Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost
Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes. Although it is impossible to preclude the occurrence of earthquakes, it is possible to predict its adverse effects through computer science such...
Uloženo v:
| Vydáno v: | Acta geotechnica Ročník 18; číslo 6; s. 3403 - 3419 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2023
Springer Nature B.V |
| Témata: | |
| ISSN: | 1861-1125, 1861-1133 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes. Although it is impossible to preclude the occurrence of earthquakes, it is possible to predict its adverse effects through computer science such as machine learning (ML) algorithms. In this study, the ability of recently developed and powerful ML algorithms such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) was investigated to predict the occurrence of liquefaction-induced lateral spreading. A relatively large dataset was used to develop ML models, including 6704 lateral spread observations from the 2011 Christchurch earthquake in New Zealand. The particle swarm optimization (PSO) algorithm is utilized for hyperparameter optimization of the gradient boosting models, called the PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost. For comparison, the prediction results of the PSO optimized gradient boosting models were compared with that of the models using default parameters (i.e., XGBoost, CatBoost, and LightGBM). In addition, the SHapley Additive exPlanations approach is employed to explore the feature importance of the variables included in the dataset. The findings demonstrated that all the three gradient boosting algorithms performed well in predicting lateral spreading occurrence. Moreover, PSO-CatBoost outperformed other state-of-the-art models in terms of performance metrics. However, the PSO-LightGBM model may be considered the best choice for computers with older-gen hardware and important tasks that need to be completed in a short time. This study confirms the effectiveness of the proposed models, and the use of these boosting algorithms especially optimized with PSO is recommended for predicting the occurrence of liquefaction-induced lateral spreading. |
|---|---|
| AbstractList | Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes. Although it is impossible to preclude the occurrence of earthquakes, it is possible to predict its adverse effects through computer science such as machine learning (ML) algorithms. In this study, the ability of recently developed and powerful ML algorithms such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) was investigated to predict the occurrence of liquefaction-induced lateral spreading. A relatively large dataset was used to develop ML models, including 6704 lateral spread observations from the 2011 Christchurch earthquake in New Zealand. The particle swarm optimization (PSO) algorithm is utilized for hyperparameter optimization of the gradient boosting models, called the PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost. For comparison, the prediction results of the PSO optimized gradient boosting models were compared with that of the models using default parameters (i.e., XGBoost, CatBoost, and LightGBM). In addition, the SHapley Additive exPlanations approach is employed to explore the feature importance of the variables included in the dataset. The findings demonstrated that all the three gradient boosting algorithms performed well in predicting lateral spreading occurrence. Moreover, PSO-CatBoost outperformed other state-of-the-art models in terms of performance metrics. However, the PSO-LightGBM model may be considered the best choice for computers with older-gen hardware and important tasks that need to be completed in a short time. This study confirms the effectiveness of the proposed models, and the use of these boosting algorithms especially optimized with PSO is recommended for predicting the occurrence of liquefaction-induced lateral spreading. |
| Author | Demir, Selçuk Sahin, Emrehan Kutlug |
| Author_xml | – sequence: 1 givenname: Selçuk orcidid: 0000-0003-2520-4395 surname: Demir fullname: Demir, Selçuk email: selcukdemir@ibu.edu.tr organization: Department of Civil Engineering, Bolu Abant Izzet Baysal University – sequence: 2 givenname: Emrehan Kutlug orcidid: 0000-0002-9830-8585 surname: Sahin fullname: Sahin, Emrehan Kutlug organization: Department of Civil Engineering, Bolu Abant Izzet Baysal University |
| BookMark | eNp9kVtrFDEUx4NUsK1-AZ8Cvjaay2QuvtmlrsKWFlrBt3A2k2xTZpMxyVD0q_XLNTMrCn3oS5Jz-Z1zcv4n6MgHbxB6z-hHRmnzKTFWVZRQzgllTdMQ9gods7ZmhDEhjv69uXyDTlK6p7QWvKqP0eN1NL3T2fkdDlpPMRqvDQ4WD-7XZCyUUPDE-X7SpscDZBNhwGmMBvoZmtJ87mKxjM94G0JaisGwC9Hlu33CzmdTEnLhH4oHjxCz04PB6QHiHocxu737A3Ojz_j65or8XJ_PZc4WY-N2d3l9fnmGwfeLZwV5ib9Fry0Mybz7e5-iH18vblffyOZq_X31ZUNAVDwTU2-lMKKtqGy3UNm20R2HVkLbSzCgtZFSd720nIOmoms6JqzVlrOKUaCdOEUfDnXHGMpOUlb3YYq-tFS85VJ2rG7mrPaQpWNIKRqrtMvLp3IENyhG1SyVOkililRqkUqxgvJn6BjdHuLvlyFxgIoWZeEm_p_qBeoJRJ6shg |
| CitedBy_id | crossref_primary_10_1007_s00521_024_09893_7 crossref_primary_10_1016_j_jobe_2025_112879 crossref_primary_10_1016_j_optlastec_2024_110946 crossref_primary_10_1016_j_swevo_2025_102013 crossref_primary_10_1155_adce_6623874 crossref_primary_10_1007_s11269_024_04058_6 crossref_primary_10_3390_sym17010103 crossref_primary_10_1007_s41939_024_00480_w crossref_primary_10_1007_s42243_024_01400_5 crossref_primary_10_1016_j_istruc_2024_106524 crossref_primary_10_1080_17538947_2024_2409964 crossref_primary_10_3934_era_2025167 crossref_primary_10_1007_s00521_025_11387_z crossref_primary_10_3390_rs17020240 crossref_primary_10_1016_j_enbuild_2025_115614 crossref_primary_10_1016_j_jrmge_2025_05_029 crossref_primary_10_3390_pr13041118 crossref_primary_10_1016_j_conbuildmat_2025_141467 crossref_primary_10_1080_19942060_2023_2244558 crossref_primary_10_1016_j_envdev_2025_101298 crossref_primary_10_1088_1361_6501_ad1807 crossref_primary_10_2166_hydro_2024_292 crossref_primary_10_1007_s11600_024_01307_5 crossref_primary_10_1016_j_dt_2025_06_019 crossref_primary_10_3390_rs15215202 crossref_primary_10_1016_j_jenvman_2025_126910 crossref_primary_10_1080_01431161_2025_2562001 crossref_primary_10_1016_j_scitotenv_2024_174363 crossref_primary_10_1080_17499518_2024_2395560 crossref_primary_10_1016_j_jrmge_2024_05_043 crossref_primary_10_1080_17538947_2025_2510570 crossref_primary_10_1186_s42162_025_00472_1 crossref_primary_10_1038_s41598_024_78845_x crossref_primary_10_1007_s13042_024_02279_0 crossref_primary_10_1016_j_apenergy_2024_124911 crossref_primary_10_1038_s41598_025_03493_8 crossref_primary_10_1016_j_egyai_2025_100470 crossref_primary_10_1038_s41598_024_76010_y crossref_primary_10_1007_s00170_024_14832_w crossref_primary_10_3390_rs17040702 crossref_primary_10_3390_app14188317 crossref_primary_10_1155_adce_3042895 crossref_primary_10_1007_s11440_023_02113_x crossref_primary_10_1080_01969722_2025_2546604 crossref_primary_10_1007_s11053_025_10546_2 crossref_primary_10_1016_j_oceaneng_2025_122422 crossref_primary_10_1016_j_soildyn_2023_108250 crossref_primary_10_1007_s10064_025_04219_w crossref_primary_10_1016_j_microc_2025_114150 crossref_primary_10_1016_j_tust_2025_106632 crossref_primary_10_1007_s00477_024_02745_9 crossref_primary_10_1007_s13198_024_02535_0 crossref_primary_10_3390_electronics13204036 crossref_primary_10_1007_s10064_025_04178_2 crossref_primary_10_1007_s40996_025_02006_x crossref_primary_10_1109_ACCESS_2025_3594564 crossref_primary_10_1177_14727978251361856 crossref_primary_10_1016_j_jclepro_2025_144672 crossref_primary_10_1016_j_jrmge_2024_05_057 crossref_primary_10_1016_j_coldregions_2025_104594 crossref_primary_10_1016_j_uclim_2023_101503 crossref_primary_10_1016_j_rineng_2024_103492 crossref_primary_10_51173_ijds_v2i2_30 crossref_primary_10_1016_j_scitotenv_2025_180355 crossref_primary_10_1016_j_tws_2024_111763 crossref_primary_10_1007_s10706_025_03091_5 crossref_primary_10_1016_j_cscm_2023_e02554 crossref_primary_10_1080_13632469_2025_2496650 crossref_primary_10_1007_s12145_023_01059_8 crossref_primary_10_1016_j_compgeo_2025_107125 crossref_primary_10_1038_s41598_025_96527_0 |
| Cites_doi | 10.1007/s00366-020-01027-6 10.1016/j.gsf.2020.03.007 10.1061/(ASCE)0733-9410(1994)120:2(274) 10.1007/s11069-012-0433-9 10.1061/(ASCE)GT.1943-5606.0001051 10.1109/ICNN.1995.488968 10.1061/(ASCE)GT.1943-5606.0002491 10.2208/jscej.1986.376_221 10.1016/j.enggeo.2013.12.003 10.3390/su12062218 10.1109/JAS.2021.1004129 10.1007/s12665-022-10578-4 10.5555/3295222.3295230 10.1061/(ASCE)GT.1943-5606.0000969 10.1016/0266-352X(87)90001-2 10.1061/(ASCE)GM.1943-5622.0000607 10.1061/(ASCE)GT.1943-5606.0000338 10.1139/t00-087 10.3389/feart.2021.807317 10.17603/ds2-3zdj-4937 10.1016/j.comcom.2021.10.007 10.1016/j.neucom.2020.07.061 10.1061/(ASCE)GT.1943-5606.0001584 10.1016/S0267-7261(99)00027-5 10.1016/j.soildyn.2022.107214 10.3133/pp993 10.1061/(ASCE)0733-9410(1995)121:4(316) 10.1177/87552930211004613 10.1016/j.inffus.2020.07.007 10.1007/s00521-022-07856-4 10.1061/(ASCE)GT.1943-5606.0002784 10.1016/j.soildyn.2005.04.002 10.1080/00288306.2012.699895 10.1016/j.aap.2021.106545 10.1016/j.compgeo.2006.05.001 10.1007/978-3-030-61111-8_2 10.3390/electronics10182188 10.1061/(ASCE)CP.1943-5487.0000050 10.1016/j.petrol.2021.108559 10.1016/j.engappai.2010.09.010 10.1007/s10462-021-09967-1 10.1016/j.parkreldis.2022.01.011 10.1145/507533.507538 10.1201/9781315108230 10.1177/001316446002000104 10.1016/j.soildyn.2004.09.001 10.1016/S0034-4257(97)00083-7 10.1145/2939672.2939785 10.1680/geot.1965.15.2.139 10.1016/j.soildyn.2007.06.014 10.1007/978-3-642-37846-1_3 10.1061/(ASCE)1090-0241(2004)130:8(861) 10.1016/j.gr.2022.03.015 10.1016/j.soildyn.2010.01.005 10.1007/s10064-018-1319-1 10.1061/(ASCE)0733-9410(1987)113:11(1374) 10.1007/s10462-020-09896-5 10.1785/0120200025 10.1533/9780857098986.1.113 10.1007/978-3-030-05318-5_1 10.1016/j.egyr.2021.07.008 10.1061/(ASCE)1090-0241(2002)128:12(1007) |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
| DOI | 10.1007/s11440-022-01777-1 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1861-1133 |
| EndPage | 3419 |
| ExternalDocumentID | 10_1007_s11440_022_01777_1 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- MM- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PCBAR PF0 PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-a342t-e6b53e384058ba4f87c92a85a8d5aeacce55c9d5f22ac0397913ffcf21410a093 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 79 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906684600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-1125 |
| IngestDate | Wed Nov 05 14:49:23 EST 2025 Sat Nov 29 03:35:03 EST 2025 Tue Nov 18 22:02:45 EST 2025 Fri Feb 21 02:43:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Liquefaction Particle swarm optimization LightGBM XGBoost CatBoost Lateral spreading |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-e6b53e384058ba4f87c92a85a8d5aeacce55c9d5f22ac0397913ffcf21410a093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9830-8585 0000-0003-2520-4395 |
| PQID | 2825591679 |
| PQPubID | 54451 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2825591679 crossref_citationtrail_10_1007_s11440_022_01777_1 crossref_primary_10_1007_s11440_022_01777_1 springer_journals_10_1007_s11440_022_01777_1 |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationTitle | Acta geotechnica |
| PublicationTitleAbbrev | Acta Geotech |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948 Youd TL, Hoose SN (1978) Historic ground failures in northern California triggered by earthquakes. US Government Printing Office YoudTLHansenCMBartlettSFRevised multilinear regression equations for prediction of lateral spread displacementJ Geotech Geoenviron Eng2002128121007101710.1061/(ASCE)1090-0241(2002)128:12(1007) RezaniaMFaramarziAJavadiAAAn evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacementEng App Artif Intell201124114215310.1016/j.engappai.2010.09.010 ProkhorenkovaLGusevGVorobevADorogushAVGulinACatBoost: unbiased boosting with categorical featuresAdv Neural Inf Process Syst20183166386648 WuJChenX-YZhangHXiongL-DLeiHDengS-HHyperparameter optimization for machine learning models based on Bayesian optimizationJ Electron Sci Tech20191712640 LeeS-BKimY-JHwangSSonHLeeSKParkK-IKimY-GPredicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signalsParkinsonism Rel Disord202295778510.1016/j.parkreldis.2022.01.011 ValsamisAIBouckovalasGDPapadimitriouAGParametric investigation of lateral spreading of gently sloping liquefied groundSoil Dyn Earthq Eng201030649050810.1016/j.soildyn.2010.01.005 Youd TL (1992) Liquefaction, ground failure, and consequent damage during the 22 April 1991 Costa Rica earthquake. In: Proceedings of the NSF/UCR US-Costa Rica Workshop on the Costa Rica Earthquakes of 1990–1991: Effects on soils and structures GarciaSRomoMBoteroEA neurofuzzy system to analyze liquefaction-induced lateral spreadSoil Dyn Earthq Eng200828316918010.1016/j.soildyn.2007.06.014 Anghel A, Papandreou N, Parnell T, De Palma A, Pozidis H (2018) Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint: arXiv: 180904559 ChangIParkHHongELeeJKwonNPredicting effects of built environment on fatal pedestrian accidents at location-specific level: Application of XGBoost and SHAPAccid Anal Prev202216610.1016/j.aap.2021.106545 GuWMorgensternNRobertsonPPostearthquake deformation analysis of Wildlife siteJ Geotech Eng1994120227428910.1061/(ASCE)0733-9410(1994)120:2(274) HamadaMTowhataIYasudaSIsoyamaRStudy on permanent ground displacement induced by seismic liquefactionComput Geotech19874419722010.1016/0266-352X(87)90001-2 YoudTLPerkinsDMMapping of liquefaction severity indexJ Geotech Eng1987113111374139210.1061/(ASCE)0733-9410(1987)113:11(1374) GillinsDTBartlettSFMultilinear regression equations for predicting lateral spread displacement from soil type and cone penetration test dataJ Geotech Geoenviron Eng201314040401304710.1061/(ASCE)GT.1943-5606.0001051 WoldesellasseHTesfamariamSPrediction of lateral spreading displacement using conditional Generative Adversarial Network (cGAN)Soil Dyn Earthq Eng202215610.1016/j.soildyn.2022.107214 Bendtsen MC (2022) Package ‘pso’ http://cran.ma.ic.ac.uk/web/packages/pso/pso.pdf. Last accesed 6 May 2022 DuranteMGRathjeEMAn exploration of the use of machine learning to predict lateral spreadingEarthq Spectra20213742288231410.1177/87552930211004613 GomesGFde AlmeidaFAAncelottiACda CunhaSSInverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fieldsEng Comput20213743771379110.1007/s00366-020-01027-6 WangLWuJZhangWWangLCuiWEfficient seismic stability analysis of embankment slopes subjected to water level changes using gradient boosting algorithmsFront Earth Sci20219117910.3389/feart.2021.807317 FrankeKWKramerSLProcedure for the empirical evaluation of lateral spread displacement hazard curvesJ Geotech Geoenviron Eng2014140111012010.1061/(ASCE)GT.1943-5606.0000969 KeyportRNOommenTMarthaTRSajinkumarKGierkeJSA comparative analysis of pixel-and object-based detection of landslides from very high-resolution imagesInt J Appl Earth Obs Geoinf201864111 KramerSLGeotechnical earthquake engineering1996Upper SaddleRiverPrentice-Hall TangDWangXYanYZhangDZhaoHADMS: An online attack detection and mitigation system for LDoS attacks via SDNComput Commun202218145447110.1016/j.comcom.2021.10.007 YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing202041529531610.1016/j.neucom.2020.07.061 BaziarMSaeedi AzizkandiAEvaluation of lateral spreading utilizing artificial neural network and genetic programmingInt J Civ Eng2013112100111 Hamada M, Yasuda S, Isoyama R, Emoto K (1986) Study on liquefaction induced permanent ground displacements. Report for the Association for the Development of Earthquake Prediction HuangYYuMReview of soil liquefaction characteristics during major earthquakes of the twenty-first centuryNat Hazards201365323752384330100410.1007/s11069-012-0433-9 ZhangWLiHLiYLiuHChenYDingXApplication of deep learning algorithms in geotechnical engineering: a short critical reviewArtif Intell Rev20215485633567310.1007/s10462-021-09967-1 KuhnMJohnsonKFeature engineering and selection: a practical approach for predictive modelsCRC Press201910.1201/9781315108230 Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, Long Beach California, USA, pp 4768–4777. https://doi.org/10.5555/3295222.3295230 MontgomeryJBoulangerRWEffects of spatial variability on liquefaction-induced settlement and lateral spreadingJ Geotech Geoenviron Eng201714310401608610.1061/(ASCE)GT.1943-5606.0001584 TangJLiuGPanQA review on representative swarm intelligence algorithms for solving optimization problems: applications and trendsIEEE/CAA J Autom Sin202181016271643433919510.1109/JAS.2021.1004129 LittleMVRathjeEMSimulating the effects of site geometry and earthquake shaking characteristics on lateral spread displacementsGeo-Congress20222022278287 RollinsKMRoyJAthanasopoulos-ZekkosAZekkosDAmorosoSCaoZMilanaGVassalloMDi GiulioGA new Vs-based liquefaction-triggering procedure for gravelly soilsJ Geotech Geoenviron Eng202214860402204010.1061/(ASCE)GT.1943-5606.0002784 ZhangGRobertsonPKBrachmanREstimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration testJ Geotech Geoenviron Eng2004130886187110.1061/(ASCE)1090-0241(2004)130:8(861) SharpMKDobryRPhillipsRCPT-based evaluation of liquefaction and lateral spreading in centrifugeJ Geotech Geoenviron Eng2010136101334134610.1061/(ASCE)GT.1943-5606.0000338 Chiru-DanzerMJuangCChristopherRSuberJEstimation of liquefaction-induced horizontal displacements using artificial neural networksCan Geotech J200138120020710.1139/t00-087 CohenJA coefficient of agreement for nominal scalesEduc Psychol Meas1960201374610.1177/001316446002000104 CubrinovskiMRobinsonKTaylorMHughesMOrenseRLateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakesNew Zealand J Geol Geophy201255325526910.1080/00288306.2012.699895 DemirSSahinEKAn investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoostNeural Comput Appl202210.1007/s00521-022-07856-4 StehmanSVSelecting and interpreting measures of thematic classification accuracyRemote Sens Environ1997621778910.1016/S0034-4257(97)00083-7 PhamBTQiCHoLSNguyen-ThoiTAl-AnsariNNguyenMDNguyenHDLyH-BLeHVPrakashIA novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soilSustainability2020126221810.3390/su12062218 Durante MG, Rathje EM (2021) Machine learning models for the evaluation of the lateral spreading hazard in the Avon River area following the 2011 Christchurch earthquake. DesignSafe-CI https://doi.org/10.17603/ds2-3zdj-4937. WangJRahmanMA neural network model for liquefaction-induced horizontal ground displacementSoil Dyn Earthq Eng199918855556810.1016/S0267-7261(99)00027-5 Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B (2022) caret: Classification and regression training. R package version 6.0–92. GohATZhangWAn improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splinesEng Geol201417011010.1016/j.enggeo.2013.12.003 Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv preprint: arXiv: 181011363 Faris AT, Seed RB, Kayen RE, Wu J (2006) A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading. In: Proceedings of 8th US conference on earthquake engineering. Citeseer, pp 1584–1593 ZhangJZhaoJXEmpirical models for estimating liquefaction-induced lateral spread displacementSoil Dyn Earthq Eng2005256439450273001710.1016/j.soildyn.2005.04.002 Feurer M, Hutter F (2019) Hyperparameter Optimization. Automated Machine Learning: Methods, Systems, Challenges. Springer, pp 3–33 Kiranyaz S, Ince T, Gabbouj M (2014) Particle swarm optimization. multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, pp 45–82 Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794 ZhangWGuXTangLYinYLiuDZhangYApplication of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challengeGondwana Res202210911710.1016/j.gr.2022.03.015 OommenTBaiseLGModel development and validation for intelligent data collection for lateral spread displacementsJ Comput Civ Eng201024646747710.1061/(ASCE)CP.1943-5487.0000050 Shi Y, Ke G, Soukhavong D, Lamb J, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y, Titov N (2022) Package ‘lightgbm’ https://cran.rstudio.com/web/packages/lightgbm/lightgbm.pdf (Last accessed May 6, 2022) Micci-BarrecaDA preprocessing scheme for high-c J Wu (1777_CR68) 2019; 17 T Oommen (1777_CR53) 2010; 24 1777_CR31 1777_CR70 1777_CR72 1777_CR38 SL Kramer (1777_CR41) 1996 L Prokhorenkova (1777_CR55) 2018; 31 AA Javadi (1777_CR35) 2006; 33 S Demir (1777_CR15) 2022 W Zhang (1777_CR77) 2021; 12 M Cubrinovski (1777_CR13) 2012; 55 JH Friedman (1777_CR23) 2001; 1 W Gu (1777_CR29) 1994; 120 NM Newmark (1777_CR51) 1965; 15 1777_CR21 1777_CR20 1777_CR60 KM Rollins (1777_CR57) 2022; 148 MV Little (1777_CR45) 2022; 2022 C Bentéjac (1777_CR8) 2021; 54 AI Valsamis (1777_CR64) 2010; 30 G Ke (1777_CR37) 2017; 30 GF Gomes (1777_CR27) 2021; 37 DT Gillins (1777_CR25) 2013; 140 M Rezania (1777_CR56) 2011; 24 MG Durante (1777_CR18) 2021; 37 Z Huang (1777_CR32) 2021; 202 H Woldesellasse (1777_CR67) 2022; 156 M Hamada (1777_CR30) 1987; 4 M Baziar (1777_CR5) 2005; 25 YJ Avval (1777_CR2) 2019; 78 W Zhang (1777_CR74) 2022; 109 1777_CR52 L Yang (1777_CR69) 2020; 415 MV Little (1777_CR46) 2021; 147 1777_CR10 BT Pham (1777_CR54) 2020; 12 D Micci-Barreca (1777_CR49) 2001; 3 RN Keyport (1777_CR39) 2018; 64 1777_CR16 P Zimmaro (1777_CR79) 2020; 110 1777_CR17 M Kuhn (1777_CR42) 2019 J Tang (1777_CR62) 2021; 8 J Zhang (1777_CR78) 2005; 25 W Zhang (1777_CR75) 2021; 54 S-B Lee (1777_CR44) 2022; 95 S Demir (1777_CR14) 2022; 81 1777_CR19 S González (1777_CR28) 2020; 64 L Wang (1777_CR66) 2021; 9 TL Youd (1777_CR71) 2002; 128 Y Huang (1777_CR33) 2013; 65 M Chiru-Danzer (1777_CR11) 2001; 38 AT Goh (1777_CR26) 2014; 170 D Tang (1777_CR63) 2022; 181 1777_CR40 1777_CR43 SF Bartlett (1777_CR4) 1995; 121 J Cohen (1777_CR12) 1960; 20 MK Sharp (1777_CR59) 2010; 136 1777_CR48 M Baziar (1777_CR6) 2013; 11 KW Franke (1777_CR22) 2014; 140 W Shafqat (1777_CR58) 2021; 10 J Wang (1777_CR65) 1999; 18 S Garcia (1777_CR24) 2008; 28 1777_CR47 1777_CR7 S Hussain (1777_CR34) 2021; 7 Z Kaya (1777_CR36) 2016; 16 J Montgomery (1777_CR50) 2017; 143 1777_CR3 SV Stehman (1777_CR61) 1997; 62 1777_CR1 TL Youd (1777_CR73) 1987; 113 I Chang (1777_CR9) 2022; 166 G Zhang (1777_CR76) 2004; 130 |
| References_xml | – reference: LittleMVRathjeEMSimulating the effects of site geometry and earthquake shaking characteristics on lateral spread displacementsGeo-Congress20222022278287 – reference: FrankeKWKramerSLProcedure for the empirical evaluation of lateral spread displacement hazard curvesJ Geotech Geoenviron Eng2014140111012010.1061/(ASCE)GT.1943-5606.0000969 – reference: GohATZhangWAn improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splinesEng Geol201417011010.1016/j.enggeo.2013.12.003 – reference: BartlettSFYoudTLEmpirical prediction of liquefaction-induced lateral spreadJ Geotech Eng1995121431632910.1061/(ASCE)0733-9410(1995)121:4(316) – reference: FriedmanJHGreedy function approximation: a gradient boosting machineAnn Stat200111189123218733281043.62034 – reference: Hamada M, Yasuda S, Isoyama R, Emoto K (1986) Study on liquefaction induced permanent ground displacements. Report for the Association for the Development of Earthquake Prediction – reference: Feurer M, Hutter F (2019) Hyperparameter Optimization. Automated Machine Learning: Methods, Systems, Challenges. Springer, pp 3–33 – reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948 – reference: TangJLiuGPanQA review on representative swarm intelligence algorithms for solving optimization problems: applications and trendsIEEE/CAA J Autom Sin202181016271643433919510.1109/JAS.2021.1004129 – reference: Chiru-DanzerMJuangCChristopherRSuberJEstimation of liquefaction-induced horizontal displacements using artificial neural networksCan Geotech J200138120020710.1139/t00-087 – reference: GonzálezSGarcíaSDel SerJRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: algorithms, software tools, performance study, practical perspectives and opportunitiesInf Fusion20206420523710.1016/j.inffus.2020.07.007 – reference: HuangZChenZComparison of different machine learning algorithms for predicting the SAGD production performanceJ Petrol Sci Eng202120210.1016/j.petrol.2021.108559 – reference: RezaniaMFaramarziAJavadiAAAn evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacementEng App Artif Intell201124114215310.1016/j.engappai.2010.09.010 – reference: GarciaSRomoMBoteroEA neurofuzzy system to analyze liquefaction-induced lateral spreadSoil Dyn Earthq Eng200828316918010.1016/j.soildyn.2007.06.014 – reference: LittleMVRathjeEDe PascaleGPBachhuberJInsights into lateral spread displacement patterns using remote sensing data from the 2011 Christchurch earthquakeJ Geotech Geoenviron Eng202114750502100210.1061/(ASCE)GT.1943-5606.0002491 – reference: YoudTLHansenCMBartlettSFRevised multilinear regression equations for prediction of lateral spread displacementJ Geotech Geoenviron Eng2002128121007101710.1061/(ASCE)1090-0241(2002)128:12(1007) – reference: Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794 – reference: ZhangWWuCZhongHLiYWangLPrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimizationGeosci Front202112146947710.1016/j.gsf.2020.03.007 – reference: ZhangGRobertsonPKBrachmanREstimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration testJ Geotech Geoenviron Eng2004130886187110.1061/(ASCE)1090-0241(2004)130:8(861) – reference: Bartlett SF, Youd TL (1992) Empirical prediction of lateral spread displacement. In: Proceedings from the fourth Japan-US workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction, pp 351–365 – reference: Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B (2022) caret: Classification and regression training. R package version 6.0–92. – reference: MontgomeryJBoulangerRWEffects of spatial variability on liquefaction-induced settlement and lateral spreadingJ Geotech Geoenviron Eng201714310401608610.1061/(ASCE)GT.1943-5606.0001584 – reference: Okwu MO, Tartibu LK (2021) Particle swarm optimisation. Metaheuristic optimization: nature-inspired algorithms swarm and computational intelligence, theory and applications. Springer, pp 5–13 – reference: KeGMengQFinleyTWangTChenWMaWYeQLiuT-YLightgbm: a highly efficient gradient boosting decision treeAdv Neural Inf Proces Syst2017301 – reference: Anghel A, Papandreou N, Parnell T, De Palma A, Pozidis H (2018) Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint: arXiv: 180904559 – reference: SharpMKDobryRPhillipsRCPT-based evaluation of liquefaction and lateral spreading in centrifugeJ Geotech Geoenviron Eng2010136101334134610.1061/(ASCE)GT.1943-5606.0000338 – reference: YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing202041529531610.1016/j.neucom.2020.07.061 – reference: Youd TL, Hoose SN (1978) Historic ground failures in northern California triggered by earthquakes. US Government Printing Office – reference: PhamBTQiCHoLSNguyen-ThoiTAl-AnsariNNguyenMDNguyenHDLyH-BLeHVPrakashIA novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soilSustainability2020126221810.3390/su12062218 – reference: AvvalYJDerakhshaniANew formulas for predicting liquefaction-induced lateral spreading: model tree approachBull Eng Geol Environ20197853649366110.1007/s10064-018-1319-1 – reference: ZimmaroPNwekeCCHernandezJLHudsonKSHudsonMBAhdiSKBoggsMLDavisCAGouletCABrandenbergSJLiquefaction and related ground failure from July 2019 Ridgecrest earthquake sequenceBull Seismol Soc Am202011041549156610.1785/0120200025 – reference: JavadiAARezaniaMNezhadMMEvaluation of liquefaction induced lateral displacements using genetic programmingComput Geotech2006334–522223310.1016/j.compgeo.2006.05.001 – reference: CubrinovskiMRobinsonKTaylorMHughesMOrenseRLateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakesNew Zealand J Geol Geophy201255325526910.1080/00288306.2012.699895 – reference: ShafqatWMalikSLeeK-TKimD-HPSO based optimized ensemble learning and feature selection approach for efficient energy forecastElectronics20211018218810.3390/electronics10182188 – reference: BaziarMGhorbaniAEvaluation of lateral spreading using artificial neural networksSoil Dyn Earthq Eng20052511910.1016/j.soildyn.2004.09.001 – reference: TangDWangXYanYZhangDZhaoHADMS: An online attack detection and mitigation system for LDoS attacks via SDNComput Commun202218145447110.1016/j.comcom.2021.10.007 – reference: Faris AT, Seed RB, Kayen RE, Wu J (2006) A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading. In: Proceedings of 8th US conference on earthquake engineering. Citeseer, pp 1584–1593 – reference: KramerSLGeotechnical earthquake engineering1996Upper SaddleRiverPrentice-Hall – reference: WoldesellasseHTesfamariamSPrediction of lateral spreading displacement using conditional Generative Adversarial Network (cGAN)Soil Dyn Earthq Eng202215610.1016/j.soildyn.2022.107214 – reference: YoudTLPerkinsDMMapping of liquefaction severity indexJ Geotech Eng1987113111374139210.1061/(ASCE)0733-9410(1987)113:11(1374) – reference: WuJChenX-YZhangHXiongL-DLeiHDengS-HHyperparameter optimization for machine learning models based on Bayesian optimizationJ Electron Sci Tech20191712640 – reference: KeyportRNOommenTMarthaTRSajinkumarKGierkeJSA comparative analysis of pixel-and object-based detection of landslides from very high-resolution imagesInt J Appl Earth Obs Geoinf201864111 – reference: DuranteMGRathjeEMAn exploration of the use of machine learning to predict lateral spreadingEarthq Spectra20213742288231410.1177/87552930211004613 – reference: HamadaMTowhataIYasudaSIsoyamaRStudy on permanent ground displacement induced by seismic liquefactionComput Geotech19874419722010.1016/0266-352X(87)90001-2 – reference: ZhangWLiHLiYLiuHChenYDingXApplication of deep learning algorithms in geotechnical engineering: a short critical reviewArtif Intell Rev20215485633567310.1007/s10462-021-09967-1 – reference: ValsamisAIBouckovalasGDPapadimitriouAGParametric investigation of lateral spreading of gently sloping liquefied groundSoil Dyn Earthq Eng201030649050810.1016/j.soildyn.2010.01.005 – reference: Bendtsen MC (2022) Package ‘pso’ http://cran.ma.ic.ac.uk/web/packages/pso/pso.pdf. Last accesed 6 May 2022 – reference: Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv preprint: arXiv: 181011363 – reference: HussainSMustafaMWJumaniTABalochSKAlotaibiHKhanIKhanAA novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detectionEnergy Rep202174425443610.1016/j.egyr.2021.07.008 – reference: ZhangJZhaoJXEmpirical models for estimating liquefaction-induced lateral spread displacementSoil Dyn Earthq Eng2005256439450273001710.1016/j.soildyn.2005.04.002 – reference: BaziarMSaeedi AzizkandiAEvaluation of lateral spreading utilizing artificial neural network and genetic programmingInt J Civ Eng2013112100111 – reference: OommenTBaiseLGModel development and validation for intelligent data collection for lateral spread displacementsJ Comput Civ Eng201024646747710.1061/(ASCE)CP.1943-5487.0000050 – reference: RollinsKMRoyJAthanasopoulos-ZekkosAZekkosDAmorosoSCaoZMilanaGVassalloMDi GiulioGA new Vs-based liquefaction-triggering procedure for gravelly soilsJ Geotech Geoenviron Eng202214860402204010.1061/(ASCE)GT.1943-5606.0002784 – reference: WangLWuJZhangWWangLCuiWEfficient seismic stability analysis of embankment slopes subjected to water level changes using gradient boosting algorithmsFront Earth Sci20219117910.3389/feart.2021.807317 – reference: Micci-BarrecaDA preprocessing scheme for high-cardinality categorical attributes in classification and prediction problemsACM SIGKDD Explor Newsl200131273210.1145/507533.507538 – reference: WangJRahmanMA neural network model for liquefaction-induced horizontal ground displacementSoil Dyn Earthq Eng199918855556810.1016/S0267-7261(99)00027-5 – reference: Kiranyaz S, Ince T, Gabbouj M (2014) Particle swarm optimization. multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, pp 45–82 – reference: ZhangWGuXTangLYinYLiuDZhangYApplication of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challengeGondwana Res202210911710.1016/j.gr.2022.03.015 – reference: Mian J, Kontoe S, Free M (2013) Assessing and managing the risk of earthquake-induced liquefaction to civil infrastructure. Handbook of seismic risk analysis and management of civil infrastructure systems. Elsevier, pp 113–138 – reference: ChangIParkHHongELeeJKwonNPredicting effects of built environment on fatal pedestrian accidents at location-specific level: Application of XGBoost and SHAPAccid Anal Prev202216610.1016/j.aap.2021.106545 – reference: DemirSSahinEKAn investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoostNeural Comput Appl202210.1007/s00521-022-07856-4 – reference: KayaZPredicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniquesInt J Geomech20161640401509510.1061/(ASCE)GM.1943-5622.0000607 – reference: ProkhorenkovaLGusevGVorobevADorogushAVGulinACatBoost: unbiased boosting with categorical featuresAdv Neural Inf Process Syst20183166386648 – reference: LeeS-BKimY-JHwangSSonHLeeSKParkK-IKimY-GPredicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signalsParkinsonism Rel Disord202295778510.1016/j.parkreldis.2022.01.011 – reference: DemirSSahinEKLiquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processingEnviron Earth Sci2022811811710.1007/s12665-022-10578-4 – reference: StehmanSVSelecting and interpreting measures of thematic classification accuracyRemote Sens Environ1997621778910.1016/S0034-4257(97)00083-7 – reference: GomesGFde AlmeidaFAAncelottiACda CunhaSSInverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fieldsEng Comput20213743771379110.1007/s00366-020-01027-6 – reference: GillinsDTBartlettSFMultilinear regression equations for predicting lateral spread displacement from soil type and cone penetration test dataJ Geotech Geoenviron Eng201314040401304710.1061/(ASCE)GT.1943-5606.0001051 – reference: GuWMorgensternNRobertsonPPostearthquake deformation analysis of Wildlife siteJ Geotech Eng1994120227428910.1061/(ASCE)0733-9410(1994)120:2(274) – reference: Youd TL (1992) Liquefaction, ground failure, and consequent damage during the 22 April 1991 Costa Rica earthquake. In: Proceedings of the NSF/UCR US-Costa Rica Workshop on the Costa Rica Earthquakes of 1990–1991: Effects on soils and structures – reference: HuangYYuMReview of soil liquefaction characteristics during major earthquakes of the twenty-first centuryNat Hazards201365323752384330100410.1007/s11069-012-0433-9 – reference: BentéjacCCsörgőAMartínez-MuñozGA comparative analysis of gradient boosting algorithmsArtif Intell Rev20215431937196710.1007/s10462-020-09896-5 – reference: KuhnMJohnsonKFeature engineering and selection: a practical approach for predictive modelsCRC Press201910.1201/9781315108230 – reference: Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, Long Beach California, USA, pp 4768–4777. https://doi.org/10.5555/3295222.3295230 – reference: NewmarkNMEffects of earthquakes on dams and embankmentsGeotechnique196515213916010.1680/geot.1965.15.2.139 – reference: Shi Y, Ke G, Soukhavong D, Lamb J, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y, Titov N (2022) Package ‘lightgbm’ https://cran.rstudio.com/web/packages/lightgbm/lightgbm.pdf (Last accessed May 6, 2022) – reference: CohenJA coefficient of agreement for nominal scalesEduc Psychol Meas1960201374610.1177/001316446002000104 – reference: Durante MG, Rathje EM (2021) Machine learning models for the evaluation of the lateral spreading hazard in the Avon River area following the 2011 Christchurch earthquake. DesignSafe-CI https://doi.org/10.17603/ds2-3zdj-4937. – reference: Elshawi R, Maher M, Sakr S (2019) Automated machine learning: State-of-the-art and open challenges. arXiv preprint: arXiv: 190602287 – volume: 37 start-page: 3771 issue: 4 year: 2021 ident: 1777_CR27 publication-title: Eng Comput doi: 10.1007/s00366-020-01027-6 – volume: 12 start-page: 469 issue: 1 year: 2021 ident: 1777_CR77 publication-title: Geosci Front doi: 10.1016/j.gsf.2020.03.007 – volume: 120 start-page: 274 issue: 2 year: 1994 ident: 1777_CR29 publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1994)120:2(274) – volume: 65 start-page: 2375 issue: 3 year: 2013 ident: 1777_CR33 publication-title: Nat Hazards doi: 10.1007/s11069-012-0433-9 – volume: 140 start-page: 04013047 issue: 4 year: 2013 ident: 1777_CR25 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001051 – ident: 1777_CR7 – volume: 1 start-page: 1189 year: 2001 ident: 1777_CR23 publication-title: Ann Stat – ident: 1777_CR38 doi: 10.1109/ICNN.1995.488968 – volume: 147 start-page: 05021002 issue: 5 year: 2021 ident: 1777_CR46 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0002491 – ident: 1777_CR31 doi: 10.2208/jscej.1986.376_221 – volume: 11 start-page: 100 issue: 2 year: 2013 ident: 1777_CR6 publication-title: Int J Civ Eng – volume: 170 start-page: 1 year: 2014 ident: 1777_CR26 publication-title: Eng Geol doi: 10.1016/j.enggeo.2013.12.003 – ident: 1777_CR20 – ident: 1777_CR43 – volume: 12 start-page: 2218 issue: 6 year: 2020 ident: 1777_CR54 publication-title: Sustainability doi: 10.3390/su12062218 – volume: 8 start-page: 1627 issue: 10 year: 2021 ident: 1777_CR62 publication-title: IEEE/CAA J Autom Sin doi: 10.1109/JAS.2021.1004129 – volume: 81 start-page: 1 issue: 18 year: 2022 ident: 1777_CR14 publication-title: Environ Earth Sci doi: 10.1007/s12665-022-10578-4 – ident: 1777_CR47 doi: 10.5555/3295222.3295230 – volume: 17 start-page: 26 issue: 1 year: 2019 ident: 1777_CR68 publication-title: J Electron Sci Tech – volume: 140 start-page: 110 issue: 1 year: 2014 ident: 1777_CR22 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000969 – volume: 4 start-page: 197 issue: 4 year: 1987 ident: 1777_CR30 publication-title: Comput Geotech doi: 10.1016/0266-352X(87)90001-2 – volume: 16 start-page: 04015095 issue: 4 year: 2016 ident: 1777_CR36 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000607 – volume: 136 start-page: 1334 issue: 10 year: 2010 ident: 1777_CR59 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0000338 – volume: 38 start-page: 200 issue: 1 year: 2001 ident: 1777_CR11 publication-title: Can Geotech J doi: 10.1139/t00-087 – volume: 9 start-page: 1179 year: 2021 ident: 1777_CR66 publication-title: Front Earth Sci doi: 10.3389/feart.2021.807317 – ident: 1777_CR19 – ident: 1777_CR17 doi: 10.17603/ds2-3zdj-4937 – ident: 1777_CR3 – volume: 181 start-page: 454 year: 2022 ident: 1777_CR63 publication-title: Comput Commun doi: 10.1016/j.comcom.2021.10.007 – volume: 415 start-page: 295 year: 2020 ident: 1777_CR69 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.061 – volume-title: Geotechnical earthquake engineering year: 1996 ident: 1777_CR41 – volume: 143 start-page: 04016086 issue: 1 year: 2017 ident: 1777_CR50 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0001584 – volume: 18 start-page: 555 issue: 8 year: 1999 ident: 1777_CR65 publication-title: Soil Dyn Earthq Eng doi: 10.1016/S0267-7261(99)00027-5 – volume: 31 start-page: 6638 year: 2018 ident: 1777_CR55 publication-title: Adv Neural Inf Process Syst – volume: 156 year: 2022 ident: 1777_CR67 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2022.107214 – ident: 1777_CR72 doi: 10.3133/pp993 – volume: 121 start-page: 316 issue: 4 year: 1995 ident: 1777_CR4 publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1995)121:4(316) – volume: 37 start-page: 2288 issue: 4 year: 2021 ident: 1777_CR18 publication-title: Earthq Spectra doi: 10.1177/87552930211004613 – volume: 64 start-page: 205 year: 2020 ident: 1777_CR28 publication-title: Inf Fusion doi: 10.1016/j.inffus.2020.07.007 – year: 2022 ident: 1777_CR15 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07856-4 – volume: 148 start-page: 04022040 issue: 6 year: 2022 ident: 1777_CR57 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)GT.1943-5606.0002784 – volume: 25 start-page: 439 issue: 6 year: 2005 ident: 1777_CR78 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2005.04.002 – volume: 55 start-page: 255 issue: 3 year: 2012 ident: 1777_CR13 publication-title: New Zealand J Geol Geophy doi: 10.1080/00288306.2012.699895 – volume: 166 year: 2022 ident: 1777_CR9 publication-title: Accid Anal Prev doi: 10.1016/j.aap.2021.106545 – volume: 33 start-page: 222 issue: 4–5 year: 2006 ident: 1777_CR35 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2006.05.001 – ident: 1777_CR52 doi: 10.1007/978-3-030-61111-8_2 – volume: 10 start-page: 2188 issue: 18 year: 2021 ident: 1777_CR58 publication-title: Electronics doi: 10.3390/electronics10182188 – ident: 1777_CR60 – volume: 24 start-page: 467 issue: 6 year: 2010 ident: 1777_CR53 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000050 – volume: 202 year: 2021 ident: 1777_CR32 publication-title: J Petrol Sci Eng doi: 10.1016/j.petrol.2021.108559 – volume: 24 start-page: 142 issue: 1 year: 2011 ident: 1777_CR56 publication-title: Eng App Artif Intell doi: 10.1016/j.engappai.2010.09.010 – ident: 1777_CR16 – volume: 54 start-page: 5633 issue: 8 year: 2021 ident: 1777_CR75 publication-title: Artif Intell Rev doi: 10.1007/s10462-021-09967-1 – volume: 95 start-page: 77 year: 2022 ident: 1777_CR44 publication-title: Parkinsonism Rel Disord doi: 10.1016/j.parkreldis.2022.01.011 – volume: 3 start-page: 27 issue: 1 year: 2001 ident: 1777_CR49 publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/507533.507538 – volume: 64 start-page: 1 year: 2018 ident: 1777_CR39 publication-title: Int J Appl Earth Obs Geoinf – ident: 1777_CR70 – year: 2019 ident: 1777_CR42 publication-title: CRC Press doi: 10.1201/9781315108230 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 1777_CR12 publication-title: Educ Psychol Meas doi: 10.1177/001316446002000104 – volume: 25 start-page: 1 issue: 1 year: 2005 ident: 1777_CR5 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2004.09.001 – volume: 62 start-page: 77 issue: 1 year: 1997 ident: 1777_CR61 publication-title: Remote Sens Environ doi: 10.1016/S0034-4257(97)00083-7 – ident: 1777_CR10 doi: 10.1145/2939672.2939785 – volume: 15 start-page: 139 issue: 2 year: 1965 ident: 1777_CR51 publication-title: Geotechnique doi: 10.1680/geot.1965.15.2.139 – volume: 28 start-page: 169 issue: 3 year: 2008 ident: 1777_CR24 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2007.06.014 – ident: 1777_CR40 doi: 10.1007/978-3-642-37846-1_3 – volume: 130 start-page: 861 issue: 8 year: 2004 ident: 1777_CR76 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2004)130:8(861) – volume: 109 start-page: 1 year: 2022 ident: 1777_CR74 publication-title: Gondwana Res doi: 10.1016/j.gr.2022.03.015 – volume: 30 start-page: 490 issue: 6 year: 2010 ident: 1777_CR64 publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2010.01.005 – volume: 78 start-page: 3649 issue: 5 year: 2019 ident: 1777_CR2 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-018-1319-1 – volume: 2022 start-page: 278 year: 2022 ident: 1777_CR45 publication-title: Geo-Congress – volume: 113 start-page: 1374 issue: 11 year: 1987 ident: 1777_CR73 publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1987)113:11(1374) – volume: 54 start-page: 1937 issue: 3 year: 2021 ident: 1777_CR8 publication-title: Artif Intell Rev doi: 10.1007/s10462-020-09896-5 – volume: 110 start-page: 1549 issue: 4 year: 2020 ident: 1777_CR79 publication-title: Bull Seismol Soc Am doi: 10.1785/0120200025 – volume: 30 start-page: 1 year: 2017 ident: 1777_CR37 publication-title: Adv Neural Inf Proces Syst – ident: 1777_CR1 – ident: 1777_CR48 doi: 10.1533/9780857098986.1.113 – ident: 1777_CR21 doi: 10.1007/978-3-030-05318-5_1 – volume: 7 start-page: 4425 year: 2021 ident: 1777_CR34 publication-title: Energy Rep doi: 10.1016/j.egyr.2021.07.008 – volume: 128 start-page: 1007 issue: 12 year: 2002 ident: 1777_CR71 publication-title: J Geotech Geoenviron Eng doi: 10.1061/(ASCE)1090-0241(2002)128:12(1007) |
| SSID | ssj0063246 |
| Score | 2.548069 |
| Snippet | Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3403 |
| SubjectTerms | Additives Algorithms Complex Fluids and Microfluidics Computer science Computers Datasets Earthquake damage Earthquake prediction Earthquakes Engineering Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Liquefaction Machine learning Optimization Particle swarm optimization Performance measurement Performance prediction Research Paper Seismic activity Soft and Granular Matter Soil Science & Conservation Solid Mechanics Spreading |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcIADhQJioUVz4MZabPyR2FwQrdpygLJSQdpb5DjOFim7WZIAP65_rh7H6QISvXDMl-XIz-Ox580bQl5ZYfjMJJKmvHBUKC2oNtZRhmJknJWZSW0oNpGdnanFQs_jgVsXaZWjTQyGumwsnpG_wRxLqTFo8G7znWLVKIyuxhIat8kdVElIAnXvfLTEqEQesotUmlDvV8iYNDOkzoWoJnLZPSazjCZ_Lkxbb_OvAGlYd052_7fHD8mD6HHC-wEij8gtt94ju2M1B4iTe4_c_02a8DG5nLcYwkFSNDTWBhUn66CpoEbF15gPQf2O3mOjhNpgJnMN_i8GVj4goX4JyzZQynrwznwXGjP10neyv1h1cC1VUQIeB8Mmwhi6X6ZdQeOt2Sqmib6F-flnujg9xGam4eIjHiucHn6aglmX4c6R6cPzJ-TryfGXow80FnqghgvWU5cWkjvu95pSFUZUKrOaGSWNKqXxK4N1UlpdyooxY2cYiUx4VdmKIUnVzDR_SnbWzdo9IyArP9A8U1ylRvBKK1Ewrr0bJwpjmXATkoyjnNuogo7FOOp8q9-MyMg9MvKAjDyZkNfX32wGDZAb394f4ZBHe9DlWyxMyHQE1Pbxv1t7fnNrL8g95r2ugbu2T3b69oc7IHftz_5b174Ms-EKHWcRxw priority: 102 providerName: ProQuest |
| Title | Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost |
| URI | https://link.springer.com/article/10.1007/s11440-022-01777-1 https://www.proquest.com/docview/2825591679 |
| Volume | 18 |
| WOSCitedRecordID | wos000906684600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-1133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: RSV dateStart: 20060501 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdg4wEe-I_oNio_8EYtNXac2Htbp208sBJRQH2LLo5TJqXNlAT4cHw5fK6zAgIkeImU2DlZuvP5znf3O0JemhjEFCLJElFYFisdMw3GMo5gZIKXKSTGN5tI53O1XOosFIV1Q7b7EJL0mnpX7ObjkJh97qQoTZnzefYlos2gj774OOhfxB_3NUUqiZizJmQolfk9jZ-Po52N-UtY1J825w_-b50Pyf1gXdKTrTg8Irfs5jG59wPm4BPyLWsxNoPZzrQxxsMzGUubitYI5RoKHZhz1R3TS1oDlijX1C1im25PMVN-RVetzxXrqbPSO08M6lXTXvWf1h29waAoKd7z0usgn7T7Cu2aNk5NrUP95zHNFm_Z8mKGZCb-5Q3eF1zMLicUNqX_cgq9H39KPpyfvT99zUIHBwYi5j2zSSGFFc6JlKqAuFKp0RyUBFVKcCrfWCmNLmXFOZgphhgjUVWm4ph9ClMtnpG9TbOxzwmVleOlSJVQCcSi0iouuNDOPosLMDy2IxINjMxNgDfHLht1vgNmRsbkjjG5Z0wejcirm3-ut-Aef519NMhHHjZ6l2Ppr9QYyxqRySAPu-E_Uzv4t-mH5C42ut8mqR2Rvb79bF-QO-ZLf9W1Y7I_O5tn78bk9iXP8Jkuxn5TfAcdHQS8 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoFBALLTgA3BhLRo7ThwkDt2FPtTtsoIi7S14HWeplH2QBCr-FH-AP1eP1-kCEr31wDEvK3E-j8ee-b4BeKZDxXdUIGjEx4aGMglporShDMXIOMtiFWlXbCIeDORolAzX4GfDhcG0ysYmOkOdzTXukb9CjqVIMGjgMyiPzI8zuz6r3hy-tT_zOWN77056B9SXEKCKh6ymJhoLbrhdxQg5VmEuY50wJYWSmVDW5mgjhE4ykTOm9A7GuAKe5zpnmP6onNISe7H4SrFKFUZzfcmOa7AuI_sxLVgf9rq7Hxrbj9rnjs8ko4BaT0Z4ms6SrOfiqJg9b0dBHNPgz6lw5d_-FZJ1M93exv_WR3fgtvepye5yENyFNTPbhI2mXgXx5msTbv0mvngPfg1LDFJh2jeZa-10qrQh85wUqGnrGR_0dJZZ9GekUMjVLojttSXvgCBlYEImpUuaq4ldrlSuMVVM7EvWX6YVuRDjyAhueJOFH6ikOlPllMytvZ56IuxrMvz4no72u9hMxx30ceNkv3vcIWqWuTM9Vbvr9-HTlfTxA2jN5jPzEIjILbB4LLmMVMjzRIZjxhPrqIZjpVlo2hA0qEq113nHciNFulKoRiSmFompQ2IatOHlxTOLpcrJpXdvNfBLvcWr0hX22tBpALy6_O_WHl3e2lO4cXBy3E_7h4Ojx3CTWR9zmam3Ba26_Ga24br-Xp9W5RM_Fgl8vmq0nwO-n3Cu |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqLUJwoFBAbCngA5xYq40dJw4SQmzbLVXLEvEh7S04jrOtlE2WJFDx1-DP4XGcLiDRWw8c8-WD82Y89sx7g9BT5Uu2Kz1OApZq4ovIJ5FUmlAQI2M0C2WgbLOJcDoVs1kUr6EfPRcGyip7n2gddVYpOCPfAY4ljyBpsJO7soh4f_Jq-YVABynItPbtNDqIHOvv52b71rw82jf_-hmlk4OPe2-I6zBAJPNpS3SQcqaZ2eRwkUo_F6GKqBRcioxL45KU5lxFGc8plWoXUmAey3OVU6iOlFaIybj_9ZCZTc8ArY8PpvH7fh0AHXTLbRKBR0xUwx1lpyPu2ZwqVNIbiwhD4v25LK5i3b_Ss3bVm2z8z_N1G91ysTZ-3RnHHbSmy0200fexwM6tbaKbv4ky3kU_4xqSV1AOjiulrH6V0rjKcQFat44JQs7KzFhFhgsJHO4Cmxns-AgYqARzPK9tMV2LzTamsYPJYm4mpT1dNPhCpCPDcBCOl86AcXMu6wWujB9fOILsCxx_eEdmh2MYZmQvTuBA5XD8doRlmdk7e7K1z--hT1cyoffRoKxK_QBhnhuQsVAwEUif5ZHwU8oiE8D6qVTU10Pk9QhLlNN_hzYkRbJSrgZUJgaViUVl4g3R84tvlp36yaVvb_dQTJwnbJIVDodo1IN59fjfo21dPtoTdN3gOTk5mh4_RDeoCT27Ar5tNGjrr_oRuqa-tWdN_diZJUafrxrZvwDTNHmH |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+occurrence+of+liquefaction-induced+lateral+spreading+using+gradient+boosting+algorithms+integrated+with+particle+swarm+optimization%3A+PSO-XGBoost%2C+PSO-LightGBM%2C+and+PSO-CatBoost&rft.jtitle=Acta+geotechnica&rft.au=Demir%2C+Sel%C3%A7uk&rft.au=Sahin%2C+Emrehan+Kutlug&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=18&rft.issue=6&rft.spage=3403&rft.epage=3419&rft_id=info:doi/10.1007%2Fs11440-022-01777-1&rft.externalDocID=10_1007_s11440_022_01777_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon |