Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost

Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes. Although it is impossible to preclude the occurrence of earthquakes, it is possible to predict its adverse effects through computer science such...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta geotechnica Ročník 18; číslo 6; s. 3403 - 3419
Hlavní autoři: Demir, Selçuk, Sahin, Emrehan Kutlug
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2023
Springer Nature B.V
Témata:
ISSN:1861-1125, 1861-1133
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes. Although it is impossible to preclude the occurrence of earthquakes, it is possible to predict its adverse effects through computer science such as machine learning (ML) algorithms. In this study, the ability of recently developed and powerful ML algorithms such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) was investigated to predict the occurrence of liquefaction-induced lateral spreading. A relatively large dataset was used to develop ML models, including 6704 lateral spread observations from the 2011 Christchurch earthquake in New Zealand. The particle swarm optimization (PSO) algorithm is utilized for hyperparameter optimization of the gradient boosting models, called the PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost. For comparison, the prediction results of the PSO optimized gradient boosting models were compared with that of the models using default parameters (i.e., XGBoost, CatBoost, and LightGBM). In addition, the SHapley Additive exPlanations approach is employed to explore the feature importance of the variables included in the dataset. The findings demonstrated that all the three gradient boosting algorithms performed well in predicting lateral spreading occurrence. Moreover, PSO-CatBoost outperformed other state-of-the-art models in terms of performance metrics. However, the PSO-LightGBM model may be considered the best choice for computers with older-gen hardware and important tasks that need to be completed in a short time. This study confirms the effectiveness of the proposed models, and the use of these boosting algorithms especially optimized with PSO is recommended for predicting the occurrence of liquefaction-induced lateral spreading.
AbstractList Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes. Although it is impossible to preclude the occurrence of earthquakes, it is possible to predict its adverse effects through computer science such as machine learning (ML) algorithms. In this study, the ability of recently developed and powerful ML algorithms such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) was investigated to predict the occurrence of liquefaction-induced lateral spreading. A relatively large dataset was used to develop ML models, including 6704 lateral spread observations from the 2011 Christchurch earthquake in New Zealand. The particle swarm optimization (PSO) algorithm is utilized for hyperparameter optimization of the gradient boosting models, called the PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost. For comparison, the prediction results of the PSO optimized gradient boosting models were compared with that of the models using default parameters (i.e., XGBoost, CatBoost, and LightGBM). In addition, the SHapley Additive exPlanations approach is employed to explore the feature importance of the variables included in the dataset. The findings demonstrated that all the three gradient boosting algorithms performed well in predicting lateral spreading occurrence. Moreover, PSO-CatBoost outperformed other state-of-the-art models in terms of performance metrics. However, the PSO-LightGBM model may be considered the best choice for computers with older-gen hardware and important tasks that need to be completed in a short time. This study confirms the effectiveness of the proposed models, and the use of these boosting algorithms especially optimized with PSO is recommended for predicting the occurrence of liquefaction-induced lateral spreading.
Author Demir, Selçuk
Sahin, Emrehan Kutlug
Author_xml – sequence: 1
  givenname: Selçuk
  orcidid: 0000-0003-2520-4395
  surname: Demir
  fullname: Demir, Selçuk
  email: selcukdemir@ibu.edu.tr
  organization: Department of Civil Engineering, Bolu Abant Izzet Baysal University
– sequence: 2
  givenname: Emrehan Kutlug
  orcidid: 0000-0002-9830-8585
  surname: Sahin
  fullname: Sahin, Emrehan Kutlug
  organization: Department of Civil Engineering, Bolu Abant Izzet Baysal University
BookMark eNp9kVtrFDEUx4NUsK1-AZ8Cvjaay2QuvtmlrsKWFlrBt3A2k2xTZpMxyVD0q_XLNTMrCn3oS5Jz-Z1zcv4n6MgHbxB6z-hHRmnzKTFWVZRQzgllTdMQ9gods7ZmhDEhjv69uXyDTlK6p7QWvKqP0eN1NL3T2fkdDlpPMRqvDQ4WD-7XZCyUUPDE-X7SpscDZBNhwGmMBvoZmtJ87mKxjM94G0JaisGwC9Hlu33CzmdTEnLhH4oHjxCz04PB6QHiHocxu737A3Ojz_j65or8XJ_PZc4WY-N2d3l9fnmGwfeLZwV5ib9Fry0Mybz7e5-iH18vblffyOZq_X31ZUNAVDwTU2-lMKKtqGy3UNm20R2HVkLbSzCgtZFSd720nIOmoms6JqzVlrOKUaCdOEUfDnXHGMpOUlb3YYq-tFS85VJ2rG7mrPaQpWNIKRqrtMvLp3IENyhG1SyVOkililRqkUqxgvJn6BjdHuLvlyFxgIoWZeEm_p_qBeoJRJ6shg
CitedBy_id crossref_primary_10_1007_s00521_024_09893_7
crossref_primary_10_1016_j_jobe_2025_112879
crossref_primary_10_1016_j_optlastec_2024_110946
crossref_primary_10_1016_j_swevo_2025_102013
crossref_primary_10_1155_adce_6623874
crossref_primary_10_1007_s11269_024_04058_6
crossref_primary_10_3390_sym17010103
crossref_primary_10_1007_s41939_024_00480_w
crossref_primary_10_1007_s42243_024_01400_5
crossref_primary_10_1016_j_istruc_2024_106524
crossref_primary_10_1080_17538947_2024_2409964
crossref_primary_10_3934_era_2025167
crossref_primary_10_1007_s00521_025_11387_z
crossref_primary_10_3390_rs17020240
crossref_primary_10_1016_j_enbuild_2025_115614
crossref_primary_10_1016_j_jrmge_2025_05_029
crossref_primary_10_3390_pr13041118
crossref_primary_10_1016_j_conbuildmat_2025_141467
crossref_primary_10_1080_19942060_2023_2244558
crossref_primary_10_1016_j_envdev_2025_101298
crossref_primary_10_1088_1361_6501_ad1807
crossref_primary_10_2166_hydro_2024_292
crossref_primary_10_1007_s11600_024_01307_5
crossref_primary_10_1016_j_dt_2025_06_019
crossref_primary_10_3390_rs15215202
crossref_primary_10_1016_j_jenvman_2025_126910
crossref_primary_10_1080_01431161_2025_2562001
crossref_primary_10_1016_j_scitotenv_2024_174363
crossref_primary_10_1080_17499518_2024_2395560
crossref_primary_10_1016_j_jrmge_2024_05_043
crossref_primary_10_1080_17538947_2025_2510570
crossref_primary_10_1186_s42162_025_00472_1
crossref_primary_10_1038_s41598_024_78845_x
crossref_primary_10_1007_s13042_024_02279_0
crossref_primary_10_1016_j_apenergy_2024_124911
crossref_primary_10_1038_s41598_025_03493_8
crossref_primary_10_1016_j_egyai_2025_100470
crossref_primary_10_1038_s41598_024_76010_y
crossref_primary_10_1007_s00170_024_14832_w
crossref_primary_10_3390_rs17040702
crossref_primary_10_3390_app14188317
crossref_primary_10_1155_adce_3042895
crossref_primary_10_1007_s11440_023_02113_x
crossref_primary_10_1080_01969722_2025_2546604
crossref_primary_10_1007_s11053_025_10546_2
crossref_primary_10_1016_j_oceaneng_2025_122422
crossref_primary_10_1016_j_soildyn_2023_108250
crossref_primary_10_1007_s10064_025_04219_w
crossref_primary_10_1016_j_microc_2025_114150
crossref_primary_10_1016_j_tust_2025_106632
crossref_primary_10_1007_s00477_024_02745_9
crossref_primary_10_1007_s13198_024_02535_0
crossref_primary_10_3390_electronics13204036
crossref_primary_10_1007_s10064_025_04178_2
crossref_primary_10_1007_s40996_025_02006_x
crossref_primary_10_1109_ACCESS_2025_3594564
crossref_primary_10_1177_14727978251361856
crossref_primary_10_1016_j_jclepro_2025_144672
crossref_primary_10_1016_j_jrmge_2024_05_057
crossref_primary_10_1016_j_coldregions_2025_104594
crossref_primary_10_1016_j_uclim_2023_101503
crossref_primary_10_1016_j_rineng_2024_103492
crossref_primary_10_51173_ijds_v2i2_30
crossref_primary_10_1016_j_scitotenv_2025_180355
crossref_primary_10_1016_j_tws_2024_111763
crossref_primary_10_1007_s10706_025_03091_5
crossref_primary_10_1016_j_cscm_2023_e02554
crossref_primary_10_1080_13632469_2025_2496650
crossref_primary_10_1007_s12145_023_01059_8
crossref_primary_10_1016_j_compgeo_2025_107125
crossref_primary_10_1038_s41598_025_96527_0
Cites_doi 10.1007/s00366-020-01027-6
10.1016/j.gsf.2020.03.007
10.1061/(ASCE)0733-9410(1994)120:2(274)
10.1007/s11069-012-0433-9
10.1061/(ASCE)GT.1943-5606.0001051
10.1109/ICNN.1995.488968
10.1061/(ASCE)GT.1943-5606.0002491
10.2208/jscej.1986.376_221
10.1016/j.enggeo.2013.12.003
10.3390/su12062218
10.1109/JAS.2021.1004129
10.1007/s12665-022-10578-4
10.5555/3295222.3295230
10.1061/(ASCE)GT.1943-5606.0000969
10.1016/0266-352X(87)90001-2
10.1061/(ASCE)GM.1943-5622.0000607
10.1061/(ASCE)GT.1943-5606.0000338
10.1139/t00-087
10.3389/feart.2021.807317
10.17603/ds2-3zdj-4937
10.1016/j.comcom.2021.10.007
10.1016/j.neucom.2020.07.061
10.1061/(ASCE)GT.1943-5606.0001584
10.1016/S0267-7261(99)00027-5
10.1016/j.soildyn.2022.107214
10.3133/pp993
10.1061/(ASCE)0733-9410(1995)121:4(316)
10.1177/87552930211004613
10.1016/j.inffus.2020.07.007
10.1007/s00521-022-07856-4
10.1061/(ASCE)GT.1943-5606.0002784
10.1016/j.soildyn.2005.04.002
10.1080/00288306.2012.699895
10.1016/j.aap.2021.106545
10.1016/j.compgeo.2006.05.001
10.1007/978-3-030-61111-8_2
10.3390/electronics10182188
10.1061/(ASCE)CP.1943-5487.0000050
10.1016/j.petrol.2021.108559
10.1016/j.engappai.2010.09.010
10.1007/s10462-021-09967-1
10.1016/j.parkreldis.2022.01.011
10.1145/507533.507538
10.1201/9781315108230
10.1177/001316446002000104
10.1016/j.soildyn.2004.09.001
10.1016/S0034-4257(97)00083-7
10.1145/2939672.2939785
10.1680/geot.1965.15.2.139
10.1016/j.soildyn.2007.06.014
10.1007/978-3-642-37846-1_3
10.1061/(ASCE)1090-0241(2004)130:8(861)
10.1016/j.gr.2022.03.015
10.1016/j.soildyn.2010.01.005
10.1007/s10064-018-1319-1
10.1061/(ASCE)0733-9410(1987)113:11(1374)
10.1007/s10462-020-09896-5
10.1785/0120200025
10.1533/9780857098986.1.113
10.1007/978-3-030-05318-5_1
10.1016/j.egyr.2021.07.008
10.1061/(ASCE)1090-0241(2002)128:12(1007)
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11440-022-01777-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1861-1133
EndPage 3419
ExternalDocumentID 10_1007_s11440_022_01777_1
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MM-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a342t-e6b53e384058ba4f87c92a85a8d5aeacce55c9d5f22ac0397913ffcf21410a093
IEDL.DBID RSV
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906684600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-1125
IngestDate Wed Nov 05 14:49:23 EST 2025
Sat Nov 29 03:35:03 EST 2025
Tue Nov 18 22:02:45 EST 2025
Fri Feb 21 02:43:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Liquefaction
Particle swarm optimization
LightGBM
XGBoost
CatBoost
Lateral spreading
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-e6b53e384058ba4f87c92a85a8d5aeacce55c9d5f22ac0397913ffcf21410a093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9830-8585
0000-0003-2520-4395
PQID 2825591679
PQPubID 54451
PageCount 17
ParticipantIDs proquest_journals_2825591679
crossref_citationtrail_10_1007_s11440_022_01777_1
crossref_primary_10_1007_s11440_022_01777_1
springer_journals_10_1007_s11440_022_01777_1
PublicationCentury 2000
PublicationDate 20230600
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 6
  year: 2023
  text: 20230600
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Acta geotechnica
PublicationTitleAbbrev Acta Geotech
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948
Youd TL, Hoose SN (1978) Historic ground failures in northern California triggered by earthquakes. US Government Printing Office
YoudTLHansenCMBartlettSFRevised multilinear regression equations for prediction of lateral spread displacementJ Geotech Geoenviron Eng2002128121007101710.1061/(ASCE)1090-0241(2002)128:12(1007)
RezaniaMFaramarziAJavadiAAAn evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacementEng App Artif Intell201124114215310.1016/j.engappai.2010.09.010
ProkhorenkovaLGusevGVorobevADorogushAVGulinACatBoost: unbiased boosting with categorical featuresAdv Neural Inf Process Syst20183166386648
WuJChenX-YZhangHXiongL-DLeiHDengS-HHyperparameter optimization for machine learning models based on Bayesian optimizationJ Electron Sci Tech20191712640
LeeS-BKimY-JHwangSSonHLeeSKParkK-IKimY-GPredicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signalsParkinsonism Rel Disord202295778510.1016/j.parkreldis.2022.01.011
ValsamisAIBouckovalasGDPapadimitriouAGParametric investigation of lateral spreading of gently sloping liquefied groundSoil Dyn Earthq Eng201030649050810.1016/j.soildyn.2010.01.005
Youd TL (1992) Liquefaction, ground failure, and consequent damage during the 22 April 1991 Costa Rica earthquake. In: Proceedings of the NSF/UCR US-Costa Rica Workshop on the Costa Rica Earthquakes of 1990–1991: Effects on soils and structures
GarciaSRomoMBoteroEA neurofuzzy system to analyze liquefaction-induced lateral spreadSoil Dyn Earthq Eng200828316918010.1016/j.soildyn.2007.06.014
Anghel A, Papandreou N, Parnell T, De Palma A, Pozidis H (2018) Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint: arXiv: 180904559
ChangIParkHHongELeeJKwonNPredicting effects of built environment on fatal pedestrian accidents at location-specific level: Application of XGBoost and SHAPAccid Anal Prev202216610.1016/j.aap.2021.106545
GuWMorgensternNRobertsonPPostearthquake deformation analysis of Wildlife siteJ Geotech Eng1994120227428910.1061/(ASCE)0733-9410(1994)120:2(274)
HamadaMTowhataIYasudaSIsoyamaRStudy on permanent ground displacement induced by seismic liquefactionComput Geotech19874419722010.1016/0266-352X(87)90001-2
YoudTLPerkinsDMMapping of liquefaction severity indexJ Geotech Eng1987113111374139210.1061/(ASCE)0733-9410(1987)113:11(1374)
GillinsDTBartlettSFMultilinear regression equations for predicting lateral spread displacement from soil type and cone penetration test dataJ Geotech Geoenviron Eng201314040401304710.1061/(ASCE)GT.1943-5606.0001051
WoldesellasseHTesfamariamSPrediction of lateral spreading displacement using conditional Generative Adversarial Network (cGAN)Soil Dyn Earthq Eng202215610.1016/j.soildyn.2022.107214
Bendtsen MC (2022) Package ‘pso’ http://cran.ma.ic.ac.uk/web/packages/pso/pso.pdf. Last accesed 6 May 2022
DuranteMGRathjeEMAn exploration of the use of machine learning to predict lateral spreadingEarthq Spectra20213742288231410.1177/87552930211004613
GomesGFde AlmeidaFAAncelottiACda CunhaSSInverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fieldsEng Comput20213743771379110.1007/s00366-020-01027-6
WangLWuJZhangWWangLCuiWEfficient seismic stability analysis of embankment slopes subjected to water level changes using gradient boosting algorithmsFront Earth Sci20219117910.3389/feart.2021.807317
FrankeKWKramerSLProcedure for the empirical evaluation of lateral spread displacement hazard curvesJ Geotech Geoenviron Eng2014140111012010.1061/(ASCE)GT.1943-5606.0000969
KeyportRNOommenTMarthaTRSajinkumarKGierkeJSA comparative analysis of pixel-and object-based detection of landslides from very high-resolution imagesInt J Appl Earth Obs Geoinf201864111
KramerSLGeotechnical earthquake engineering1996Upper SaddleRiverPrentice-Hall
TangDWangXYanYZhangDZhaoHADMS: An online attack detection and mitigation system for LDoS attacks via SDNComput Commun202218145447110.1016/j.comcom.2021.10.007
YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing202041529531610.1016/j.neucom.2020.07.061
BaziarMSaeedi AzizkandiAEvaluation of lateral spreading utilizing artificial neural network and genetic programmingInt J Civ Eng2013112100111
Hamada M, Yasuda S, Isoyama R, Emoto K (1986) Study on liquefaction induced permanent ground displacements. Report for the Association for the Development of Earthquake Prediction
HuangYYuMReview of soil liquefaction characteristics during major earthquakes of the twenty-first centuryNat Hazards201365323752384330100410.1007/s11069-012-0433-9
ZhangWLiHLiYLiuHChenYDingXApplication of deep learning algorithms in geotechnical engineering: a short critical reviewArtif Intell Rev20215485633567310.1007/s10462-021-09967-1
KuhnMJohnsonKFeature engineering and selection: a practical approach for predictive modelsCRC Press201910.1201/9781315108230
Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, Long Beach California, USA, pp 4768–4777. https://doi.org/10.5555/3295222.3295230
MontgomeryJBoulangerRWEffects of spatial variability on liquefaction-induced settlement and lateral spreadingJ Geotech Geoenviron Eng201714310401608610.1061/(ASCE)GT.1943-5606.0001584
TangJLiuGPanQA review on representative swarm intelligence algorithms for solving optimization problems: applications and trendsIEEE/CAA J Autom Sin202181016271643433919510.1109/JAS.2021.1004129
LittleMVRathjeEMSimulating the effects of site geometry and earthquake shaking characteristics on lateral spread displacementsGeo-Congress20222022278287
RollinsKMRoyJAthanasopoulos-ZekkosAZekkosDAmorosoSCaoZMilanaGVassalloMDi GiulioGA new Vs-based liquefaction-triggering procedure for gravelly soilsJ Geotech Geoenviron Eng202214860402204010.1061/(ASCE)GT.1943-5606.0002784
ZhangGRobertsonPKBrachmanREstimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration testJ Geotech Geoenviron Eng2004130886187110.1061/(ASCE)1090-0241(2004)130:8(861)
SharpMKDobryRPhillipsRCPT-based evaluation of liquefaction and lateral spreading in centrifugeJ Geotech Geoenviron Eng2010136101334134610.1061/(ASCE)GT.1943-5606.0000338
Chiru-DanzerMJuangCChristopherRSuberJEstimation of liquefaction-induced horizontal displacements using artificial neural networksCan Geotech J200138120020710.1139/t00-087
CohenJA coefficient of agreement for nominal scalesEduc Psychol Meas1960201374610.1177/001316446002000104
CubrinovskiMRobinsonKTaylorMHughesMOrenseRLateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakesNew Zealand J Geol Geophy201255325526910.1080/00288306.2012.699895
DemirSSahinEKAn investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoostNeural Comput Appl202210.1007/s00521-022-07856-4
StehmanSVSelecting and interpreting measures of thematic classification accuracyRemote Sens Environ1997621778910.1016/S0034-4257(97)00083-7
PhamBTQiCHoLSNguyen-ThoiTAl-AnsariNNguyenMDNguyenHDLyH-BLeHVPrakashIA novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soilSustainability2020126221810.3390/su12062218
Durante MG, Rathje EM (2021) Machine learning models for the evaluation of the lateral spreading hazard in the Avon River area following the 2011 Christchurch earthquake. DesignSafe-CI https://doi.org/10.17603/ds2-3zdj-4937.
WangJRahmanMA neural network model for liquefaction-induced horizontal ground displacementSoil Dyn Earthq Eng199918855556810.1016/S0267-7261(99)00027-5
Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B (2022) caret: Classification and regression training. R package version 6.0–92.
GohATZhangWAn improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splinesEng Geol201417011010.1016/j.enggeo.2013.12.003
Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv preprint: arXiv: 181011363
Faris AT, Seed RB, Kayen RE, Wu J (2006) A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading. In: Proceedings of 8th US conference on earthquake engineering. Citeseer, pp 1584–1593
ZhangJZhaoJXEmpirical models for estimating liquefaction-induced lateral spread displacementSoil Dyn Earthq Eng2005256439450273001710.1016/j.soildyn.2005.04.002
Feurer M, Hutter F (2019) Hyperparameter Optimization. Automated Machine Learning: Methods, Systems, Challenges. Springer, pp 3–33
Kiranyaz S, Ince T, Gabbouj M (2014) Particle swarm optimization. multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, pp 45–82
Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794
ZhangWGuXTangLYinYLiuDZhangYApplication of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challengeGondwana Res202210911710.1016/j.gr.2022.03.015
OommenTBaiseLGModel development and validation for intelligent data collection for lateral spread displacementsJ Comput Civ Eng201024646747710.1061/(ASCE)CP.1943-5487.0000050
Shi Y, Ke G, Soukhavong D, Lamb J, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y, Titov N (2022) Package ‘lightgbm’ https://cran.rstudio.com/web/packages/lightgbm/lightgbm.pdf (Last accessed May 6, 2022)
Micci-BarrecaDA preprocessing scheme for high-c
J Wu (1777_CR68) 2019; 17
T Oommen (1777_CR53) 2010; 24
1777_CR31
1777_CR70
1777_CR72
1777_CR38
SL Kramer (1777_CR41) 1996
L Prokhorenkova (1777_CR55) 2018; 31
AA Javadi (1777_CR35) 2006; 33
S Demir (1777_CR15) 2022
W Zhang (1777_CR77) 2021; 12
M Cubrinovski (1777_CR13) 2012; 55
JH Friedman (1777_CR23) 2001; 1
W Gu (1777_CR29) 1994; 120
NM Newmark (1777_CR51) 1965; 15
1777_CR21
1777_CR20
1777_CR60
KM Rollins (1777_CR57) 2022; 148
MV Little (1777_CR45) 2022; 2022
C Bentéjac (1777_CR8) 2021; 54
AI Valsamis (1777_CR64) 2010; 30
G Ke (1777_CR37) 2017; 30
GF Gomes (1777_CR27) 2021; 37
DT Gillins (1777_CR25) 2013; 140
M Rezania (1777_CR56) 2011; 24
MG Durante (1777_CR18) 2021; 37
Z Huang (1777_CR32) 2021; 202
H Woldesellasse (1777_CR67) 2022; 156
M Hamada (1777_CR30) 1987; 4
M Baziar (1777_CR5) 2005; 25
YJ Avval (1777_CR2) 2019; 78
W Zhang (1777_CR74) 2022; 109
1777_CR52
L Yang (1777_CR69) 2020; 415
MV Little (1777_CR46) 2021; 147
1777_CR10
BT Pham (1777_CR54) 2020; 12
D Micci-Barreca (1777_CR49) 2001; 3
RN Keyport (1777_CR39) 2018; 64
1777_CR16
P Zimmaro (1777_CR79) 2020; 110
1777_CR17
M Kuhn (1777_CR42) 2019
J Tang (1777_CR62) 2021; 8
J Zhang (1777_CR78) 2005; 25
W Zhang (1777_CR75) 2021; 54
S-B Lee (1777_CR44) 2022; 95
S Demir (1777_CR14) 2022; 81
1777_CR19
S González (1777_CR28) 2020; 64
L Wang (1777_CR66) 2021; 9
TL Youd (1777_CR71) 2002; 128
Y Huang (1777_CR33) 2013; 65
M Chiru-Danzer (1777_CR11) 2001; 38
AT Goh (1777_CR26) 2014; 170
D Tang (1777_CR63) 2022; 181
1777_CR40
1777_CR43
SF Bartlett (1777_CR4) 1995; 121
J Cohen (1777_CR12) 1960; 20
MK Sharp (1777_CR59) 2010; 136
1777_CR48
M Baziar (1777_CR6) 2013; 11
KW Franke (1777_CR22) 2014; 140
W Shafqat (1777_CR58) 2021; 10
J Wang (1777_CR65) 1999; 18
S Garcia (1777_CR24) 2008; 28
1777_CR47
1777_CR7
S Hussain (1777_CR34) 2021; 7
Z Kaya (1777_CR36) 2016; 16
J Montgomery (1777_CR50) 2017; 143
1777_CR3
SV Stehman (1777_CR61) 1997; 62
1777_CR1
TL Youd (1777_CR73) 1987; 113
I Chang (1777_CR9) 2022; 166
G Zhang (1777_CR76) 2004; 130
References_xml – reference: LittleMVRathjeEMSimulating the effects of site geometry and earthquake shaking characteristics on lateral spread displacementsGeo-Congress20222022278287
– reference: FrankeKWKramerSLProcedure for the empirical evaluation of lateral spread displacement hazard curvesJ Geotech Geoenviron Eng2014140111012010.1061/(ASCE)GT.1943-5606.0000969
– reference: GohATZhangWAn improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splinesEng Geol201417011010.1016/j.enggeo.2013.12.003
– reference: BartlettSFYoudTLEmpirical prediction of liquefaction-induced lateral spreadJ Geotech Eng1995121431632910.1061/(ASCE)0733-9410(1995)121:4(316)
– reference: FriedmanJHGreedy function approximation: a gradient boosting machineAnn Stat200111189123218733281043.62034
– reference: Hamada M, Yasuda S, Isoyama R, Emoto K (1986) Study on liquefaction induced permanent ground displacements. Report for the Association for the Development of Earthquake Prediction
– reference: Feurer M, Hutter F (2019) Hyperparameter Optimization. Automated Machine Learning: Methods, Systems, Challenges. Springer, pp 3–33
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE, pp 1942–1948
– reference: TangJLiuGPanQA review on representative swarm intelligence algorithms for solving optimization problems: applications and trendsIEEE/CAA J Autom Sin202181016271643433919510.1109/JAS.2021.1004129
– reference: Chiru-DanzerMJuangCChristopherRSuberJEstimation of liquefaction-induced horizontal displacements using artificial neural networksCan Geotech J200138120020710.1139/t00-087
– reference: GonzálezSGarcíaSDel SerJRokachLHerreraFA practical tutorial on bagging and boosting based ensembles for machine learning: algorithms, software tools, performance study, practical perspectives and opportunitiesInf Fusion20206420523710.1016/j.inffus.2020.07.007
– reference: HuangZChenZComparison of different machine learning algorithms for predicting the SAGD production performanceJ Petrol Sci Eng202120210.1016/j.petrol.2021.108559
– reference: RezaniaMFaramarziAJavadiAAAn evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacementEng App Artif Intell201124114215310.1016/j.engappai.2010.09.010
– reference: GarciaSRomoMBoteroEA neurofuzzy system to analyze liquefaction-induced lateral spreadSoil Dyn Earthq Eng200828316918010.1016/j.soildyn.2007.06.014
– reference: LittleMVRathjeEDe PascaleGPBachhuberJInsights into lateral spread displacement patterns using remote sensing data from the 2011 Christchurch earthquakeJ Geotech Geoenviron Eng202114750502100210.1061/(ASCE)GT.1943-5606.0002491
– reference: YoudTLHansenCMBartlettSFRevised multilinear regression equations for prediction of lateral spread displacementJ Geotech Geoenviron Eng2002128121007101710.1061/(ASCE)1090-0241(2002)128:12(1007)
– reference: Chen T, Guestrin C (2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp 785–794
– reference: ZhangWWuCZhongHLiYWangLPrediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimizationGeosci Front202112146947710.1016/j.gsf.2020.03.007
– reference: ZhangGRobertsonPKBrachmanREstimating liquefaction-induced lateral displacements using the standard penetration test or cone penetration testJ Geotech Geoenviron Eng2004130886187110.1061/(ASCE)1090-0241(2004)130:8(861)
– reference: Bartlett SF, Youd TL (1992) Empirical prediction of lateral spread displacement. In: Proceedings from the fourth Japan-US workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction, pp 351–365
– reference: Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B (2022) caret: Classification and regression training. R package version 6.0–92.
– reference: MontgomeryJBoulangerRWEffects of spatial variability on liquefaction-induced settlement and lateral spreadingJ Geotech Geoenviron Eng201714310401608610.1061/(ASCE)GT.1943-5606.0001584
– reference: Okwu MO, Tartibu LK (2021) Particle swarm optimisation. Metaheuristic optimization: nature-inspired algorithms swarm and computational intelligence, theory and applications. Springer, pp 5–13
– reference: KeGMengQFinleyTWangTChenWMaWYeQLiuT-YLightgbm: a highly efficient gradient boosting decision treeAdv Neural Inf Proces Syst2017301
– reference: Anghel A, Papandreou N, Parnell T, De Palma A, Pozidis H (2018) Benchmarking and optimization of gradient boosting decision tree algorithms. arXiv preprint: arXiv: 180904559
– reference: SharpMKDobryRPhillipsRCPT-based evaluation of liquefaction and lateral spreading in centrifugeJ Geotech Geoenviron Eng2010136101334134610.1061/(ASCE)GT.1943-5606.0000338
– reference: YangLShamiAOn hyperparameter optimization of machine learning algorithms: theory and practiceNeurocomputing202041529531610.1016/j.neucom.2020.07.061
– reference: Youd TL, Hoose SN (1978) Historic ground failures in northern California triggered by earthquakes. US Government Printing Office
– reference: PhamBTQiCHoLSNguyen-ThoiTAl-AnsariNNguyenMDNguyenHDLyH-BLeHVPrakashIA novel hybrid soft computing model using random forest and particle swarm optimization for estimation of undrained shear strength of soilSustainability2020126221810.3390/su12062218
– reference: AvvalYJDerakhshaniANew formulas for predicting liquefaction-induced lateral spreading: model tree approachBull Eng Geol Environ20197853649366110.1007/s10064-018-1319-1
– reference: ZimmaroPNwekeCCHernandezJLHudsonKSHudsonMBAhdiSKBoggsMLDavisCAGouletCABrandenbergSJLiquefaction and related ground failure from July 2019 Ridgecrest earthquake sequenceBull Seismol Soc Am202011041549156610.1785/0120200025
– reference: JavadiAARezaniaMNezhadMMEvaluation of liquefaction induced lateral displacements using genetic programmingComput Geotech2006334–522223310.1016/j.compgeo.2006.05.001
– reference: CubrinovskiMRobinsonKTaylorMHughesMOrenseRLateral spreading and its impacts in urban areas in the 2010–2011 Christchurch earthquakesNew Zealand J Geol Geophy201255325526910.1080/00288306.2012.699895
– reference: ShafqatWMalikSLeeK-TKimD-HPSO based optimized ensemble learning and feature selection approach for efficient energy forecastElectronics20211018218810.3390/electronics10182188
– reference: BaziarMGhorbaniAEvaluation of lateral spreading using artificial neural networksSoil Dyn Earthq Eng20052511910.1016/j.soildyn.2004.09.001
– reference: TangDWangXYanYZhangDZhaoHADMS: An online attack detection and mitigation system for LDoS attacks via SDNComput Commun202218145447110.1016/j.comcom.2021.10.007
– reference: Faris AT, Seed RB, Kayen RE, Wu J (2006) A semi-empirical model for the estimation of maximum horizontal displacement due to liquefaction-induced lateral spreading. In: Proceedings of 8th US conference on earthquake engineering. Citeseer, pp 1584–1593
– reference: KramerSLGeotechnical earthquake engineering1996Upper SaddleRiverPrentice-Hall
– reference: WoldesellasseHTesfamariamSPrediction of lateral spreading displacement using conditional Generative Adversarial Network (cGAN)Soil Dyn Earthq Eng202215610.1016/j.soildyn.2022.107214
– reference: YoudTLPerkinsDMMapping of liquefaction severity indexJ Geotech Eng1987113111374139210.1061/(ASCE)0733-9410(1987)113:11(1374)
– reference: WuJChenX-YZhangHXiongL-DLeiHDengS-HHyperparameter optimization for machine learning models based on Bayesian optimizationJ Electron Sci Tech20191712640
– reference: KeyportRNOommenTMarthaTRSajinkumarKGierkeJSA comparative analysis of pixel-and object-based detection of landslides from very high-resolution imagesInt J Appl Earth Obs Geoinf201864111
– reference: DuranteMGRathjeEMAn exploration of the use of machine learning to predict lateral spreadingEarthq Spectra20213742288231410.1177/87552930211004613
– reference: HamadaMTowhataIYasudaSIsoyamaRStudy on permanent ground displacement induced by seismic liquefactionComput Geotech19874419722010.1016/0266-352X(87)90001-2
– reference: ZhangWLiHLiYLiuHChenYDingXApplication of deep learning algorithms in geotechnical engineering: a short critical reviewArtif Intell Rev20215485633567310.1007/s10462-021-09967-1
– reference: ValsamisAIBouckovalasGDPapadimitriouAGParametric investigation of lateral spreading of gently sloping liquefied groundSoil Dyn Earthq Eng201030649050810.1016/j.soildyn.2010.01.005
– reference: Bendtsen MC (2022) Package ‘pso’ http://cran.ma.ic.ac.uk/web/packages/pso/pso.pdf. Last accesed 6 May 2022
– reference: Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv preprint: arXiv: 181011363
– reference: HussainSMustafaMWJumaniTABalochSKAlotaibiHKhanIKhanAA novel feature engineered-CatBoost-based supervised machine learning framework for electricity theft detectionEnergy Rep202174425443610.1016/j.egyr.2021.07.008
– reference: ZhangJZhaoJXEmpirical models for estimating liquefaction-induced lateral spread displacementSoil Dyn Earthq Eng2005256439450273001710.1016/j.soildyn.2005.04.002
– reference: BaziarMSaeedi AzizkandiAEvaluation of lateral spreading utilizing artificial neural network and genetic programmingInt J Civ Eng2013112100111
– reference: OommenTBaiseLGModel development and validation for intelligent data collection for lateral spread displacementsJ Comput Civ Eng201024646747710.1061/(ASCE)CP.1943-5487.0000050
– reference: RollinsKMRoyJAthanasopoulos-ZekkosAZekkosDAmorosoSCaoZMilanaGVassalloMDi GiulioGA new Vs-based liquefaction-triggering procedure for gravelly soilsJ Geotech Geoenviron Eng202214860402204010.1061/(ASCE)GT.1943-5606.0002784
– reference: WangLWuJZhangWWangLCuiWEfficient seismic stability analysis of embankment slopes subjected to water level changes using gradient boosting algorithmsFront Earth Sci20219117910.3389/feart.2021.807317
– reference: Micci-BarrecaDA preprocessing scheme for high-cardinality categorical attributes in classification and prediction problemsACM SIGKDD Explor Newsl200131273210.1145/507533.507538
– reference: WangJRahmanMA neural network model for liquefaction-induced horizontal ground displacementSoil Dyn Earthq Eng199918855556810.1016/S0267-7261(99)00027-5
– reference: Kiranyaz S, Ince T, Gabbouj M (2014) Particle swarm optimization. multidimensional particle swarm optimization for machine learning and pattern recognition. Springer, pp 45–82
– reference: ZhangWGuXTangLYinYLiuDZhangYApplication of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challengeGondwana Res202210911710.1016/j.gr.2022.03.015
– reference: Mian J, Kontoe S, Free M (2013) Assessing and managing the risk of earthquake-induced liquefaction to civil infrastructure. Handbook of seismic risk analysis and management of civil infrastructure systems. Elsevier, pp 113–138
– reference: ChangIParkHHongELeeJKwonNPredicting effects of built environment on fatal pedestrian accidents at location-specific level: Application of XGBoost and SHAPAccid Anal Prev202216610.1016/j.aap.2021.106545
– reference: DemirSSahinEKAn investigation of feature selection methods for soil liquefaction prediction based on tree-based ensemble algorithms using AdaBoost, gradient boosting, and XGBoostNeural Comput Appl202210.1007/s00521-022-07856-4
– reference: KayaZPredicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniquesInt J Geomech20161640401509510.1061/(ASCE)GM.1943-5622.0000607
– reference: ProkhorenkovaLGusevGVorobevADorogushAVGulinACatBoost: unbiased boosting with categorical featuresAdv Neural Inf Process Syst20183166386648
– reference: LeeS-BKimY-JHwangSSonHLeeSKParkK-IKimY-GPredicting Parkinson's disease using gradient boosting decision tree models with electroencephalography signalsParkinsonism Rel Disord202295778510.1016/j.parkreldis.2022.01.011
– reference: DemirSSahinEKLiquefaction prediction with robust machine learning algorithms (SVM, RF, and XGBoost) supported by genetic algorithm-based feature selection and parameter optimization from the perspective of data processingEnviron Earth Sci2022811811710.1007/s12665-022-10578-4
– reference: StehmanSVSelecting and interpreting measures of thematic classification accuracyRemote Sens Environ1997621778910.1016/S0034-4257(97)00083-7
– reference: GomesGFde AlmeidaFAAncelottiACda CunhaSSInverse structural damage identification problem in CFRP laminated plates using SFO algorithm based on strain fieldsEng Comput20213743771379110.1007/s00366-020-01027-6
– reference: GillinsDTBartlettSFMultilinear regression equations for predicting lateral spread displacement from soil type and cone penetration test dataJ Geotech Geoenviron Eng201314040401304710.1061/(ASCE)GT.1943-5606.0001051
– reference: GuWMorgensternNRobertsonPPostearthquake deformation analysis of Wildlife siteJ Geotech Eng1994120227428910.1061/(ASCE)0733-9410(1994)120:2(274)
– reference: Youd TL (1992) Liquefaction, ground failure, and consequent damage during the 22 April 1991 Costa Rica earthquake. In: Proceedings of the NSF/UCR US-Costa Rica Workshop on the Costa Rica Earthquakes of 1990–1991: Effects on soils and structures
– reference: HuangYYuMReview of soil liquefaction characteristics during major earthquakes of the twenty-first centuryNat Hazards201365323752384330100410.1007/s11069-012-0433-9
– reference: BentéjacCCsörgőAMartínez-MuñozGA comparative analysis of gradient boosting algorithmsArtif Intell Rev20215431937196710.1007/s10462-020-09896-5
– reference: KuhnMJohnsonKFeature engineering and selection: a practical approach for predictive modelsCRC Press201910.1201/9781315108230
– reference: Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predictions. In: Proceedings of the 31st international conference on neural information processing systems, Long Beach California, USA, pp 4768–4777. https://doi.org/10.5555/3295222.3295230
– reference: NewmarkNMEffects of earthquakes on dams and embankmentsGeotechnique196515213916010.1680/geot.1965.15.2.139
– reference: Shi Y, Ke G, Soukhavong D, Lamb J, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y, Titov N (2022) Package ‘lightgbm’ https://cran.rstudio.com/web/packages/lightgbm/lightgbm.pdf (Last accessed May 6, 2022)
– reference: CohenJA coefficient of agreement for nominal scalesEduc Psychol Meas1960201374610.1177/001316446002000104
– reference: Durante MG, Rathje EM (2021) Machine learning models for the evaluation of the lateral spreading hazard in the Avon River area following the 2011 Christchurch earthquake. DesignSafe-CI https://doi.org/10.17603/ds2-3zdj-4937.
– reference: Elshawi R, Maher M, Sakr S (2019) Automated machine learning: State-of-the-art and open challenges. arXiv preprint: arXiv: 190602287
– volume: 37
  start-page: 3771
  issue: 4
  year: 2021
  ident: 1777_CR27
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01027-6
– volume: 12
  start-page: 469
  issue: 1
  year: 2021
  ident: 1777_CR77
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.03.007
– volume: 120
  start-page: 274
  issue: 2
  year: 1994
  ident: 1777_CR29
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1994)120:2(274)
– volume: 65
  start-page: 2375
  issue: 3
  year: 2013
  ident: 1777_CR33
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0433-9
– volume: 140
  start-page: 04013047
  issue: 4
  year: 2013
  ident: 1777_CR25
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0001051
– ident: 1777_CR7
– volume: 1
  start-page: 1189
  year: 2001
  ident: 1777_CR23
  publication-title: Ann Stat
– ident: 1777_CR38
  doi: 10.1109/ICNN.1995.488968
– volume: 147
  start-page: 05021002
  issue: 5
  year: 2021
  ident: 1777_CR46
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0002491
– ident: 1777_CR31
  doi: 10.2208/jscej.1986.376_221
– volume: 11
  start-page: 100
  issue: 2
  year: 2013
  ident: 1777_CR6
  publication-title: Int J Civ Eng
– volume: 170
  start-page: 1
  year: 2014
  ident: 1777_CR26
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2013.12.003
– ident: 1777_CR20
– ident: 1777_CR43
– volume: 12
  start-page: 2218
  issue: 6
  year: 2020
  ident: 1777_CR54
  publication-title: Sustainability
  doi: 10.3390/su12062218
– volume: 8
  start-page: 1627
  issue: 10
  year: 2021
  ident: 1777_CR62
  publication-title: IEEE/CAA J Autom Sin
  doi: 10.1109/JAS.2021.1004129
– volume: 81
  start-page: 1
  issue: 18
  year: 2022
  ident: 1777_CR14
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-022-10578-4
– ident: 1777_CR47
  doi: 10.5555/3295222.3295230
– volume: 17
  start-page: 26
  issue: 1
  year: 2019
  ident: 1777_CR68
  publication-title: J Electron Sci Tech
– volume: 140
  start-page: 110
  issue: 1
  year: 2014
  ident: 1777_CR22
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000969
– volume: 4
  start-page: 197
  issue: 4
  year: 1987
  ident: 1777_CR30
  publication-title: Comput Geotech
  doi: 10.1016/0266-352X(87)90001-2
– volume: 16
  start-page: 04015095
  issue: 4
  year: 2016
  ident: 1777_CR36
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000607
– volume: 136
  start-page: 1334
  issue: 10
  year: 2010
  ident: 1777_CR59
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000338
– volume: 38
  start-page: 200
  issue: 1
  year: 2001
  ident: 1777_CR11
  publication-title: Can Geotech J
  doi: 10.1139/t00-087
– volume: 9
  start-page: 1179
  year: 2021
  ident: 1777_CR66
  publication-title: Front Earth Sci
  doi: 10.3389/feart.2021.807317
– ident: 1777_CR19
– ident: 1777_CR17
  doi: 10.17603/ds2-3zdj-4937
– ident: 1777_CR3
– volume: 181
  start-page: 454
  year: 2022
  ident: 1777_CR63
  publication-title: Comput Commun
  doi: 10.1016/j.comcom.2021.10.007
– volume: 415
  start-page: 295
  year: 2020
  ident: 1777_CR69
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.061
– volume-title: Geotechnical earthquake engineering
  year: 1996
  ident: 1777_CR41
– volume: 143
  start-page: 04016086
  issue: 1
  year: 2017
  ident: 1777_CR50
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0001584
– volume: 18
  start-page: 555
  issue: 8
  year: 1999
  ident: 1777_CR65
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/S0267-7261(99)00027-5
– volume: 31
  start-page: 6638
  year: 2018
  ident: 1777_CR55
  publication-title: Adv Neural Inf Process Syst
– volume: 156
  year: 2022
  ident: 1777_CR67
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2022.107214
– ident: 1777_CR72
  doi: 10.3133/pp993
– volume: 121
  start-page: 316
  issue: 4
  year: 1995
  ident: 1777_CR4
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1995)121:4(316)
– volume: 37
  start-page: 2288
  issue: 4
  year: 2021
  ident: 1777_CR18
  publication-title: Earthq Spectra
  doi: 10.1177/87552930211004613
– volume: 64
  start-page: 205
  year: 2020
  ident: 1777_CR28
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2020.07.007
– year: 2022
  ident: 1777_CR15
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-022-07856-4
– volume: 148
  start-page: 04022040
  issue: 6
  year: 2022
  ident: 1777_CR57
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0002784
– volume: 25
  start-page: 439
  issue: 6
  year: 2005
  ident: 1777_CR78
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2005.04.002
– volume: 55
  start-page: 255
  issue: 3
  year: 2012
  ident: 1777_CR13
  publication-title: New Zealand J Geol Geophy
  doi: 10.1080/00288306.2012.699895
– volume: 166
  year: 2022
  ident: 1777_CR9
  publication-title: Accid Anal Prev
  doi: 10.1016/j.aap.2021.106545
– volume: 33
  start-page: 222
  issue: 4–5
  year: 2006
  ident: 1777_CR35
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2006.05.001
– ident: 1777_CR52
  doi: 10.1007/978-3-030-61111-8_2
– volume: 10
  start-page: 2188
  issue: 18
  year: 2021
  ident: 1777_CR58
  publication-title: Electronics
  doi: 10.3390/electronics10182188
– ident: 1777_CR60
– volume: 24
  start-page: 467
  issue: 6
  year: 2010
  ident: 1777_CR53
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000050
– volume: 202
  year: 2021
  ident: 1777_CR32
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2021.108559
– volume: 24
  start-page: 142
  issue: 1
  year: 2011
  ident: 1777_CR56
  publication-title: Eng App Artif Intell
  doi: 10.1016/j.engappai.2010.09.010
– ident: 1777_CR16
– volume: 54
  start-page: 5633
  issue: 8
  year: 2021
  ident: 1777_CR75
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09967-1
– volume: 95
  start-page: 77
  year: 2022
  ident: 1777_CR44
  publication-title: Parkinsonism Rel Disord
  doi: 10.1016/j.parkreldis.2022.01.011
– volume: 3
  start-page: 27
  issue: 1
  year: 2001
  ident: 1777_CR49
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/507533.507538
– volume: 64
  start-page: 1
  year: 2018
  ident: 1777_CR39
  publication-title: Int J Appl Earth Obs Geoinf
– ident: 1777_CR70
– year: 2019
  ident: 1777_CR42
  publication-title: CRC Press
  doi: 10.1201/9781315108230
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 1777_CR12
  publication-title: Educ Psychol Meas
  doi: 10.1177/001316446002000104
– volume: 25
  start-page: 1
  issue: 1
  year: 2005
  ident: 1777_CR5
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2004.09.001
– volume: 62
  start-page: 77
  issue: 1
  year: 1997
  ident: 1777_CR61
  publication-title: Remote Sens Environ
  doi: 10.1016/S0034-4257(97)00083-7
– ident: 1777_CR10
  doi: 10.1145/2939672.2939785
– volume: 15
  start-page: 139
  issue: 2
  year: 1965
  ident: 1777_CR51
  publication-title: Geotechnique
  doi: 10.1680/geot.1965.15.2.139
– volume: 28
  start-page: 169
  issue: 3
  year: 2008
  ident: 1777_CR24
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2007.06.014
– ident: 1777_CR40
  doi: 10.1007/978-3-642-37846-1_3
– volume: 130
  start-page: 861
  issue: 8
  year: 2004
  ident: 1777_CR76
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2004)130:8(861)
– volume: 109
  start-page: 1
  year: 2022
  ident: 1777_CR74
  publication-title: Gondwana Res
  doi: 10.1016/j.gr.2022.03.015
– volume: 30
  start-page: 490
  issue: 6
  year: 2010
  ident: 1777_CR64
  publication-title: Soil Dyn Earthq Eng
  doi: 10.1016/j.soildyn.2010.01.005
– volume: 78
  start-page: 3649
  issue: 5
  year: 2019
  ident: 1777_CR2
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-018-1319-1
– volume: 2022
  start-page: 278
  year: 2022
  ident: 1777_CR45
  publication-title: Geo-Congress
– volume: 113
  start-page: 1374
  issue: 11
  year: 1987
  ident: 1777_CR73
  publication-title: J Geotech Eng
  doi: 10.1061/(ASCE)0733-9410(1987)113:11(1374)
– volume: 54
  start-page: 1937
  issue: 3
  year: 2021
  ident: 1777_CR8
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09896-5
– volume: 110
  start-page: 1549
  issue: 4
  year: 2020
  ident: 1777_CR79
  publication-title: Bull Seismol Soc Am
  doi: 10.1785/0120200025
– volume: 30
  start-page: 1
  year: 2017
  ident: 1777_CR37
  publication-title: Adv Neural Inf Proces Syst
– ident: 1777_CR1
– ident: 1777_CR48
  doi: 10.1533/9780857098986.1.113
– ident: 1777_CR21
  doi: 10.1007/978-3-030-05318-5_1
– volume: 7
  start-page: 4425
  year: 2021
  ident: 1777_CR34
  publication-title: Energy Rep
  doi: 10.1016/j.egyr.2021.07.008
– volume: 128
  start-page: 1007
  issue: 12
  year: 2002
  ident: 1777_CR71
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2002)128:12(1007)
SSID ssj0063246
Score 2.548069
Snippet Liquefaction-induced lateral spreading that has resulted in devastating damages to lifelines and buildings has been widely reported in recent earthquakes....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3403
SubjectTerms Additives
Algorithms
Complex Fluids and Microfluidics
Computer science
Computers
Datasets
Earthquake damage
Earthquake prediction
Earthquakes
Engineering
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Liquefaction
Machine learning
Optimization
Particle swarm optimization
Performance measurement
Performance prediction
Research Paper
Seismic activity
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
Spreading
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgcIADhQJioUVz4MZabPyR2FwQrdpygLJSQdpb5DjOFim7WZIAP65_rh7H6QISvXDMl-XIz-Ox580bQl5ZYfjMJJKmvHBUKC2oNtZRhmJknJWZSW0oNpGdnanFQs_jgVsXaZWjTQyGumwsnpG_wRxLqTFo8G7znWLVKIyuxhIat8kdVElIAnXvfLTEqEQesotUmlDvV8iYNDOkzoWoJnLZPSazjCZ_Lkxbb_OvAGlYd052_7fHD8mD6HHC-wEij8gtt94ju2M1B4iTe4_c_02a8DG5nLcYwkFSNDTWBhUn66CpoEbF15gPQf2O3mOjhNpgJnMN_i8GVj4goX4JyzZQynrwznwXGjP10neyv1h1cC1VUQIeB8Mmwhi6X6ZdQeOt2Sqmib6F-flnujg9xGam4eIjHiucHn6aglmX4c6R6cPzJ-TryfGXow80FnqghgvWU5cWkjvu95pSFUZUKrOaGSWNKqXxK4N1UlpdyooxY2cYiUx4VdmKIUnVzDR_SnbWzdo9IyArP9A8U1ylRvBKK1Ewrr0bJwpjmXATkoyjnNuogo7FOOp8q9-MyMg9MvKAjDyZkNfX32wGDZAb394f4ZBHe9DlWyxMyHQE1Pbxv1t7fnNrL8g95r2ugbu2T3b69oc7IHftz_5b174Ms-EKHWcRxw
  priority: 102
  providerName: ProQuest
Title Predicting occurrence of liquefaction-induced lateral spreading using gradient boosting algorithms integrated with particle swarm optimization: PSO-XGBoost, PSO-LightGBM, and PSO-CatBoost
URI https://link.springer.com/article/10.1007/s11440-022-01777-1
https://www.proquest.com/docview/2825591679
Volume 18
WOSCitedRecordID wos000906684600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: RSV
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELdg4wEe-I_oNio_8EYtNXac2Htbp208sBJRQH2LLo5TJqXNlAT4cHw5fK6zAgIkeImU2DlZuvP5znf3O0JemhjEFCLJElFYFisdMw3GMo5gZIKXKSTGN5tI53O1XOosFIV1Q7b7EJL0mnpX7ObjkJh97qQoTZnzefYlos2gj774OOhfxB_3NUUqiZizJmQolfk9jZ-Po52N-UtY1J825w_-b50Pyf1gXdKTrTg8Irfs5jG59wPm4BPyLWsxNoPZzrQxxsMzGUubitYI5RoKHZhz1R3TS1oDlijX1C1im25PMVN-RVetzxXrqbPSO08M6lXTXvWf1h29waAoKd7z0usgn7T7Cu2aNk5NrUP95zHNFm_Z8mKGZCb-5Q3eF1zMLicUNqX_cgq9H39KPpyfvT99zUIHBwYi5j2zSSGFFc6JlKqAuFKp0RyUBFVKcCrfWCmNLmXFOZgphhgjUVWm4ph9ClMtnpG9TbOxzwmVleOlSJVQCcSi0iouuNDOPosLMDy2IxINjMxNgDfHLht1vgNmRsbkjjG5Z0wejcirm3-ut-Aef519NMhHHjZ6l2Ppr9QYyxqRySAPu-E_Uzv4t-mH5C42ut8mqR2Rvb79bF-QO-ZLf9W1Y7I_O5tn78bk9iXP8Jkuxn5TfAcdHQS8
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoFBALLTgA3BhLRo7ThwkDt2FPtTtsoIi7S14HWeplH2QBCr-FH-AP1eP1-kCEr31wDEvK3E-j8ee-b4BeKZDxXdUIGjEx4aGMglporShDMXIOMtiFWlXbCIeDORolAzX4GfDhcG0ysYmOkOdzTXukb9CjqVIMGjgMyiPzI8zuz6r3hy-tT_zOWN77056B9SXEKCKh6ymJhoLbrhdxQg5VmEuY50wJYWSmVDW5mgjhE4ykTOm9A7GuAKe5zpnmP6onNISe7H4SrFKFUZzfcmOa7AuI_sxLVgf9rq7Hxrbj9rnjs8ko4BaT0Z4ms6SrOfiqJg9b0dBHNPgz6lw5d_-FZJ1M93exv_WR3fgtvepye5yENyFNTPbhI2mXgXx5msTbv0mvngPfg1LDFJh2jeZa-10qrQh85wUqGnrGR_0dJZZ9GekUMjVLojttSXvgCBlYEImpUuaq4ldrlSuMVVM7EvWX6YVuRDjyAhueJOFH6ikOlPllMytvZ56IuxrMvz4no72u9hMxx30ceNkv3vcIWqWuTM9Vbvr9-HTlfTxA2jN5jPzEIjILbB4LLmMVMjzRIZjxhPrqIZjpVlo2hA0qEq113nHciNFulKoRiSmFompQ2IatOHlxTOLpcrJpXdvNfBLvcWr0hX22tBpALy6_O_WHl3e2lO4cXBy3E_7h4Ojx3CTWR9zmam3Ba26_Ga24br-Xp9W5RM_Fgl8vmq0nwO-n3Cu
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELWqLUJwoFBAbCngA5xYq40dJw4SQmzbLVXLEvEh7S04jrOtlE2WJFDx1-DP4XGcLiDRWw8c8-WD82Y89sx7g9BT5Uu2Kz1OApZq4ovIJ5FUmlAQI2M0C2WgbLOJcDoVs1kUr6EfPRcGyip7n2gddVYpOCPfAY4ljyBpsJO7soh4f_Jq-YVABynItPbtNDqIHOvv52b71rw82jf_-hmlk4OPe2-I6zBAJPNpS3SQcqaZ2eRwkUo_F6GKqBRcioxL45KU5lxFGc8plWoXUmAey3OVU6iOlFaIybj_9ZCZTc8ArY8PpvH7fh0AHXTLbRKBR0xUwx1lpyPu2ZwqVNIbiwhD4v25LK5i3b_Ss3bVm2z8z_N1G91ysTZ-3RnHHbSmy0200fexwM6tbaKbv4ky3kU_4xqSV1AOjiulrH6V0rjKcQFat44JQs7KzFhFhgsJHO4Cmxns-AgYqARzPK9tMV2LzTamsYPJYm4mpT1dNPhCpCPDcBCOl86AcXMu6wWujB9fOILsCxx_eEdmh2MYZmQvTuBA5XD8doRlmdk7e7K1z--hT1cyoffRoKxK_QBhnhuQsVAwEUif5ZHwU8oiE8D6qVTU10Pk9QhLlNN_hzYkRbJSrgZUJgaViUVl4g3R84tvlp36yaVvb_dQTJwnbJIVDodo1IN59fjfo21dPtoTdN3gOTk5mh4_RDeoCT27Ar5tNGjrr_oRuqa-tWdN_diZJUafrxrZvwDTNHmH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+occurrence+of+liquefaction-induced+lateral+spreading+using+gradient+boosting+algorithms+integrated+with+particle+swarm+optimization%3A+PSO-XGBoost%2C+PSO-LightGBM%2C+and+PSO-CatBoost&rft.jtitle=Acta+geotechnica&rft.au=Demir%2C+Sel%C3%A7uk&rft.au=Sahin%2C+Emrehan+Kutlug&rft.date=2023-06-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=18&rft.issue=6&rft.spage=3403&rft.epage=3419&rft_id=info:doi/10.1007%2Fs11440-022-01777-1&rft.externalDocID=10_1007_s11440_022_01777_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon