident: CR9 – year: 2021 ident: CR50 article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review publication-title: Artif Intell Rev doi: 10.1007/s10462-021-09967-1 – volume: 40 start-page: 109 year: 2014 end-page: 126 ident: CR23 article-title: 3D finite difference model for simulation of double shield TBM tunneling in squeezing grounds publication-title: Tunn Undergr Space Technol – volume: 33 start-page: 04021153 issue: 7 year: 2021 ident: CR59 article-title: Experimental study of the heating potential of mortar-aggregate under microwave irradiation publication-title: J Mater Civil Eng – volume: 78 start-page: 5237 year: 2019 end-page: 5251 ident: CR3 article-title: Estimation of ground pressures on a shielded TBM in tunneling through squeezing ground and its possibility of jamming publication-title: Bull Eng Geol Environ – volume: 6 start-page: 3 issue: 1 year: 1990 end-page: 73 ident: CR11 article-title: STL: a seasonal-trend decomposition procedure based on loess publication-title: J Official Stat – volume: 146 start-page: 141 year: 2017 end-page: 151 ident: CR38 article-title: Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: LINEAR regression vs. fuzzy modeling vs. neural networks publication-title: Energy Build – volume: 9 start-page: 4139 issue: 19 year: 2019 ident: CR28 article-title: Prediction of tunnel face stability using a Naïve Bayes classifier publication-title: Appl Sci – volume: 11 start-page: 1095 year: 2020 end-page: 1106 ident: CR52 article-title: State-of-the-art review of soft computing applications in underground excavations publication-title: Geosci Front – volume: 5 start-page: 139 year: 2010 end-page: 150 ident: CR42 article-title: Spatial estimation of geotechnical parameters for numerical tunneling simulations and TBM performance models publication-title: Acta Geotech – volume: 6 start-page: 353 issue: 4 year: 2020 end-page: 363 ident: CR53 article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling publication-title: Undergr Space – volume: 55 start-page: 33 year: 2012 end-page: 44 ident: CR31 article-title: Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon publication-title: Int J Rock Mech Min Sci – ident: CR30 – volume: 49 start-page: 454 year: 2015 end-page: 469 ident: CR19 article-title: Twin tunnel excavation in coarse grained soils: observations and numerical back-predictions under free field conditions and in presence of a surface structure publication-title: Tunn Undergr Space Technol – volume: 203 year: 2021 ident: CR56 article-title: Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties publication-title: CATENA – volume: 70 start-page: 450 year: 2014 end-page: 459 ident: CR18 article-title: Tunnel boring machine performance prediction with scaled rock cutting tests publication-title: Int J Rock Mech Min Sci – ident: CR33 – volume: 100 start-page: 73 year: 2019 end-page: 83 ident: CR49 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom Constr – volume: 58 start-page: 236 year: 2016 end-page: 246 ident: CR41 article-title: Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs publication-title: Tunn Undergr Space Technol – volume: 23 start-page: 23 issue: 1 year: 1999 end-page: 44 ident: CR1 article-title: Computational model for the simulation of the shield tunneling process in cohesive soils publication-title: Int J Numer Anal Meth Geomech – volume: 69 start-page: 209 year: 2017 end-page: 222 ident: CR45 article-title: Time-dependent jamming mechanism for Single-Shield TBM tunneling in squeezing rock publication-title: Tunn Undergr Space Technol – volume: 145 start-page: 04019077 issue: 10 year: 2019 ident: CR60 article-title: Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks publication-title: J Eng Mech – volume: 11 start-page: 375 issue: 4 year: 2018 end-page: 387 ident: CR16 article-title: EPB tunnelling through clay-sand mixed soils: proposed methodology for clogging evaluation publication-title: Geomech Tunn – volume: 37 start-page: 96 year: 2013 end-page: 105 ident: CR24 article-title: Assessment method for clay clogging and disintegration of fines in mechanised tunnelling publication-title: Tunn Undergr Space Technol – year: 2018 ident: CR21 article-title: Prediction of squeezing potential in tunneling projects using data mining-based techniques publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0705-6 – volume: 25 start-page: 59 issue: 1 year: 2021 end-page: 73 ident: CR5 article-title: Evaluation of geological conditions and clogging of tunneling using machine learning publication-title: Geomech Eng – ident: CR27 – volume: 26 start-page: 453 issue: 3 year: 2011 end-page: 461 ident: CR26 article-title: Causes of reduction in shield TBM performance—a case study in Seoul publication-title: Tunn Undergr Space Technol – volume: 83 start-page: 354 year: 2019 end-page: 363 ident: CR57 article-title: Damage evolution and safety assessment of tunnel lining subjected to long-duration fire publication-title: Tunn Undergr Space Technol – ident: CR44 – volume: 59 start-page: 1428 year: 2016 end-page: 1434 ident: CR48 article-title: Modeling and prediction for the thrust on EPB TBMs under different geological conditions by considering mechanical decoupling publication-title: Sci China Technol Sci – volume: 35 start-page: 37 year: 2013 end-page: 54 ident: CR14 article-title: Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement publication-title: Tunn Undergr Space Technol – volume: 25 start-page: 3319 issue: 9 year: 2021 end-page: 3335 ident: CR55 article-title: Improvement of the Shearing Behaviour of Loess Using Recycled Straw Fiber Reinforcement publication-title: KSCE J Civil Eng – volume: 75 start-page: 117 year: 2018 end-page: 128 ident: CR36 article-title: Automated numerical modelling for the control of EPB technology publication-title: Tunn Undergr Space Technol – ident: CR34 – volume: 17 start-page: 127 issue: 1 year: 2004 end-page: 141 ident: CR10 article-title: Experimentally optimal in support vector regression for different noise models and parameter settings publication-title: Neural Netw – ident: CR7 – volume: 57 start-page: 37 year: 2014 end-page: 52 ident: CR22 article-title: Advance numerical simulation of tunneling by using a double shield TBM publication-title: Comput Geotech – year: 2021 ident: 1383_CR58 publication-title: Sci Rep doi: 10.1038/s41598-021-99318-5 – volume: 11 start-page: 375 issue: 4 year: 2018 ident: 1383_CR16 publication-title: Geomech Tunn doi: 10.1002/geot.201800009 – volume: 55 start-page: 33 year: 2012 ident: 1383_CR31 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2012.06.005 – volume: 57 start-page: 37 year: 2014 ident: 1383_CR22 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.01.002 – volume: 92 start-page: 23 year: 2018 ident: 1383_CR43 publication-title: Autom Constr doi: 10.1016/j.autcon.2018.03.030 – ident: 1383_CR30 doi: 10.1016/j.gsf.2021.101177 – volume: 9 start-page: 581 year: 2014 ident: 1383_CR2 publication-title: Acta Geotech doi: 10.1007/s11440-013-0295-7 – ident: 1383_CR29 doi: 10.1016/j.tust.2020.103404 – volume: 69 start-page: 209 year: 2017 ident: 1383_CR45 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2017.06.020 – volume: 145 start-page: 04019077 issue: 10 year: 2019 ident: 1383_CR60 publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0001657 – volume: 26 start-page: 453 issue: 3 year: 2011 ident: 1383_CR26 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2011.01.001 – ident: 1383_CR33 doi: 10.1016/j.autcon.2021.103779 – volume: 75 start-page: 117 year: 2018 ident: 1383_CR36 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.02.006 – volume: 17 start-page: 127 issue: 1 year: 2004 ident: 1383_CR10 publication-title: Neural Netw doi: 10.1016/S0893-6080(03)00209-0 – volume: 42 start-page: 1 year: 2014 ident: 1383_CR8 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2014.01.006 – volume: 5 start-page: 139 year: 2010 ident: 1383_CR42 publication-title: Acta Geotech doi: 10.1007/s11440-010-0118-z – ident: 1383_CR35 doi: 10.1016/j.tust.2021.103870 – volume: 23 start-page: 3180 year: 2019 ident: 1383_CR46 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-019-0266-0 – volume: 6 start-page: 3 issue: 1 year: 1990 ident: 1383_CR11 publication-title: J Official Stat – volume: 11 start-page: 1061 issue: 5 year: 2015 ident: 1383_CR37 publication-title: Acta Geotech doi: 10.1007/s11440-015-0406-8 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 1383_CR20 publication-title: Comput Stat Data Anal doi: 10.1016/S0167-9473(01)00065-2 – volume: 56 start-page: 2259 year: 2013 ident: 1383_CR47 publication-title: Sci China Technol Sci doi: 10.1007/s11431-013-5302-6 – ident: 1383_CR4 doi: 10.1016/j.tust.2021.103908 – volume: 11 start-page: 1095 year: 2020 ident: 1383_CR52 publication-title: Geosci Front doi: 10.1016/j.gsf.2019.12.003 – ident: 1383_CR54 doi: 10.1016/j.trgeo.2019.100264 – volume: 25 start-page: 3319 issue: 9 year: 2021 ident: 1383_CR55 publication-title: KSCE J Civil Eng doi: 10.1007/s12205-021-2263-3 – ident: 1383_CR44 doi: 10.1016/j.tust.2020.103699 – volume: 59 start-page: 1428 year: 2016 ident: 1383_CR48 publication-title: Sci China Technol Sci doi: 10.1007/s11431-016-6096-0 – volume: 72 start-page: 214 year: 2014 ident: 1383_CR32 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.09.012 – volume: 37 start-page: 96 year: 2013 ident: 1383_CR24 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.03.010 – volume: 9 start-page: 4139 issue: 19 year: 2019 ident: 1383_CR28 publication-title: Appl Sci doi: 10.3390/app9194139 – ident: 1383_CR34 doi: 10.1016/j.mlwa.2021.100020 – volume: 9 start-page: 780 year: 2019 ident: 1383_CR17 publication-title: Appl Sci doi: 10.3390/app9040780 – volume: 6 start-page: 353 issue: 4 year: 2020 ident: 1383_CR53 publication-title: Undergr Space doi: 10.1016/j.undsp.2019.12.003 – volume: 14 start-page: 1249 year: 2019 ident: 1383_CR40 publication-title: Acta Geotech doi: 10.1007/s11440-018-0702-1 – volume: 23 start-page: 23 issue: 1 year: 1999 ident: 1383_CR1 publication-title: Int J Numer Anal Meth Geomech doi: 10.1002/(SICI)1096-9853(199901)23:1<23::AID-NAG956>3.0.CO;2-Z – volume: 78 start-page: 5237 year: 2019 ident: 1383_CR3 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-019-01477-3 – volume: 33 start-page: 04021153 issue: 7 year: 2021 ident: 1383_CR59 publication-title: J Mater Civil Eng doi: 10.1061/(ASCE)MT.1943-5533.0003782 – volume: 70 start-page: 450 year: 2014 ident: 1383_CR18 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2014.04.021 – year: 2018 ident: 1383_CR21 publication-title: Geotech Geol Eng doi: 10.1007/s10706-018-0705-6 – year: 2021 ident: 1383_CR50 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-09967-1 – volume: 25 start-page: 59 issue: 1 year: 2021 ident: 1383_CR5 publication-title: Geomech Eng – ident: 1383_CR27 doi: 10.1016/j.clay.2019.105134 – ident: 1383_CR15 doi: 10.1016/j.tust.2019.103110 – volume: 58 start-page: 236 year: 2016 ident: 1383_CR41 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2016.05.009 – volume: 146 start-page: 141 year: 2017 ident: 1383_CR38 publication-title: Energy Build doi: 10.1016/j.enbuild.2017.04.032 – volume-title: Indices of business conditions: an index of general business conditions year: 1919 ident: 1383_CR39 – volume: 21 start-page: 271 issue: 3–4 year: 2006 ident: 1383_CR12 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2005.12.131 – volume: 100 start-page: 73 year: 2019 ident: 1383_CR49 publication-title: Autom Constr doi: 10.1016/j.autcon.2018.12.022 – volume: 12 start-page: 469 year: 2021 ident: 1383_CR51 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.03.007 – ident: 1383_CR7 doi: 10.1016/j.tust.2020.103592 – volume: 83 start-page: 354 year: 2019 ident: 1383_CR57 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2018.09.036 – volume: 49 start-page: 454 year: 2015 ident: 1383_CR19 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2015.06.003 – volume: 203 year: 2021 ident: 1383_CR56 publication-title: CATENA – volume: 35 start-page: 37 year: 2013 ident: 1383_CR14 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2012.08.006 – volume: 59 start-page: 284 year: 2019 ident: 1383_CR6 publication-title: Soils Found doi: 10.1016/j.sandf.2018.11.005 – ident: 1383_CR9 doi: 10.1007/BF00994018 – volume: 12 start-page: 293 year: 2017 ident: 1383_CR13 publication-title: Acta Geotech doi: 10.1007/s11440-016-0453-9 – year: 2021 ident: 1383_CR25 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.05.004 – volume: 40 start-page: 109 year: 2014 ident: 1383_CR23 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2013.09.012 |
| SSID | ssj0063246 |
| Score | 2.5243533 |
| Snippet | Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4061 |
| SubjectTerms | Accuracy Algorithms Boring machines Comparative analysis Comparative studies Complex Fluids and Microfluidics Data analysis Decision trees Drilling & boring machinery Earth pressure Engineering Excavation Feasibility studies Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Learning algorithms Learning behaviour Load distribution Machine learning Optimization Parameters Regression analysis Regression models Research Paper Sandy soils Screw conveyors Soft and Granular Matter Soil Soil Science & Conservation Solid Mechanics Support vector machines Torque Tunnel construction Tunneling Tunneling shields Tunnels |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELXKlgMcoHypC7SaAzewiGMncbigLWLVS1d7aKW9RY7tLCux2W0SOHPlJ_D3-CXYXqcpSOXSc2In0pvYL56Z9xA6IVb9lkqGuYipTTNGWBhijRMeBXmQJIHkK7OJZDTik0k69gdutS-rbNdEt1CrhbRn5OeGd9MkNWwhuFz-xtY1ymZXvYXGGvpomA2xJV0_wnG7ElslctddxGOCDa-IfNPMqnXOZTVtgYLN1VGcvN6YOrb5JkHq9p3h9v--8Se05RknDFYhsoM-6HIXbf6lQ7iHHgcgOxVwcJKzsCigdU9pYO5qLjV4k4kpiNupeVZzM69hVsKysvkeW0EN1-NvUN_YujjwEgB31QUIkGa79DOLBgzthMns-eFJlDDXTbU4A-fkvY9-Da9_Xn3H3qMBC8rCBusi1pGU5j-Tx7yQkYokVQZ_kha0YKkiKooFDQutpOCcRDIM4pwJw1sKERMd0wPUKxel_oyAEaZImisdBDlTjImcp0qHihUqD0SY9BFpAcqkFzC3Phq3WSe9bEHNDKiZAzUzY07_jFmu5Dvevfu4RTLzn3KddTD20VkbC93lf892-P5sR2gjtOHnSmOOUa-p7vQXtC7vm1ldfXWB_ALdOfin priority: 102 providerName: ProQuest |
| Title | A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi’an metro, China |
| URI | https://link.springer.com/article/10.1007/s11440-021-01383-7 https://www.proquest.com/docview/2603795220 |
| Volume | 16 |
| WOSCitedRecordID | wos000710318800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-1133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: RSV dateStart: 20060501 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xdSgHSqFVodvVHHorkeLYSRxubLWol65W0FZ7ixzbgZXYLEoCZ678hP69_hJsr9O0VYsEl1xiW5Fn4nnWzLwH8IFY9lsqWcBFQm2aMQ6EAdZByuOwCNM0lHwlNpFOJnw2y6a-Kazpqt27lKQ7qftmN5eHtCUFNrtGg3QdNk2441aw4ez8e3f-Wv5x11PEExIYNBH7Vpl_r_FnOOox5l9pURdtTl8-7zt3YcejSzxZucMrWNPVHmz_xjm4D_cnKHvGb3T0srgssVNKaXHh6is1ekGJCxRXF8t63l4uGpxXeF3b3I6tlsbxdITNpa2BQ9_uf1Mfo0BpQqNfWbRoICbO5j_vfogKF7qtl0foVLtfw7fT8ddPnwOvxxAIyqI20GWiYynNnZInvJSxiiVVxtYkK2nJMkVUnAgalVpJwTmJZRQmBRMGo5QiITqhb2CjWlb6LSAjTJGsUDoMC6YYEwXPlI4UK1URiig9ANKZJZeerNxqZlzlPc2y3ebcbHPutjk3cz7-mnO9oup4dPSgs3buf9smN5c7mmYGkoYHcNRZt3_9_9UOnzb8HbyIrIO4spgBbLT1jX4PW_K2nTf1EDZH48n0bAjrX6KpfabnQ-fiD2KW8iA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQcKL-i0MIc4EStxrGTOEgIFWjVqmW1hyLtLTi2067UzS5JCuLWax-Bl-CheBJsJyGARG89cE48SpzP48-ZmW8AnlGnfssUJ0LGzIUZIyItsSaJiII8SJJAibbZRDIaickkHS_B974WxqVV9j7RO2o9V-4f-abl3SxJLVsIXi8-Edc1ykVX-xYaLSz2zdcv9shWv9p7Z7_v8zDc2T58u0u6rgJEMh42xBSxiZSyJyMRi0JFOlJM2yemacEKnmqqo1iysDBaSSFopMIgzrm0O20hY2piZu1egavcKYu5VMFw3Ht-p3zuq5lETInlMVFXpNOW6vkoqkuIcLFBRpI_N8KB3f4VkPX73M7K_zZDt-FWx6hxq10Cd2DJlHfh5m86i_fgfAvVoHKOXlIX5wX23WEanPmcUoNdE40jlCdH9t2a41mN0xIXlYtnuQxx3B6_wfrY5f1hJ3FwWr1EicrSgc6ybNDSapxMf5x9kyXOTFPNN9B3Kr8PHy5lLh7AcjkvzUNATrmmaa5NEORccy5zkWoTal7oPJBhsgq0B0SmOoF21yfkJBukpR2IMguizIMos2Ne_BqzaOVJLrx7rUdO1rmqOhtgswobPfaGy_-29uhia0_h-u7h-4PsYG-0_xhuhA76Pg1oDZab6tSswzX1uZnW1RO_iBA-XjYmfwJzg1aa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKixA98FtEoZQ5wIlGjWPHcZBQtf1ZURWtVgikvQXHdtqVutklSYu4ceUReBUehyep7TgNINFbD5wTjxLnG_tzZuYbhF5gq35LJA24YMSGGeNAGGIdJDwO8zBJQsnbZhPJaMQnk3S8hH52tTA2rbJbE91CrebS_iPfNrybJKlhC-F24dMixvvDncXnwHaQspHWrp1GC5Ej_fWLOb7Vbw73zbd-GUXDgw97bwPfYSAQhEZNoAumYynNKYkzXshYxZIo8_Q4LUhBU4VVzASJCq2k4BzHMgpZToXZdQvBsGbE2L2BVjhjqfGolfHe7uB9tw9YHXRX28QZDgyriX3JTlu452KqNj3CRgpJkPy5LfZc96_wrNv1hnf_5_m6h-54rg2D1jnuoyVdPkCrvykwPkTfByB7_XNwYrswL6DrG9PAzGWbavDtNY5BnB6bd2tOZjVMS1hUNtJlc8fhYLwL9YnNCAQvfnBWvQYB0hAFb1k0YAg3TKa_vv0QJcx0U823wPUwX0Mfr2UuHqHlcl7qxwgopgqnudJhmFNFqch5qnSkaKHyUETJOsIdODLppdttB5HTrBedtoDKDKAyB6jMjHl1OWbRCpdcefdGh6LML2J11kNoHW11OOwv_9vak6utPUe3DBSzd4ejo6fodmS9wOUHbaDlpjrTz9BNed5M62rTexSgT9cNygvTY2Cj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+different+machine+learning+algorithms+in+predicting+EPB+shield+behaviour%3A+a+case+study+at+the+Xi%E2%80%99an+metro%2C+China&rft.jtitle=Acta+geotechnica&rft.au=Bai%2C+Xue-Dong&rft.au=Cheng%2C+Wen-Chieh&rft.au=Li%2C+Ge&rft.date=2021-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=16&rft.issue=12&rft.spage=4061&rft.epage=4080&rft_id=info:doi/10.1007%2Fs11440-021-01383-7&rft.externalDocID=10_1007_s11440_021_01383_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon |