A new, fast, and accurate algorithm for predicting soil slope stability based on sparrow search algorithm-back propagation

Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow s...

Full description

Saved in:
Bibliographic Details
Published in:Natural hazards (Dordrecht) Vol. 120; no. 1; pp. 297 - 319
Main Authors: Zheng, Binbin, Wang, Jiahe, Feng, Shuhu, Yang, Han, Wang, Wensong, Feng, Tingting, Hu, Tianyu
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01.01.2024
Springer Nature B.V
Subjects:
ISSN:0921-030X, 1573-0840
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow search algorithm (SSA) is developed to predict the slope safety coefficients by using five input features, including unit weight ( γ ), cohesion ( c ), friction angle ( φ ), slope angle ( α ), and slope height ( H ). The proposed model is trained and simulated using 55 data samples. The regression coefficient of the proposed SSA-BP neural network is 0.9405, with a mean relative error (MAE) of 0.1684. Compared with fusion algorithms, such as Ridge Regression (RR), Decision Tree (DT), Random forest (RF), Support Vector Regression (SVR), and Light Gradient Boosting Machine (lightGBM), the proposed method yields more accurate and robust prediction results. Furthermore, a multivariate function relationship between the slope safety coefficient and the five variables is constructed based on the relationship between five independent input variables and the variation of the safety coefficient. The proposed method introduces a novel approach for calculating the slope safety coefficient.
AbstractList Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow search algorithm (SSA) is developed to predict the slope safety coefficients by using five input features, including unit weight (γ), cohesion (c), friction angle (φ), slope angle (α), and slope height (H). The proposed model is trained and simulated using 55 data samples. The regression coefficient of the proposed SSA-BP neural network is 0.9405, with a mean relative error (MAE) of 0.1684. Compared with fusion algorithms, such as Ridge Regression (RR), Decision Tree (DT), Random forest (RF), Support Vector Regression (SVR), and Light Gradient Boosting Machine (lightGBM), the proposed method yields more accurate and robust prediction results. Furthermore, a multivariate function relationship between the slope safety coefficient and the five variables is constructed based on the relationship between five independent input variables and the variation of the safety coefficient. The proposed method introduces a novel approach for calculating the slope safety coefficient.
Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow search algorithm (SSA) is developed to predict the slope safety coefficients by using five input features, including unit weight ( γ ), cohesion ( c ), friction angle ( φ ), slope angle ( α ), and slope height ( H ). The proposed model is trained and simulated using 55 data samples. The regression coefficient of the proposed SSA-BP neural network is 0.9405, with a mean relative error (MAE) of 0.1684. Compared with fusion algorithms, such as Ridge Regression (RR), Decision Tree (DT), Random forest (RF), Support Vector Regression (SVR), and Light Gradient Boosting Machine (lightGBM), the proposed method yields more accurate and robust prediction results. Furthermore, a multivariate function relationship between the slope safety coefficient and the five variables is constructed based on the relationship between five independent input variables and the variation of the safety coefficient. The proposed method introduces a novel approach for calculating the slope safety coefficient.
Author Feng, Shuhu
Wang, Wensong
Wang, Jiahe
Zheng, Binbin
Yang, Han
Hu, Tianyu
Feng, Tingting
Author_xml – sequence: 1
  givenname: Binbin
  surname: Zheng
  fullname: Zheng, Binbin
  email: zhengbin_vip@sina.com
  organization: School of Management Science and Engineering, Shandong Technology and Business University, Shandong Emergency Management Institute, Shandong Technology and Business University
– sequence: 2
  givenname: Jiahe
  surname: Wang
  fullname: Wang, Jiahe
  organization: School of Management Science and Engineering, Shandong Technology and Business University
– sequence: 3
  givenname: Shuhu
  surname: Feng
  fullname: Feng, Shuhu
  organization: School of Management Science and Engineering, Shandong Technology and Business University, Shandong Emergency Management Institute, Shandong Technology and Business University
– sequence: 4
  givenname: Han
  surname: Yang
  fullname: Yang, Han
  organization: School of Resources and Safety Engineering, Chongqing University
– sequence: 5
  givenname: Wensong
  surname: Wang
  fullname: Wang, Wensong
  organization: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology
– sequence: 6
  givenname: Tingting
  surname: Feng
  fullname: Feng, Tingting
  organization: School of Management Science and Engineering, Shandong Technology and Business University
– sequence: 7
  givenname: Tianyu
  surname: Hu
  fullname: Hu, Tianyu
  organization: School of Civil Engineering, Chongqing Jiaotong University
BookMark eNp9kE1LAzEQhoMoWD_-gKeA165Oku1mcyziFxS8KHgLs9lsG12TNUkp-uvdWkHw4GkYZp73nXmPyL4P3hJyxuCCAcjLxBhUqgAuCqg4g6LeIxM2k2Nbl7BPJqA4K0DA8yE5SukFgLGKqwn5nFNvN1PaYcpTir6laMw6YrYU-2WILq_eaBciHaJtncnOL2kKrqepD4OlKWPjepc_aIPJtjR4mgaMMWxoshjN6lelaNC8jjJhwCVmF_wJOeiwT_b0px6Tp5vrx6u7YvFwe381XxQoSp6LVnaI0qoZlq1plGLAZSVNjZxxY0rbyE4ZhWiEaUDImWDCKNHV40A0oqzEMTnf6Y7e72ubsn4J6-hHS80VE7IGwetxi--2TAwpRdvpIbo3jB-agd5mrHcZ6zFj_Z2x3kL1H8i4_P1cjuj6_1GxQ9Po45c2_l71D_UFU_mUyQ
CitedBy_id crossref_primary_10_3390_su16209085
crossref_primary_10_3390_electronics14010126
crossref_primary_10_1007_s10462_025_11175_0
Cites_doi 10.1155/2016/6708183
10.1007/s11053-021-09911-8
10.1177/0049124118782543
10.1007/s11069-021-05115-8
10.1007/s11053-005-6951-3
10.1016/j.cageo.2011.09.011
10.1016/j.cageo.2012.09.003
10.1155/2018/1048756
10.13722/j.cnki.jrme.2018.1470-en
10.16285/j.rsm.2007.12.035
10.1016/j.ijmst.2022.07.002
10.46544/AMS.v27i3.02
10.1016/j.tust.2020.103699
10.1007/s00366-021-01374-y
10.1016/j.compgeo.2010.08.011
10.1038/s41598-021-97484-0
10.1016/j.conbuildmat.2022.127200
10.1007/s11069-020-04388-9
10.12989/gae.2022.30.6.489
10.1108/02644401011073700
10.1016/j.irfa.2015.03.010
10.1016/j.jafrearsci.2011.09.004
10.16030/j.cnki.issn.1000-3665.2018.02.19
10.1016/j.ijmst.2018.11.002
10.1016/j.catena.2018.12.035
10.1061/(ASCE)CP.1943-5487.0000607
10.3390/app12052656
10.1007/s12205-018-1337-3
10.1080/20964471.2018.1472392
10.1016/j.ssci.2019.05.046
10.1016/j.geomorph.2009.06.006
10.1109/ACCESS.2020.3004995
10.1016/j.gsf.2014.10.003
10.1080/10106049.2017.1323964
10.16652/j.issn.1004⁃373x.2019.05.018
10.1016/j.measurement.2021.110654
10.1016/j.jrmge.2022.03.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7ST
7TG
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M2P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
SOI
DOI 10.1007/s11069-023-06210-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1573-0840
EndPage 319
ExternalDocumentID 10_1007_s11069_023_06210_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51804178; 51804051
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67M
67Z
6KP
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDH
EIOEI
EIS
EJD
EPAXT
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
ZY4
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BANNL
CITATION
PHGZM
PHGZT
PQGLB
7ST
7TG
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-a342t-d7faa7e95a4dcb99102767c8a212cc4eb7f9c9aac3cb0375313c93f8eb73b3463
IEDL.DBID RSV
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077478000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0921-030X
IngestDate Wed Nov 05 04:08:13 EST 2025
Tue Nov 18 22:10:20 EST 2025
Sat Nov 29 05:54:55 EST 2025
Fri Feb 21 02:41:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Slope stability
BP neural network
Safety factor
Sparrow search algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-d7faa7e95a4dcb99102767c8a212cc4eb7f9c9aac3cb0375313c93f8eb73b3463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2913780328
PQPubID 54179
PageCount 23
ParticipantIDs proquest_journals_2913780328
crossref_primary_10_1007_s11069_023_06210_8
crossref_citationtrail_10_1007_s11069_023_06210_8
springer_journals_10_1007_s11069_023_06210_8
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Natural hazards (Dordrecht)
PublicationTitleAbbrev Nat Hazards
PublicationYear 2024
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Song, Gong, Gao, Wang, Cui, Li, Wei (CR23) 2012; 42
Huang, Yu, Ye, Ye, Cheng (CR12) 2022; 330
Zhang, Yang (CR36) 2021; 105
Zhang, Goh (CR35) 2016; 7
Basahel, Mitri (CR4) 2019; 29
Duxbury (CR5) 2021; 50
Wang, Zhao, Wu, Zhang, Liu (CR28) 2022
Sun, Cai, Xie, Yi (CR24) 2019; 42
Mahmoodzadeh, Mohammadi, Farid Hama Ali, Hashim Ibrahim, Nariman Abdulhamid, Nejati (CR18) 2022; 15
Johari, Javadi, Habibagahi (CR14) 2010; 38
Lai, Qiu, Feng, Chen, Fan (CR17) 2016; 2016
Feng, Li, Yuan, Zeng, Sun (CR8) 2018; 22
Kawabata, Bandibas (CR15) 2009; 113
Zhao, Wang, Yi, Yang, Tong (CR39) 2022; 12
Xin, Chen, Li, Lu, Li, Wang (CR29) 2022; 189
Aye, Gupta, Hammoudeh, Kim (CR3) 2015; 41
Erzin, Cetin (CR6) 2013; 51
Gong (CR10) 2021; 11
Altuntov, Erkayaoğlu (CR2) 2021; 30
Xue, Zhang, Liu (CR33) 2007; 28
Mahmoodzadeh, Ali, Ibrahim, Mohammed, Rashidi, Mahmood, Ali (CR20) 2022; 27
Zhu, Cai, Huang, Zhang, Guo (CR41) 2019; 6
Hong, Miao, Liu, Zhu (CR11) 2019; 176
Miliaresis, Sabatakakis, Koukis (CR22) 2005; 14
Xu, Liu, Wang, Wang (CR30) 2021; 109
Mahmoodzadeh, Mohammadi, Abdulhamid, Ali, Ibrahim, Rashidi (CR19) 2022; 28
Wang, Zhou, Fu, Li, Wang (CR26) 2018; 45
Xue (CR31) 2017; 31
Jiang, Lian, Lu, Gu, Ruan, Xie (CR13) 2018
Wang, Lu, Wei, Wei, Behbahani, Iseley (CR27) 2020; 8
Zhang, Shen, Huang, Xie (CR37) 2022; 14
Ahangar-Asr, Faramarzi, Javadi (CR1) 2010; 27
Kim, Lee, Jung, Lee (CR16) 2018; 33
Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR40) 2019; 118
Taalab, Cheng, Zhang (CR25) 2018; 2
Farrokhzad, Barari, Choobbasti, Ibsen (CR7) 2011; 61
Mahmoodzaden, Nejati, Mohammadi, Ibrahim, Rashidi, Mohammed (CR21) 2022; 30
Zeng, Nait Amar, Mohammed, Motahari, Hasanipanah (CR34) 2021; 38
J Lai (6210_CR17) 2016; 2016
D Kawabata (6210_CR15) 2009; 113
P Sun (6210_CR24) 2019; 42
G Miliaresis (6210_CR22) 2005; 14
C Xu (6210_CR30) 2021; 109
A Mahmoodzadeh (6210_CR20) 2022; 27
H Basahel (6210_CR4) 2019; 29
X Wang (6210_CR27) 2020; 8
W Zhang (6210_CR35) 2016; 7
Y Song (6210_CR23) 2012; 42
X Feng (6210_CR8) 2018; 22
D Zhang (6210_CR37) 2022; 14
F Zeng (6210_CR34) 2021; 38
Y Erzin (6210_CR6) 2013; 51
S Zhao (6210_CR39) 2022; 12
A Mahmoodzadeh (6210_CR19) 2022; 28
G Wang (6210_CR28) 2022
A Mahmoodzadeh (6210_CR18) 2022; 15
H Hong (6210_CR11) 2019; 176
J Xin (6210_CR29) 2022; 189
X Xue (6210_CR31) 2017; 31
A Johari (6210_CR14) 2010; 38
SW Duxbury (6210_CR5) 2021; 50
J Wang (6210_CR26) 2018; 45
X Zhu (6210_CR41) 2019; 6
K Taalab (6210_CR25) 2018; 2
J Zhou (6210_CR40) 2019; 118
G Aye (6210_CR3) 2015; 41
JC Kim (6210_CR16) 2018; 33
Y Zhang (6210_CR36) 2021; 105
F Farrokhzad (6210_CR7) 2011; 61
S Huang (6210_CR12) 2022; 330
B Gong (6210_CR10) 2021; 11
S Jiang (6210_CR13) 2018
X Xue (6210_CR33) 2007; 28
FK Altuntov (6210_CR2) 2021; 30
A Ahangar-Asr (6210_CR1) 2010; 27
A Mahmoodzaden (6210_CR21) 2022; 30
References_xml – volume: 2016
  start-page: 6708183
  year: 2016
  ident: CR17
  article-title: Prediction of soil deformation in tunnelling using artificial neural networks
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/6708183
– volume: 30
  start-page: 4047
  issue: 6
  year: 2021
  end-page: 4062
  ident: CR2
  article-title: A New approach to optimize ultimate geometry of open pit mines with variable overall slope angles
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09911-8
– volume: 50
  start-page: 491
  issue: 2
  year: 2021
  end-page: 530
  ident: CR5
  article-title: Diagnosing multicollinearity in exponential random graph models
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124118782543
– volume: 15
  start-page: 1
  year: 2022
  end-page: 29
  ident: CR18
  article-title: Prediction of safety factors for slope stability: comparison of machine learning techniques
  publication-title: Natl Hazards
  doi: 10.1007/s11069-021-05115-8
– volume: 14
  start-page: 91
  issue: 2
  year: 2005
  end-page: 100
  ident: CR22
  article-title: Terrain pattern recognition and spatial decision making for regional slope stability studies
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-005-6951-3
– volume: 42
  start-page: 189
  year: 2012
  end-page: 199
  ident: CR23
  article-title: Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.09.011
– volume: 51
  start-page: 305
  issue: 51
  year: 2013
  end-page: 313
  ident: CR6
  article-title: The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.09.003
– year: 2018
  ident: CR13
  article-title: Ensemble prediction algorithm of anomaly monitoring based on big data analysis platform of open-pit mine slope
  publication-title: Complexity
  doi: 10.1155/2018/1048756
– volume: 6
  start-page: 1233
  year: 2019
  end-page: 1241
  ident: CR41
  article-title: Research on mechanical properties and damage evolution law of expensive soils under the cyclic action of coupling wetting-drying and freeze-thaw
  publication-title: Chin J Rock Mech Eng
  doi: 10.13722/j.cnki.jrme.2018.1470-en
– volume: 28
  start-page: 2643
  issue: 12
  year: 2007
  end-page: 2648
  ident: CR33
  article-title: Evaluation of slope stability based on genetic algorithm and fuzzy neural network
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2007.12.035
– year: 2022
  ident: CR28
  article-title: Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2022.07.002
– volume: 27
  start-page: 581
  issue: 3
  year: 2022
  end-page: 588
  ident: CR20
  article-title: Application of autoregressive model in the construction management of tunnels
  publication-title: Acta Mont Slovaca
  doi: 10.46544/AMS.v27i3.02
– volume: 109
  start-page: 103699
  year: 2021
  ident: CR30
  article-title: Prediction of tunnel boring machine operating parameters using various machine learning algorithms
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103699
– volume: 38
  start-page: 1
  year: 2021
  end-page: 12
  ident: CR34
  article-title: Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01374-y
– volume: 38
  start-page: 2
  issue: 1
  year: 2010
  end-page: 13
  ident: CR14
  article-title: Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.08.011
– volume: 28
  start-page: 359
  issue: 4
  year: 2022
  end-page: 374
  ident: CR19
  article-title: Forecasting tunnel path geology using Gaussian process regression
  publication-title: Geomech Eng
  doi: 10.1016/j.tust.2020.103699
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 10
  ident: CR10
  article-title: Study of PLSR-BP model for stability assessment of loess slope based on particle swarm optimization
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-97484-0
– volume: 330
  start-page: 127200
  year: 2022
  ident: CR12
  article-title: Pore structure change and physico-mechanical properties deterioration of sandstone suffering freeze-thaw actions
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.127200
– volume: 105
  start-page: 2027
  year: 2021
  end-page: 2043
  ident: CR36
  article-title: A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04388-9
– volume: 30
  start-page: 489
  issue: 6
  year: 2022
  end-page: 502
  ident: CR21
  article-title: Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines
  publication-title: Geomech Eng
  doi: 10.12989/gae.2022.30.6.489
– volume: 27
  start-page: 878
  issue: 7–8
  year: 2010
  end-page: 893
  ident: CR1
  article-title: A new approach for prediction of the stability of soil and rock slopes
  publication-title: Eng Comput Int J for Comput Aided Eng
  doi: 10.1108/02644401011073700
– volume: 41
  start-page: 257
  year: 2015
  end-page: 266
  ident: CR3
  article-title: Forecasting the price of gold using dynamic model averaging
  publication-title: Int Rev Financ Anal
  doi: 10.1016/j.irfa.2015.03.010
– volume: 61
  start-page: 349
  issue: 5
  year: 2011
  end-page: 357
  ident: CR7
  article-title: Neural network-based model for landslide susceptibility and soil longitudinal profile analyses: two case studies
  publication-title: J Afr Earth Sc
  doi: 10.1016/j.jafrearsci.2011.09.004
– volume: 45
  start-page: 123
  issue: 2
  year: 2018
  end-page: 130
  ident: CR26
  article-title: Application of factor analysis and probabilistic neural network model on evaluation of the slope stability
  publication-title: Hydrogeol Eng Geol
  doi: 10.16030/j.cnki.issn.1000-3665.2018.02.19
– volume: 29
  start-page: 357
  issue: 3
  year: 2019
  end-page: 370
  ident: CR4
  article-title: Probabilistic assessment of rock slopes stability using the response surface approach—a case study
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2018.11.002
– volume: 176
  start-page: 45
  year: 2019
  end-page: 64
  ident: CR11
  article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.035
– volume: 31
  start-page: 04016041
  issue: 1
  year: 2017
  ident: CR31
  article-title: Prediction of slope stability based on hybrid PSO and LSSVM
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000607
– volume: 12
  start-page: 2656
  issue: 5
  year: 2022
  ident: CR39
  article-title: Intelligent classification of surrounding rock of tunnel based on 10 machine learning algorithms
  publication-title: Appl Sci
  doi: 10.3390/app12052656
– volume: 22
  start-page: 941
  issue: 3
  year: 2018
  end-page: 950
  ident: CR8
  article-title: Prediction of slope stability using naive bayes classifier
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-018-1337-3
– volume: 2
  start-page: 159
  issue: 2
  year: 2018
  end-page: 178
  ident: CR25
  article-title: Mapping landslide susceptibility and types using random forest
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2018.1472392
– volume: 118
  start-page: 505
  year: 2019
  end-page: 518
  ident: CR40
  article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 113
  start-page: 97
  issue: 1–2
  year: 2009
  end-page: 109
  ident: CR15
  article-title: Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.06.006
– volume: 8
  start-page: 119527
  year: 2020
  end-page: 119543
  ident: CR27
  article-title: Application of artificial neural network in tunnel engineering: a systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004995
– volume: 7
  start-page: 45
  issue: 1
  year: 2016
  end-page: 52
  ident: CR35
  article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2014.10.003
– volume: 33
  start-page: 1000
  issue: 9
  year: 2018
  end-page: 1015
  ident: CR16
  article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang
  publication-title: Korea Geocarto Int
  doi: 10.1080/10106049.2017.1323964
– volume: 42
  start-page: 75
  issue: 5
  year: 2019
  end-page: 78
  ident: CR24
  article-title: Slope stability evaluation based on genetic optimization neural network
  publication-title: Modern Electron Tech
  doi: 10.16652/j.issn.1004⁃373x.2019.05.018
– volume: 189
  start-page: 110654
  year: 2022
  ident: CR29
  article-title: Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP neural network model
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110654
– volume: 14
  start-page: 1100
  issue: 4
  year: 2022
  end-page: 1114
  ident: CR37
  article-title: Auto machine learning-based modelling and prediction of excavation-induced tunnel displacement
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.03.005
– volume: 7
  start-page: 45
  issue: 1
  year: 2016
  ident: 6210_CR35
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2014.10.003
– volume: 118
  start-page: 505
  year: 2019
  ident: 6210_CR40
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2019.05.046
– volume: 33
  start-page: 1000
  issue: 9
  year: 2018
  ident: 6210_CR16
  publication-title: Korea Geocarto Int
  doi: 10.1080/10106049.2017.1323964
– volume: 28
  start-page: 2643
  issue: 12
  year: 2007
  ident: 6210_CR33
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2007.12.035
– volume: 14
  start-page: 1100
  issue: 4
  year: 2022
  ident: 6210_CR37
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2022.03.005
– volume: 50
  start-page: 491
  issue: 2
  year: 2021
  ident: 6210_CR5
  publication-title: Sociol Methods Res
  doi: 10.1177/0049124118782543
– year: 2018
  ident: 6210_CR13
  publication-title: Complexity
  doi: 10.1155/2018/1048756
– volume: 28
  start-page: 359
  issue: 4
  year: 2022
  ident: 6210_CR19
  publication-title: Geomech Eng
  doi: 10.1016/j.tust.2020.103699
– volume: 330
  start-page: 127200
  year: 2022
  ident: 6210_CR12
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2022.127200
– volume: 42
  start-page: 75
  issue: 5
  year: 2019
  ident: 6210_CR24
  publication-title: Modern Electron Tech
  doi: 10.16652/j.issn.1004⁃373x.2019.05.018
– volume: 29
  start-page: 357
  issue: 3
  year: 2019
  ident: 6210_CR4
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2018.11.002
– volume: 2016
  start-page: 6708183
  year: 2016
  ident: 6210_CR17
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2016/6708183
– volume: 176
  start-page: 45
  year: 2019
  ident: 6210_CR11
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.035
– year: 2022
  ident: 6210_CR28
  publication-title: Int J Min Sci Technol
  doi: 10.1016/j.ijmst.2022.07.002
– volume: 6
  start-page: 1233
  year: 2019
  ident: 6210_CR41
  publication-title: Chin J Rock Mech Eng
  doi: 10.13722/j.cnki.jrme.2018.1470-en
– volume: 14
  start-page: 91
  issue: 2
  year: 2005
  ident: 6210_CR22
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-005-6951-3
– volume: 109
  start-page: 103699
  year: 2021
  ident: 6210_CR30
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103699
– volume: 31
  start-page: 04016041
  issue: 1
  year: 2017
  ident: 6210_CR31
  publication-title: J Comput Civ Eng
  doi: 10.1061/(ASCE)CP.1943-5487.0000607
– volume: 113
  start-page: 97
  issue: 1–2
  year: 2009
  ident: 6210_CR15
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.06.006
– volume: 42
  start-page: 189
  year: 2012
  ident: 6210_CR23
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2011.09.011
– volume: 38
  start-page: 1
  year: 2021
  ident: 6210_CR34
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01374-y
– volume: 2
  start-page: 159
  issue: 2
  year: 2018
  ident: 6210_CR25
  publication-title: Big Earth Data
  doi: 10.1080/20964471.2018.1472392
– volume: 51
  start-page: 305
  issue: 51
  year: 2013
  ident: 6210_CR6
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.09.003
– volume: 8
  start-page: 119527
  year: 2020
  ident: 6210_CR27
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004995
– volume: 30
  start-page: 489
  issue: 6
  year: 2022
  ident: 6210_CR21
  publication-title: Geomech Eng
  doi: 10.12989/gae.2022.30.6.489
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 6210_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-97484-0
– volume: 27
  start-page: 581
  issue: 3
  year: 2022
  ident: 6210_CR20
  publication-title: Acta Mont Slovaca
  doi: 10.46544/AMS.v27i3.02
– volume: 22
  start-page: 941
  issue: 3
  year: 2018
  ident: 6210_CR8
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-018-1337-3
– volume: 61
  start-page: 349
  issue: 5
  year: 2011
  ident: 6210_CR7
  publication-title: J Afr Earth Sc
  doi: 10.1016/j.jafrearsci.2011.09.004
– volume: 30
  start-page: 4047
  issue: 6
  year: 2021
  ident: 6210_CR2
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09911-8
– volume: 12
  start-page: 2656
  issue: 5
  year: 2022
  ident: 6210_CR39
  publication-title: Appl Sci
  doi: 10.3390/app12052656
– volume: 189
  start-page: 110654
  year: 2022
  ident: 6210_CR29
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110654
– volume: 27
  start-page: 878
  issue: 7–8
  year: 2010
  ident: 6210_CR1
  publication-title: Eng Comput Int J for Comput Aided Eng
  doi: 10.1108/02644401011073700
– volume: 105
  start-page: 2027
  year: 2021
  ident: 6210_CR36
  publication-title: Nat Hazards
  doi: 10.1007/s11069-020-04388-9
– volume: 15
  start-page: 1
  year: 2022
  ident: 6210_CR18
  publication-title: Natl Hazards
  doi: 10.1007/s11069-021-05115-8
– volume: 41
  start-page: 257
  year: 2015
  ident: 6210_CR3
  publication-title: Int Rev Financ Anal
  doi: 10.1016/j.irfa.2015.03.010
– volume: 38
  start-page: 2
  issue: 1
  year: 2010
  ident: 6210_CR14
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.08.011
– volume: 45
  start-page: 123
  issue: 2
  year: 2018
  ident: 6210_CR26
  publication-title: Hydrogeol Eng Geol
  doi: 10.16030/j.cnki.issn.1000-3665.2018.02.19
SSID ssj0011629
Score 2.4016113
Snippet Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Algorithms
Back propagation
Back propagation networks
Civil Engineering
Coefficient of variation
Coefficients
Decision trees
Earth and Environmental Science
Earth Sciences
Environmental Management
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Independent variables
Natural Hazards
Neural networks
Original Paper
Predictions
Regression coefficients
Safety
Search algorithms
Slope stability
Soil stability
Support vector machines
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66CnrxLa4vcvDmBtum2yYnWUTx4rIHhb2VadKquLZ1WwX99U7a1KKgF89Jh8JMZr7JTL4h5AQwxHHt-0ymwwATFAkMUb7PHJE6wBNtOOvqYRPheCymUzmxF26lbatsfWLtqHWuzB35mSddHgrD_nZevDAzNcpUV-0IjUWyhMjGNS1dN97kq4rgBl7DteeZtiFnah_NNE_nMBeSDCMWcwJMe5j4Hpg6tPmjQFrHnav1__7xBlmziJOOGhPZJAtJtkVW7PDzh_dt8jGiiK0HNIWyGlDINAWlXg2FBIXZPUqsHp4pYltazE1Vx_RJ0zJ_nNFylhcJRXhZN9i-UxMRNc0zil7KUDvS5hh1UlgM6gnFYKJ-X1vEDrm7ury9uGZ2JAMD7nsV02EKECZyCL5WMWJLzGqDUAnACKiUn8RhKpUEUFzFZroud7mSPBW4wGPuB3yX9LI8S_YIlV4QSggcwI2-cgSaiIBUI0D0hjxwdZ-4rT4iZfnKzdiMWdQxLRsdRqjDqNZhJPrk9OubomHr-HP3Yau4yJ7cMuq01ieDVvXd8u_S9v-WdkBWPcRDze3NIelV89fkiCyrt-qxnB_XdvsJm1TyMQ
  priority: 102
  providerName: ProQuest
Title A new, fast, and accurate algorithm for predicting soil slope stability based on sparrow search algorithm-back propagation
URI https://link.springer.com/article/10.1007/s11069-023-06210-8
https://www.proquest.com/docview/2913780328
Volume 120
WOSCitedRecordID wos001077478000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Nature - Connect here FIRST to enable access
  customDbUrl:
  eissn: 1573-0840
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011629
  issn: 0921-030X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCb6GLBetq5b0XRZoMNujQDbcmzpmA0JdlkQJN2Qm0HLdhvUtYPYLdD--lJ-1GjRDlgvvkgmDJESP5rUR4DvSC5ORK7LVTLyKEBRyAnlu9ySiYUijgxnXdVswp_N5Gql5s2lsKKtdm9TktVJ3V12o-hFcfIx3PIoUOFyF_bJ3UnTsGGx_PuYO7A9p2bYc0yxkLVqrsq8LOOpO-ow5rO0aOVtph_f9p2H8KFBl2xcm8Mn2ImzI3jfNDq_vPsM92NGOHrIEizKIcMsYqj1jaGLYJhe5Nt1eXnNCMeyzdZkcExNNCvydcqKNN_EjKBkVUx7x4z3i1ieMTqRDI0jq7dMJ4WHqK9IDAXlF5X2v8Cf6eT85y_etF_gKFyn5JGfIPqxGqEb6ZBwJEWwnq8lkrfT2o1DP1FaIWqhQ9NJV9hCK5FIGhChcD1xDHtZnsUnwJTj-Qo9C2miqy1J5iAxiQgMOiPh2VEP7FYLgW64yU2LjDToWJXNqga0qkG1qoHswdnjO5uameOfs_utcoNmlxaBo2zhS8Mo2INhq8xu-HVpp_83_SscOISF6j83fdgrtzfxN3inb8t1sR3A_o_JbL4YwO5vZ26e_nJQWfQDDmvroQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VglQuvBELBXyAE2uR2N7EPlRVBVStWlY9FGlvYWInbcWSLJsUtPyo_saO82gEEr31wNnOSI4_z8Mz_gbgDZKJk04pbvJJRAGKQU5evuKBzgOUmfOcdU2ziXg61bOZOVqDi_4tjC-r7HVio6hdaf0d-XthQhlrz_62vfjBfdcon13tW2i0sDjIVr8oZKu29j_S_r4VYvfT8Yc93nUV4CiVqLmLc8Q4MxNUzqbkHlFgFsVWIylxa1WWxrmxBtFKm_oGsTKU1shc04BMpYokyb0Ft5VnFvOlguLoKmsRRqLl9hO-TCmYdY902qd6FHsZThaSBxGFWVz_aQgH7_avhGxj53bv_29_6AHc6zxqttMegYewlhWPYKNr7n66egy_dxjFDmOWY1WPGRaOobXnniKD4fyEVlCffmfku7PF0metfB04q8qzOavm5SJj5D43BcQr5i2-Y2XBSAt76krWrnaQwlO030hMSVq6QfwT-HIjS38K60VZZM-AGRHFBqMAaaKygaYjoDF35ACLiYxCN4Kw3__Ednzsvi3IPBmYpD1mEsJM0mAm0SN4d_XNomUjuXb2Zg-UpNNMVTKgZATjHmrD8L-lPb9e2mvY2Dv-fJgc7k8PXsBdQb5fe1O1Cev18jx7CXfsz_qsWr5qzgyDrzcNwUubKVCE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuPItYKOADnFirSexN7EOF-lpRFa1WCKS9hYmd0IolWTYpaPlp_XWM82gEEr31wDnOSE4-z3xjj78BeIUU4oSVkutsHFKCopETy5fcU5mHIrVOs65uNhFNp2o-17MNuOjuwriyys4n1o7aFsbtke8E2heRcupvO1lbFjE7nLxdfueug5Q7ae3aaTQQOUnXPyl9K3ePD-lfvw6CydHHg3e87TDAUcig4jbKEKNUj1FakxBVoiQtjIxCcujGyDSJMm00ohEmcc1ihS-MFpmiByIRMhRk9wZsRkQy5AA294-msw-XZxh-GDRKf4ErWvLm7ZWd5uIeZWKaU7zkXkhJF1d_hsWe6_51PFtHvcm9__l73Ye7Lddme83ieAAbaf4Qbrdt30_Xj-DXHqOsYsQyLKsRw9wyNObciWcwXHyhGVSn3xixerZcufMsVyHOyuJswcpFsUwZEeu6tHjNHBewrMgZ-Wcnasma2fZWeILmK5kpyH_Xa2ELPl3L1B_DIC_y9AkwHYSRxtBDGiiNpwg8CjNL1DgYi9C3Q_A7LMSmVWp3DUMWca8x7fATE37iGj-xGsKby3eWjU7JlaO3O9DErc8q4x4xQxh1sOsf_9va06utvYRbhLz4_fH05BncCYgUNltY2zCoVufpc7hpflRn5epFu4AYfL5uDP4GbvJang
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new%2C+fast%2C+and+accurate+algorithm+for+predicting+soil+slope+stability+based+on+sparrow+search+algorithm-back+propagation&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Zheng%2C+Binbin&rft.au=Wang%2C+Jiahe&rft.au=Feng%2C+Shuhu&rft.au=Yang%2C+Han&rft.date=2024-01-01&rft.pub=Springer+Netherlands&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=120&rft.issue=1&rft.spage=297&rft.epage=319&rft_id=info:doi/10.1007%2Fs11069-023-06210-8&rft.externalDocID=10_1007_s11069_023_06210_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon