A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi’an metro, China

Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of tunnel construction. In recent years, the excavation behaviour of shield TBMs has been a popular topic in the literature given the large volume...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica Jg. 16; H. 12; S. 4061 - 4080
Hauptverfasser: Bai, Xue-Dong, Cheng, Wen-Chieh, Li, Ge
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2021
Springer Nature B.V
Schlagworte:
ISSN:1861-1125, 1861-1133
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of tunnel construction. In recent years, the excavation behaviour of shield TBMs has been a popular topic in the literature given the large volume of data automatically collected by modern shields. These datasets provide an excellent opportunity to apply advanced data analysis techniques to improve predictions of shield tunnelling excavation behaviour. In this study, a framework to develop machine learning (ML)-based regression models for predicting the behaviour of an earth pressure balance (EPB) shield machine using tunnelling parameters is proposed. The feasibility of four ML algorithms, namely Linear Regression (LR), Decision Tree Regression (DTR), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR), to predict EPB shield excavation behaviour is explored through their application to a recent tunnelling case history in sandy soils. The results show that the misestimates were primarily attributed to a reduction of screw conveyor rotational speed (SCRS), induced by a lower injection volume, the artificial manipulation of penetration rate (PR), the local variations of total jacking load, and the use of ‘breakout’ cutterwheel torque (CT). The GBR model provided the best performance, while LR often performs the worst due to its inability to handle highly nonlinear relationships. DTR prevented the overfitting problem by using a lower max depth parameter towards sacrificing its accuracy. The performance of SVR was seriously affected by loss functions. The proposed optimisation scheme that prevents the over-smoothing problem during the STL decomposition elevates further the prediction accuracy.
AbstractList Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of tunnel construction. In recent years, the excavation behaviour of shield TBMs has been a popular topic in the literature given the large volume of data automatically collected by modern shields. These datasets provide an excellent opportunity to apply advanced data analysis techniques to improve predictions of shield tunnelling excavation behaviour. In this study, a framework to develop machine learning (ML)-based regression models for predicting the behaviour of an earth pressure balance (EPB) shield machine using tunnelling parameters is proposed. The feasibility of four ML algorithms, namely Linear Regression (LR), Decision Tree Regression (DTR), Support Vector Regression (SVR), and Gradient Boosting Regression (GBR), to predict EPB shield excavation behaviour is explored through their application to a recent tunnelling case history in sandy soils. The results show that the misestimates were primarily attributed to a reduction of screw conveyor rotational speed (SCRS), induced by a lower injection volume, the artificial manipulation of penetration rate (PR), the local variations of total jacking load, and the use of ‘breakout’ cutterwheel torque (CT). The GBR model provided the best performance, while LR often performs the worst due to its inability to handle highly nonlinear relationships. DTR prevented the overfitting problem by using a lower max depth parameter towards sacrificing its accuracy. The performance of SVR was seriously affected by loss functions. The proposed optimisation scheme that prevents the over-smoothing problem during the STL decomposition elevates further the prediction accuracy.
Author Bai, Xue-Dong
Cheng, Wen-Chieh
Li, Ge
Author_xml – sequence: 1
  givenname: Xue-Dong
  surname: Bai
  fullname: Bai, Xue-Dong
  organization: School of Civil Engineering, Xi’an University of Architecture and Technology
– sequence: 2
  givenname: Wen-Chieh
  orcidid: 0000-0002-1902-7815
  surname: Cheng
  fullname: Cheng, Wen-Chieh
  email: w-c.cheng@xauat.edu.cn
  organization: School of Civil Engineering, Xi’an University of Architecture and Technology, Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT)
– sequence: 3
  givenname: Ge
  surname: Li
  fullname: Li, Ge
  organization: School of Civil Engineering, Xi’an University of Architecture and Technology
BookMark eNp9kEtuFDEQhi2USOTBBViVxJYGP7rdPezCKBCkSLAAiZ1VscvTjrrtwfZEyi5bjsD1OEk6DA-JRVZVUtVXf-k7ZgcxRWLsueCvBOf96yJE2_KGS9FwoQbV9E_YkRi0aIRQ6uBvL7un7LiUa861kq0-Yt_PwKZ5ixlruCEodeduIXlwwXvKFCvMaMcQCSbCHEPcAE6blEMd5wIhwjaTC7Y-DM4_vYUyBpocXNGINyHt8htAsFj-XMYKdST4Gn7e_cAIM9WcXsJ6CcBTduhxKvTsdz1hX96df15fNJcf339Yn102qFpZG_KaOmsH2Q168LZznVWO65VYeeXblROu06ikJ2dxGERnJddXLfat8qgFaXXCXuzvbnP6tqNSzfXyZ1wijdRc9atOSr5syf2WzamUTN5sc5gx3xrBzYNys1duFuXml3LTL9DwH2RDXcSmWDOG6XFU7dGy5MQN5X9fPULdA2QsmeI
CitedBy_id crossref_primary_10_1007_s11440_022_01602_9
crossref_primary_10_1631_jzus_A2300377
crossref_primary_10_1016_j_undsp_2024_07_001
crossref_primary_10_1088_1755_1315_1334_1_012040
crossref_primary_10_1016_j_envpol_2023_122039
crossref_primary_10_1016_j_autcon_2022_104457
crossref_primary_10_1016_j_conbuildmat_2023_130579
crossref_primary_10_3389_feart_2022_998798
crossref_primary_10_1016_j_tust_2023_105056
crossref_primary_10_3390_eng4020087
crossref_primary_10_1016_j_jece_2022_108479
crossref_primary_10_1007_s11440_023_02011_2
crossref_primary_10_1016_j_jclepro_2023_136734
crossref_primary_10_1007_s11709_023_0942_5
crossref_primary_10_1007_s44290_025_00240_w
crossref_primary_10_1016_j_tust_2023_105129
crossref_primary_10_1016_j_tust_2024_105745
crossref_primary_10_1016_j_aei_2025_103465
crossref_primary_10_1016_j_tust_2022_104495
crossref_primary_10_3389_feart_2022_994862
crossref_primary_10_1016_j_enggeo_2022_106880
crossref_primary_10_1016_j_heliyon_2024_e30458
crossref_primary_10_1007_s11440_023_01902_8
crossref_primary_10_1007_s10064_024_03965_7
crossref_primary_10_1016_j_tust_2022_104769
crossref_primary_10_1016_j_eswa_2023_122459
crossref_primary_10_3389_fmats_2022_1007855
crossref_primary_10_3390_geosciences13030082
crossref_primary_10_1016_j_jenvman_2023_117617
crossref_primary_10_3389_feart_2023_1165685
crossref_primary_10_1007_s11440_024_02271_6
crossref_primary_10_1016_j_jhazmat_2022_130417
crossref_primary_10_3390_coatings15050564
crossref_primary_10_1016_j_autcon_2024_105882
crossref_primary_10_3389_fmats_2022_967871
crossref_primary_10_1007_s11440_023_02179_7
crossref_primary_10_1007_s11440_023_02110_0
crossref_primary_10_1016_j_engfailanal_2022_106056
crossref_primary_10_1016_j_cscm_2025_e04370
crossref_primary_10_1038_s41598_025_05589_7
crossref_primary_10_1016_j_conbuildmat_2023_134637
crossref_primary_10_3389_fbioe_2022_889717
crossref_primary_10_1016_j_coldregions_2022_103766
crossref_primary_10_1061_IJGNAI_GMENG_7960
crossref_primary_10_3390_smartcities8010006
crossref_primary_10_1016_j_eti_2023_103485
crossref_primary_10_1016_j_seppur_2023_124361
crossref_primary_10_1155_2022_2373133
crossref_primary_10_1007_s00603_022_02977_7
crossref_primary_10_1007_s12517_021_08583_1
crossref_primary_10_1016_j_envpol_2022_120947
crossref_primary_10_1007_s43452_025_01218_2
crossref_primary_10_1016_j_tust_2024_105907
crossref_primary_10_1016_j_engfracmech_2022_108334
crossref_primary_10_1016_j_tust_2024_105840
crossref_primary_10_1016_j_tust_2024_105768
crossref_primary_10_1016_j_tust_2025_106633
crossref_primary_10_1155_2022_4010301
crossref_primary_10_1016_j_still_2022_105382
crossref_primary_10_3389_fbioe_2021_750258
crossref_primary_10_3389_fbioe_2023_1146858
crossref_primary_10_1016_j_eti_2023_103228
crossref_primary_10_32604_cmes_2024_052210
crossref_primary_10_3390_ma15093087
crossref_primary_10_1038_s41598_024_65351_3
crossref_primary_10_1016_j_conbuildmat_2022_128580
crossref_primary_10_3389_fmicb_2022_1001464
crossref_primary_10_3389_feart_2022_947335
crossref_primary_10_1080_10589759_2024_2319257
crossref_primary_10_3389_feart_2022_989331
crossref_primary_10_1016_j_conbuildmat_2023_130395
crossref_primary_10_3389_fchem_2022_892090
crossref_primary_10_1007_s10064_022_02640_z
crossref_primary_10_1016_j_eswa_2024_125484
crossref_primary_10_1007_s11440_023_01850_3
crossref_primary_10_1061_JCEMD4_COENG_14719
crossref_primary_10_3389_feart_2022_1071228
crossref_primary_10_1007_s00603_024_04012_3
Cites_doi 10.1038/s41598-021-99318-5
10.1016/j.jrmge.2021.05.004
10.1007/s10462-021-09967-1
10.1007/s10706-018-0705-6
10.1002/geot.201800009
10.1016/j.ijrmms.2012.06.005
10.1016/j.compgeo.2014.01.002
10.1016/j.autcon.2018.03.030
10.1016/j.gsf.2021.101177
10.1007/s11440-013-0295-7
10.1016/j.tust.2020.103404
10.1016/j.tust.2017.06.020
10.1061/(ASCE)EM.1943-7889.0001657
10.1016/j.tust.2011.01.001
10.1016/j.autcon.2021.103779
10.1016/j.tust.2018.02.006
10.1016/S0893-6080(03)00209-0
10.1016/j.tust.2014.01.006
10.1007/s11440-010-0118-z
10.1016/j.tust.2021.103870
10.1007/s12205-019-0266-0
10.1007/s11440-015-0406-8
10.1016/S0167-9473(01)00065-2
10.1007/s11431-013-5302-6
10.1016/j.tust.2021.103908
10.1016/j.gsf.2019.12.003
10.1016/j.trgeo.2019.100264
10.1007/s12205-021-2263-3
10.1016/j.tust.2020.103699
10.1007/s11431-016-6096-0
10.1016/j.ijrmms.2014.09.012
10.1016/j.tust.2013.03.010
10.3390/app9194139
10.1016/j.mlwa.2021.100020
10.3390/app9040780
10.1016/j.undsp.2019.12.003
10.1007/s11440-018-0702-1
10.1002/(SICI)1096-9853(199901)23:1<23::AID-NAG956>3.0.CO;2-Z
10.1007/s10064-019-01477-3
10.1061/(ASCE)MT.1943-5533.0003782
10.1016/j.ijrmms.2014.04.021
10.1016/j.clay.2019.105134
10.1016/j.tust.2019.103110
10.1016/j.tust.2016.05.009
10.1016/j.enbuild.2017.04.032
10.1016/j.tust.2005.12.131
10.1016/j.autcon.2018.12.022
10.1016/j.gsf.2020.03.007
10.1016/j.tust.2020.103592
10.1016/j.tust.2018.09.036
10.1016/j.tust.2015.06.003
10.1016/j.tust.2012.08.006
10.1016/j.sandf.2018.11.005
10.1007/BF00994018
10.1007/s11440-016-0453-9
10.1016/j.tust.2013.09.012
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11440-021-01383-7
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1861-1133
EndPage 4080
ExternalDocumentID 10_1007_s11440_021_01383_7
GrantInformation_xml – fundername: Education Department of Shaanxi Province
  grantid: 2020TD-005
  funderid: http://dx.doi.org/10.13039/501100009103
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MM-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a342t-ef6e5cc825868fc5d5c3d06919f3f49d1d56a32fedca8815c206b4a743fa61e63
IEDL.DBID RSV
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000710318800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-1125
IngestDate Fri Nov 14 03:53:01 EST 2025
Sat Nov 29 03:35:00 EST 2025
Tue Nov 18 21:17:31 EST 2025
Fri Feb 21 02:47:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Excavation behaviour
Gradient boosting regression
Shield tunnelling
Machine learning
Over-smoothing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-ef6e5cc825868fc5d5c3d06919f3f49d1d56a32fedca8815c206b4a743fa61e63
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0000-0002-1902-7815
PQID 2603795220
PQPubID 54451
PageCount 20
ParticipantIDs proquest_journals_2603795220
crossref_primary_10_1007_s11440_021_01383_7
crossref_citationtrail_10_1007_s11440_021_01383_7
springer_journals_10_1007_s11440_021_01383_7
PublicationCentury 2000
PublicationDate 20211200
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Acta geotechnica
PublicationTitleAbbrev Acta Geotech
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Ochmański, Modoni, Bzówka (CR36) 2018; 75
Pan, Liu, Kong, Liu, Peng, Liu (CR40) 2019; 14
Stavropoulou, Xiroudakis, Exadaktylos (CR42) 2010; 5
Zhang, Huang, Huang, Cai, Kang (CR47) 2013; 56
Abu-Farsakh, Voyiadjis (CR1) 1999; 23
Zhang, Su, Qin, Cai, Hou, Kang (CR48) 2016; 59
Cleveland, Cleveland, McRae, Terpenning (CR11) 1990; 6
CR35
CR34
CR33
Zhang, Zhou (CR45) 2017; 69
Bai, Cheng, Ong, Li (CR5) 2021; 25
Hasanpour (CR22) 2014; 57
CR30
Wu, Shao (CR60) 2019; 145
Cho, Jeon, Jeong, Chang (CR14) 2013; 35
de Oliveira, Thewes, Diederichs, Langmaack (CR16) 2018; 11
Pombeiro, Santos, Carreira, Silva, Sousa (CR38) 2017; 146
Hou, Liu, Yang (CR25) 2021
Mahdevari, Shahriar, Yagiz, Shirazi (CR32) 2014; 72
CR4
Salimi, Rostami, Moormann, Delisio (CR41) 2016; 58
CR7
Persons (CR39) 1919
CR9
Fargnoli, Boldini, Amorosi (CR19) 2015; 49
Hasanpour, Rostami, Ünver (CR23) 2014; 40
Chalimourda, Schölkopf, Smola (CR10) 2004; 17
CR44
Elbaz, Shen, Zhou, Yuan, Xu (CR17) 2019; 9
Qiao, Shao, Liu, Wei (CR57) 2019; 83
Cardu, Iabichino, Oreste, Rispoli (CR13) 2017; 12
Entacher, Lorenz, Galler (CR18) 2014; 70
Chen, Zhang, Kang, Zhong, Liu, Wu (CR6) 2019; 59
Aydan, Hasanpour (CR3) 2019; 78
Chen, Shao, Wei (CR59) 2021; 33
Chang, Choi, Bae, Jeon (CR12) 2006; 21
Sun, Shi, Zhang, Zhao, Sun (CR43) 2018; 92
Zhang, Li, Wu, Li, Liu, Liu (CR53) 2020; 6
Xue, Cheng, Wang, Song (CR55) 2021; 25
Hollmann, Thewes (CR24) 2013; 37
Hu, Cheng, Wen, Rahman (CR56) 2021; 203
Amorosi, Boldini, Falcone (CR2) 2014; 9
Zhou, Kang, Xie, Wang, Zhang (CR46) 2019; 23
CR15
Ghasemi, Gholizadeh (CR21) 2018
CR54
Zhang, Wu, Zhong, Li, Wang (CR51) 2021; 12
Friedman (CR20) 2002; 38
Pelia, Picchio, Martinelli, Dal Negro (CR37) 2015; 11
Zhang, Zhang, Wu, Goh, Lacasse, Liu, Liu (CR52) 2020; 11
Mahdevari, Torabi, Monjezi (CR31) 2012; 55
CR29
CR27
Zhang, Li, Li, Liu, Chen, Ding (CR50) 2021
Xue, Cheng, Wang (CR58) 2021
Li, Li (CR28) 2019; 9
Jung, Choi, Chun, Park, Lee (CR26) 2011; 26
Zhang, Liu, Tan (CR49) 2019; 100
Copur, Aydin, Bilgin, Balci, Tumac, Dayanc (CR8) 2014; 42
1383_CR4
R Hasanpour (1383_CR22) 2014; 57
1383_CR54
HS Jung (1383_CR26) 2011; 26
JZ Zhang (1383_CR45) 2017; 69
K Wu (1383_CR60) 2019; 145
XD Bai (1383_CR5) 2021; 25
1383_CR15
1383_CR7
A Chalimourda (1383_CR10) 2004; 17
1383_CR9
B Li (1383_CR28) 2019; 9
Ö Aydan (1383_CR3) 2019; 78
D Pelia (1383_CR37) 2015; 11
SK Hou (1383_CR25) 2021
A Amorosi (1383_CR2) 2014; 9
1383_CR44
DGG de Oliveira (1383_CR16) 2018; 11
WM Persons (1383_CR39) 1919
Y Pan (1383_CR40) 2019; 14
MY Abu-Farsakh (1383_CR1) 1999; 23
A Salimi (1383_CR41) 2016; 58
W Zhang (1383_CR50) 2021
ZF Xue (1383_CR55) 2021; 25
K Elbaz (1383_CR17) 2019; 9
W Sun (1383_CR43) 2018; 92
H Pombeiro (1383_CR38) 2017; 146
JW Cho (1383_CR14) 2013; 35
1383_CR35
RP Chen (1383_CR6) 2019; 59
1383_CR34
1383_CR33
V Fargnoli (1383_CR19) 2015; 49
S Mahdevari (1383_CR31) 2012; 55
Q Zhang (1383_CR48) 2016; 59
WL Hu (1383_CR56) 2021; 203
M Ochmański (1383_CR36) 2018; 75
WG Zhang (1383_CR52) 2020; 11
S Chang (1383_CR12) 2006; 21
R Hasanpour (1383_CR23) 2014; 40
1383_CR30
S Mahdevari (1383_CR32) 2014; 72
S Zhou (1383_CR46) 2019; 23
QL Zhang (1383_CR49) 2019; 100
RJ Qiao (1383_CR57) 2019; 83
E Ghasemi (1383_CR21) 2018
R Cleveland (1383_CR11) 1990; 6
1383_CR27
JH Friedman (1383_CR20) 2002; 38
1383_CR29
M Entacher (1383_CR18) 2014; 70
M Stavropoulou (1383_CR42) 2010; 5
WW Chen (1383_CR59) 2021; 33
FS Hollmann (1383_CR24) 2013; 37
WG Zhang (1383_CR53) 2020; 6
ZF Xue (1383_CR58) 2021
W Zhang (1383_CR51) 2021; 12
H Copur (1383_CR8) 2014; 42
M Cardu (1383_CR13) 2017; 12
Q Zhang (1383_CR47) 2013; 56
References_xml – year: 1919
  ident: CR39
  publication-title: Indices of business conditions: an index of general business conditions
– ident: CR4
– volume: 59
  start-page: 284
  year: 2019
  end-page: 295
  ident: CR6
  article-title: Prediction of maximum surface settlement caused by earth pressure balance (EPB) shield tunneling with ANN methods
  publication-title: Soils Found
– volume: 42
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR8
  article-title: Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model
  publication-title: Tunn Undergr Space Technol
– volume: 9
  start-page: 780
  year: 2019
  ident: CR17
  article-title: Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm
  publication-title: Appl Sci
– year: 2021
  ident: CR58
  article-title: Effect of straw reinforcement on the shearing and creep behaviours of Quaternary loess
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99318-5
– volume: 92
  start-page: 23
  year: 2018
  end-page: 34
  ident: CR43
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom Constr
– volume: 9
  start-page: 581
  year: 2014
  end-page: 596
  ident: CR2
  article-title: Numerical prediction of tunnel performance during centrifuge dynamic tests
  publication-title: Acta Geotech
– ident: CR35
– ident: CR29
– ident: CR54
– volume: 56
  start-page: 2259
  year: 2013
  end-page: 2267
  ident: CR47
  article-title: Theoretical model for loads prediction on shield tunneling machine with consideration of soil-rock interbedded ground
  publication-title: Sci China Technol Sci
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: CR51
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci Front
– volume: 14
  start-page: 1249
  year: 2019
  end-page: 1268
  ident: CR40
  article-title: Full-scale linear cutting test in Chongqing Sandstone and the comparison with field TBM excavation performance
  publication-title: Acta Geotech
– year: 2021
  ident: CR25
  article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.05.004
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  end-page: 378
  ident: CR20
  article-title: Stochastic gradient boosting
  publication-title: Comput Stat Data Anal
– volume: 72
  start-page: 214
  year: 2014
  end-page: 229
  ident: CR32
  article-title: A support vector regression model for predicting tunnel boring machine penetration rates
  publication-title: Int J Rock Mech Min Sci
– ident: CR15
– volume: 23
  start-page: 3180
  year: 2019
  end-page: 3187
  ident: CR46
  article-title: An approach integrating dimensional analysis and field data for predicting the load on tunneling machine
  publication-title: KSCE J Civ Eng
– volume: 11
  start-page: 1061
  issue: 5
  year: 2015
  end-page: 1074
  ident: CR37
  article-title: Laboratory tests on soil conditioning of clayey soil
  publication-title: Acta Geotech
– volume: 21
  start-page: 271
  issue: 3–4
  year: 2006
  ident: CR12
  article-title: Performance prediction of TBM disc cutting on granitic rock by the linear cutting test
  publication-title: Tunn Undergr Space Technol
– volume: 12
  start-page: 293
  year: 2017
  end-page: 304
  ident: CR13
  article-title: Experimental and analytical studies of the parameters influencing the action of TBM disc tools in tunnelling
  publication-title: Acta Geotech
– ident: CR9
– year: 2021
  ident: CR50
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09967-1
– volume: 40
  start-page: 109
  year: 2014
  end-page: 126
  ident: CR23
  article-title: 3D finite difference model for simulation of double shield TBM tunneling in squeezing grounds
  publication-title: Tunn Undergr Space Technol
– volume: 33
  start-page: 04021153
  issue: 7
  year: 2021
  ident: CR59
  article-title: Experimental study of the heating potential of mortar-aggregate under microwave irradiation
  publication-title: J Mater Civil Eng
– volume: 78
  start-page: 5237
  year: 2019
  end-page: 5251
  ident: CR3
  article-title: Estimation of ground pressures on a shielded TBM in tunneling through squeezing ground and its possibility of jamming
  publication-title: Bull Eng Geol Environ
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  end-page: 73
  ident: CR11
  article-title: STL: a seasonal-trend decomposition procedure based on loess
  publication-title: J Official Stat
– volume: 146
  start-page: 141
  year: 2017
  end-page: 151
  ident: CR38
  article-title: Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: LINEAR regression vs. fuzzy modeling vs. neural networks
  publication-title: Energy Build
– volume: 9
  start-page: 4139
  issue: 19
  year: 2019
  ident: CR28
  article-title: Prediction of tunnel face stability using a Naïve Bayes classifier
  publication-title: Appl Sci
– volume: 11
  start-page: 1095
  year: 2020
  end-page: 1106
  ident: CR52
  article-title: State-of-the-art review of soft computing applications in underground excavations
  publication-title: Geosci Front
– volume: 5
  start-page: 139
  year: 2010
  end-page: 150
  ident: CR42
  article-title: Spatial estimation of geotechnical parameters for numerical tunneling simulations and TBM performance models
  publication-title: Acta Geotech
– volume: 6
  start-page: 353
  issue: 4
  year: 2020
  end-page: 363
  ident: CR53
  article-title: Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling
  publication-title: Undergr Space
– volume: 55
  start-page: 33
  year: 2012
  end-page: 44
  ident: CR31
  article-title: Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon
  publication-title: Int J Rock Mech Min Sci
– ident: CR30
– volume: 49
  start-page: 454
  year: 2015
  end-page: 469
  ident: CR19
  article-title: Twin tunnel excavation in coarse grained soils: observations and numerical back-predictions under free field conditions and in presence of a surface structure
  publication-title: Tunn Undergr Space Technol
– volume: 203
  year: 2021
  ident: CR56
  article-title: Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties
  publication-title: CATENA
– volume: 70
  start-page: 450
  year: 2014
  end-page: 459
  ident: CR18
  article-title: Tunnel boring machine performance prediction with scaled rock cutting tests
  publication-title: Int J Rock Mech Min Sci
– ident: CR33
– volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  ident: CR49
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom Constr
– volume: 58
  start-page: 236
  year: 2016
  end-page: 246
  ident: CR41
  article-title: Application of non-linear regression analysis and artificial intelligence algorithms for performance prediction of hard rock TBMs
  publication-title: Tunn Undergr Space Technol
– volume: 23
  start-page: 23
  issue: 1
  year: 1999
  end-page: 44
  ident: CR1
  article-title: Computational model for the simulation of the shield tunneling process in cohesive soils
  publication-title: Int J Numer Anal Meth Geomech
– volume: 69
  start-page: 209
  year: 2017
  end-page: 222
  ident: CR45
  article-title: Time-dependent jamming mechanism for Single-Shield TBM tunneling in squeezing rock
  publication-title: Tunn Undergr Space Technol
– volume: 145
  start-page: 04019077
  issue: 10
  year: 2019
  ident: CR60
  article-title: Study on the effect of flexible layer on support structures of tunnel excavated in viscoelastic rocks
  publication-title: J Eng Mech
– volume: 11
  start-page: 375
  issue: 4
  year: 2018
  end-page: 387
  ident: CR16
  article-title: EPB tunnelling through clay-sand mixed soils: proposed methodology for clogging evaluation
  publication-title: Geomech Tunn
– volume: 37
  start-page: 96
  year: 2013
  end-page: 105
  ident: CR24
  article-title: Assessment method for clay clogging and disintegration of fines in mechanised tunnelling
  publication-title: Tunn Undergr Space Technol
– year: 2018
  ident: CR21
  article-title: Prediction of squeezing potential in tunneling projects using data mining-based techniques
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0705-6
– volume: 25
  start-page: 59
  issue: 1
  year: 2021
  end-page: 73
  ident: CR5
  article-title: Evaluation of geological conditions and clogging of tunneling using machine learning
  publication-title: Geomech Eng
– ident: CR27
– volume: 26
  start-page: 453
  issue: 3
  year: 2011
  end-page: 461
  ident: CR26
  article-title: Causes of reduction in shield TBM performance—a case study in Seoul
  publication-title: Tunn Undergr Space Technol
– volume: 83
  start-page: 354
  year: 2019
  end-page: 363
  ident: CR57
  article-title: Damage evolution and safety assessment of tunnel lining subjected to long-duration fire
  publication-title: Tunn Undergr Space Technol
– ident: CR44
– volume: 59
  start-page: 1428
  year: 2016
  end-page: 1434
  ident: CR48
  article-title: Modeling and prediction for the thrust on EPB TBMs under different geological conditions by considering mechanical decoupling
  publication-title: Sci China Technol Sci
– volume: 35
  start-page: 37
  year: 2013
  end-page: 54
  ident: CR14
  article-title: Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement
  publication-title: Tunn Undergr Space Technol
– volume: 25
  start-page: 3319
  issue: 9
  year: 2021
  end-page: 3335
  ident: CR55
  article-title: Improvement of the Shearing Behaviour of Loess Using Recycled Straw Fiber Reinforcement
  publication-title: KSCE J Civil Eng
– volume: 75
  start-page: 117
  year: 2018
  end-page: 128
  ident: CR36
  article-title: Automated numerical modelling for the control of EPB technology
  publication-title: Tunn Undergr Space Technol
– ident: CR34
– volume: 17
  start-page: 127
  issue: 1
  year: 2004
  end-page: 141
  ident: CR10
  article-title: Experimentally optimal in support vector regression for different noise models and parameter settings
  publication-title: Neural Netw
– ident: CR7
– volume: 57
  start-page: 37
  year: 2014
  end-page: 52
  ident: CR22
  article-title: Advance numerical simulation of tunneling by using a double shield TBM
  publication-title: Comput Geotech
– year: 2021
  ident: 1383_CR58
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99318-5
– volume: 11
  start-page: 375
  issue: 4
  year: 2018
  ident: 1383_CR16
  publication-title: Geomech Tunn
  doi: 10.1002/geot.201800009
– volume: 55
  start-page: 33
  year: 2012
  ident: 1383_CR31
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.06.005
– volume: 57
  start-page: 37
  year: 2014
  ident: 1383_CR22
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.01.002
– volume: 92
  start-page: 23
  year: 2018
  ident: 1383_CR43
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.03.030
– ident: 1383_CR30
  doi: 10.1016/j.gsf.2021.101177
– volume: 9
  start-page: 581
  year: 2014
  ident: 1383_CR2
  publication-title: Acta Geotech
  doi: 10.1007/s11440-013-0295-7
– ident: 1383_CR29
  doi: 10.1016/j.tust.2020.103404
– volume: 69
  start-page: 209
  year: 2017
  ident: 1383_CR45
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2017.06.020
– volume: 145
  start-page: 04019077
  issue: 10
  year: 2019
  ident: 1383_CR60
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0001657
– volume: 26
  start-page: 453
  issue: 3
  year: 2011
  ident: 1383_CR26
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2011.01.001
– ident: 1383_CR33
  doi: 10.1016/j.autcon.2021.103779
– volume: 75
  start-page: 117
  year: 2018
  ident: 1383_CR36
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.02.006
– volume: 17
  start-page: 127
  issue: 1
  year: 2004
  ident: 1383_CR10
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00209-0
– volume: 42
  start-page: 1
  year: 2014
  ident: 1383_CR8
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2014.01.006
– volume: 5
  start-page: 139
  year: 2010
  ident: 1383_CR42
  publication-title: Acta Geotech
  doi: 10.1007/s11440-010-0118-z
– ident: 1383_CR35
  doi: 10.1016/j.tust.2021.103870
– volume: 23
  start-page: 3180
  year: 2019
  ident: 1383_CR46
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-019-0266-0
– volume: 6
  start-page: 3
  issue: 1
  year: 1990
  ident: 1383_CR11
  publication-title: J Official Stat
– volume: 11
  start-page: 1061
  issue: 5
  year: 2015
  ident: 1383_CR37
  publication-title: Acta Geotech
  doi: 10.1007/s11440-015-0406-8
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 1383_CR20
  publication-title: Comput Stat Data Anal
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 56
  start-page: 2259
  year: 2013
  ident: 1383_CR47
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-013-5302-6
– ident: 1383_CR4
  doi: 10.1016/j.tust.2021.103908
– volume: 11
  start-page: 1095
  year: 2020
  ident: 1383_CR52
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2019.12.003
– ident: 1383_CR54
  doi: 10.1016/j.trgeo.2019.100264
– volume: 25
  start-page: 3319
  issue: 9
  year: 2021
  ident: 1383_CR55
  publication-title: KSCE J Civil Eng
  doi: 10.1007/s12205-021-2263-3
– ident: 1383_CR44
  doi: 10.1016/j.tust.2020.103699
– volume: 59
  start-page: 1428
  year: 2016
  ident: 1383_CR48
  publication-title: Sci China Technol Sci
  doi: 10.1007/s11431-016-6096-0
– volume: 72
  start-page: 214
  year: 2014
  ident: 1383_CR32
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.09.012
– volume: 37
  start-page: 96
  year: 2013
  ident: 1383_CR24
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.03.010
– volume: 9
  start-page: 4139
  issue: 19
  year: 2019
  ident: 1383_CR28
  publication-title: Appl Sci
  doi: 10.3390/app9194139
– ident: 1383_CR34
  doi: 10.1016/j.mlwa.2021.100020
– volume: 9
  start-page: 780
  year: 2019
  ident: 1383_CR17
  publication-title: Appl Sci
  doi: 10.3390/app9040780
– volume: 6
  start-page: 353
  issue: 4
  year: 2020
  ident: 1383_CR53
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2019.12.003
– volume: 14
  start-page: 1249
  year: 2019
  ident: 1383_CR40
  publication-title: Acta Geotech
  doi: 10.1007/s11440-018-0702-1
– volume: 23
  start-page: 23
  issue: 1
  year: 1999
  ident: 1383_CR1
  publication-title: Int J Numer Anal Meth Geomech
  doi: 10.1002/(SICI)1096-9853(199901)23:1<23::AID-NAG956>3.0.CO;2-Z
– volume: 78
  start-page: 5237
  year: 2019
  ident: 1383_CR3
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-019-01477-3
– volume: 33
  start-page: 04021153
  issue: 7
  year: 2021
  ident: 1383_CR59
  publication-title: J Mater Civil Eng
  doi: 10.1061/(ASCE)MT.1943-5533.0003782
– volume: 70
  start-page: 450
  year: 2014
  ident: 1383_CR18
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2014.04.021
– year: 2018
  ident: 1383_CR21
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-018-0705-6
– year: 2021
  ident: 1383_CR50
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09967-1
– volume: 25
  start-page: 59
  issue: 1
  year: 2021
  ident: 1383_CR5
  publication-title: Geomech Eng
– ident: 1383_CR27
  doi: 10.1016/j.clay.2019.105134
– ident: 1383_CR15
  doi: 10.1016/j.tust.2019.103110
– volume: 58
  start-page: 236
  year: 2016
  ident: 1383_CR41
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2016.05.009
– volume: 146
  start-page: 141
  year: 2017
  ident: 1383_CR38
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.04.032
– volume-title: Indices of business conditions: an index of general business conditions
  year: 1919
  ident: 1383_CR39
– volume: 21
  start-page: 271
  issue: 3–4
  year: 2006
  ident: 1383_CR12
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2005.12.131
– volume: 100
  start-page: 73
  year: 2019
  ident: 1383_CR49
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2018.12.022
– volume: 12
  start-page: 469
  year: 2021
  ident: 1383_CR51
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.03.007
– ident: 1383_CR7
  doi: 10.1016/j.tust.2020.103592
– volume: 83
  start-page: 354
  year: 2019
  ident: 1383_CR57
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.09.036
– volume: 49
  start-page: 454
  year: 2015
  ident: 1383_CR19
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2015.06.003
– volume: 203
  year: 2021
  ident: 1383_CR56
  publication-title: CATENA
– volume: 35
  start-page: 37
  year: 2013
  ident: 1383_CR14
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2012.08.006
– volume: 59
  start-page: 284
  year: 2019
  ident: 1383_CR6
  publication-title: Soils Found
  doi: 10.1016/j.sandf.2018.11.005
– ident: 1383_CR9
  doi: 10.1007/BF00994018
– volume: 12
  start-page: 293
  year: 2017
  ident: 1383_CR13
  publication-title: Acta Geotech
  doi: 10.1007/s11440-016-0453-9
– year: 2021
  ident: 1383_CR25
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.05.004
– volume: 40
  start-page: 109
  year: 2014
  ident: 1383_CR23
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2013.09.012
SSID ssj0063246
Score 2.5243533
Snippet Complex geological conditions and/or inappropriate shield tunnel boring machine (TBM) operation can significantly degrade both the excavation and safety of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4061
SubjectTerms Accuracy
Algorithms
Boring machines
Comparative analysis
Comparative studies
Complex Fluids and Microfluidics
Data analysis
Decision trees
Drilling & boring machinery
Earth pressure
Engineering
Excavation
Feasibility studies
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Learning algorithms
Learning behaviour
Load distribution
Machine learning
Optimization
Parameters
Regression analysis
Regression models
Research Paper
Sandy soils
Screw conveyors
Soft and Granular Matter
Soil
Soil Science & Conservation
Solid Mechanics
Support vector machines
Torque
Tunnel construction
Tunneling
Tunneling shields
Tunnels
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELXKlgMcoHypC7SaAzewiGMncbigLWLVS1d7aKW9RY7tLCux2W0SOHPlJ_D3-CXYXqcpSOXSc2In0pvYL56Z9xA6IVb9lkqGuYipTTNGWBhijRMeBXmQJIHkK7OJZDTik0k69gdutS-rbNdEt1CrhbRn5OeGd9MkNWwhuFz-xtY1ymZXvYXGGvpomA2xJV0_wnG7ElslctddxGOCDa-IfNPMqnXOZTVtgYLN1VGcvN6YOrb5JkHq9p3h9v--8Se05RknDFYhsoM-6HIXbf6lQ7iHHgcgOxVwcJKzsCigdU9pYO5qLjV4k4kpiNupeVZzM69hVsKysvkeW0EN1-NvUN_YujjwEgB31QUIkGa79DOLBgzthMns-eFJlDDXTbU4A-fkvY9-Da9_Xn3H3qMBC8rCBusi1pGU5j-Tx7yQkYokVQZ_kha0YKkiKooFDQutpOCcRDIM4pwJw1sKERMd0wPUKxel_oyAEaZImisdBDlTjImcp0qHihUqD0SY9BFpAcqkFzC3Phq3WSe9bEHNDKiZAzUzY07_jFmu5Dvevfu4RTLzn3KddTD20VkbC93lf892-P5sR2gjtOHnSmOOUa-p7vQXtC7vm1ldfXWB_ALdOfin
  priority: 102
  providerName: ProQuest
Title A comparative study of different machine learning algorithms in predicting EPB shield behaviour: a case study at the Xi’an metro, China
URI https://link.springer.com/article/10.1007/s11440-021-01383-7
https://www.proquest.com/docview/2603795220
Volume 16
WOSCitedRecordID wos000710318800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: RSV
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xdSgHSqFVodvVHHorkeLYSRxubLWol65W0FZ7ixzbgZXYLEoCZ678hP69_hJsr9O0VYsEl1xiW5Fn4nnWzLwH8IFY9lsqWcBFQm2aMQ6EAdZByuOwCNM0lHwlNpFOJnw2y6a-Kazpqt27lKQ7qftmN5eHtCUFNrtGg3QdNk2441aw4ez8e3f-Wv5x11PEExIYNBH7Vpl_r_FnOOox5l9pURdtTl8-7zt3YcejSzxZucMrWNPVHmz_xjm4D_cnKHvGb3T0srgssVNKaXHh6is1ekGJCxRXF8t63l4uGpxXeF3b3I6tlsbxdITNpa2BQ9_uf1Mfo0BpQqNfWbRoICbO5j_vfogKF7qtl0foVLtfw7fT8ddPnwOvxxAIyqI20GWiYynNnZInvJSxiiVVxtYkK2nJMkVUnAgalVpJwTmJZRQmBRMGo5QiITqhb2CjWlb6LSAjTJGsUDoMC6YYEwXPlI4UK1URiig9ANKZJZeerNxqZlzlPc2y3ebcbHPutjk3cz7-mnO9oup4dPSgs3buf9smN5c7mmYGkoYHcNRZt3_9_9UOnzb8HbyIrIO4spgBbLT1jX4PW_K2nTf1EDZH48n0bAjrX6KpfabnQ-fiD2KW8iA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQcKL-i0MIc4EStxrGTOEgIFWjVqmW1hyLtLTi2067UzS5JCuLWax-Bl-CheBJsJyGARG89cE48SpzP48-ZmW8AnlGnfssUJ0LGzIUZIyItsSaJiII8SJJAibbZRDIaickkHS_B974WxqVV9j7RO2o9V-4f-abl3SxJLVsIXi8-Edc1ykVX-xYaLSz2zdcv9shWv9p7Z7_v8zDc2T58u0u6rgJEMh42xBSxiZSyJyMRi0JFOlJM2yemacEKnmqqo1iysDBaSSFopMIgzrm0O20hY2piZu1egavcKYu5VMFw3Ht-p3zuq5lETInlMVFXpNOW6vkoqkuIcLFBRpI_N8KB3f4VkPX73M7K_zZDt-FWx6hxq10Cd2DJlHfh5m86i_fgfAvVoHKOXlIX5wX23WEanPmcUoNdE40jlCdH9t2a41mN0xIXlYtnuQxx3B6_wfrY5f1hJ3FwWr1EicrSgc6ybNDSapxMf5x9kyXOTFPNN9B3Kr8PHy5lLh7AcjkvzUNATrmmaa5NEORccy5zkWoTal7oPJBhsgq0B0SmOoF21yfkJBukpR2IMguizIMos2Ne_BqzaOVJLrx7rUdO1rmqOhtgswobPfaGy_-29uhia0_h-u7h-4PsYG-0_xhuhA76Pg1oDZab6tSswzX1uZnW1RO_iBA-XjYmfwJzg1aa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELZKixA98FtEoZQ5wIlGjWPHcZBQtf1ZURWtVgikvQXHdtqVutklSYu4ceUReBUehyep7TgNINFbD5wTjxLnG_tzZuYbhF5gq35LJA24YMSGGeNAGGIdJDwO8zBJQsnbZhPJaMQnk3S8hH52tTA2rbJbE91CrebS_iPfNrybJKlhC-F24dMixvvDncXnwHaQspHWrp1GC5Ej_fWLOb7Vbw73zbd-GUXDgw97bwPfYSAQhEZNoAumYynNKYkzXshYxZIo8_Q4LUhBU4VVzASJCq2k4BzHMgpZToXZdQvBsGbE2L2BVjhjqfGolfHe7uB9tw9YHXRX28QZDgyriX3JTlu452KqNj3CRgpJkPy5LfZc96_wrNv1hnf_5_m6h-54rg2D1jnuoyVdPkCrvykwPkTfByB7_XNwYrswL6DrG9PAzGWbavDtNY5BnB6bd2tOZjVMS1hUNtJlc8fhYLwL9YnNCAQvfnBWvQYB0hAFb1k0YAg3TKa_vv0QJcx0U823wPUwX0Mfr2UuHqHlcl7qxwgopgqnudJhmFNFqch5qnSkaKHyUETJOsIdODLppdttB5HTrBedtoDKDKAyB6jMjHl1OWbRCpdcefdGh6LML2J11kNoHW11OOwv_9vak6utPUe3DBSzd4ejo6fodmS9wOUHbaDlpjrTz9BNed5M62rTexSgT9cNygvTY2Cj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+different+machine+learning+algorithms+in+predicting+EPB+shield+behaviour%3A+a+case+study+at+the+Xi%E2%80%99an+metro%2C+China&rft.jtitle=Acta+geotechnica&rft.au=Bai%2C+Xue-Dong&rft.au=Cheng%2C+Wen-Chieh&rft.au=Li%2C+Ge&rft.date=2021-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=16&rft.issue=12&rft.spage=4061&rft.epage=4080&rft_id=info:doi/10.1007%2Fs11440-021-01383-7&rft.externalDocID=10_1007_s11440_021_01383_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon