A new, fast, and accurate algorithm for predicting soil slope stability based on sparrow search algorithm-back propagation
Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow s...
Uloženo v:
| Vydáno v: | Natural hazards (Dordrecht) Ročník 120; číslo 1; s. 297 - 319 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.01.2024
Springer Nature B.V |
| Témata: | |
| ISSN: | 0921-030X, 1573-0840 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow search algorithm (SSA) is developed to predict the slope safety coefficients by using five input features, including unit weight (
γ
), cohesion (
c
), friction angle (
φ
), slope angle (
α
), and slope height (
H
). The proposed model is trained and simulated using 55 data samples. The regression coefficient of the proposed SSA-BP neural network is 0.9405, with a mean relative error (MAE) of 0.1684. Compared with fusion algorithms, such as Ridge Regression (RR), Decision Tree (DT), Random forest (RF), Support Vector Regression (SVR), and Light Gradient Boosting Machine (lightGBM), the proposed method yields more accurate and robust prediction results. Furthermore, a multivariate function relationship between the slope safety coefficient and the five variables is constructed based on the relationship between five independent input variables and the variation of the safety coefficient. The proposed method introduces a novel approach for calculating the slope safety coefficient. |
|---|---|
| AbstractList | Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow search algorithm (SSA) is developed to predict the slope safety coefficients by using five input features, including unit weight (γ), cohesion (c), friction angle (φ), slope angle (α), and slope height (H). The proposed model is trained and simulated using 55 data samples. The regression coefficient of the proposed SSA-BP neural network is 0.9405, with a mean relative error (MAE) of 0.1684. Compared with fusion algorithms, such as Ridge Regression (RR), Decision Tree (DT), Random forest (RF), Support Vector Regression (SVR), and Light Gradient Boosting Machine (lightGBM), the proposed method yields more accurate and robust prediction results. Furthermore, a multivariate function relationship between the slope safety coefficient and the five variables is constructed based on the relationship between five independent input variables and the variation of the safety coefficient. The proposed method introduces a novel approach for calculating the slope safety coefficient. Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction is crucial for safe operations and cost-effective slope maintenance. In this work, a back propagation (BP) neural network based on a sparrow search algorithm (SSA) is developed to predict the slope safety coefficients by using five input features, including unit weight ( γ ), cohesion ( c ), friction angle ( φ ), slope angle ( α ), and slope height ( H ). The proposed model is trained and simulated using 55 data samples. The regression coefficient of the proposed SSA-BP neural network is 0.9405, with a mean relative error (MAE) of 0.1684. Compared with fusion algorithms, such as Ridge Regression (RR), Decision Tree (DT), Random forest (RF), Support Vector Regression (SVR), and Light Gradient Boosting Machine (lightGBM), the proposed method yields more accurate and robust prediction results. Furthermore, a multivariate function relationship between the slope safety coefficient and the five variables is constructed based on the relationship between five independent input variables and the variation of the safety coefficient. The proposed method introduces a novel approach for calculating the slope safety coefficient. |
| Author | Feng, Shuhu Wang, Wensong Wang, Jiahe Zheng, Binbin Yang, Han Hu, Tianyu Feng, Tingting |
| Author_xml | – sequence: 1 givenname: Binbin surname: Zheng fullname: Zheng, Binbin email: zhengbin_vip@sina.com organization: School of Management Science and Engineering, Shandong Technology and Business University, Shandong Emergency Management Institute, Shandong Technology and Business University – sequence: 2 givenname: Jiahe surname: Wang fullname: Wang, Jiahe organization: School of Management Science and Engineering, Shandong Technology and Business University – sequence: 3 givenname: Shuhu surname: Feng fullname: Feng, Shuhu organization: School of Management Science and Engineering, Shandong Technology and Business University, Shandong Emergency Management Institute, Shandong Technology and Business University – sequence: 4 givenname: Han surname: Yang fullname: Yang, Han organization: School of Resources and Safety Engineering, Chongqing University – sequence: 5 givenname: Wensong surname: Wang fullname: Wang, Wensong organization: State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology – sequence: 6 givenname: Tingting surname: Feng fullname: Feng, Tingting organization: School of Management Science and Engineering, Shandong Technology and Business University – sequence: 7 givenname: Tianyu surname: Hu fullname: Hu, Tianyu organization: School of Civil Engineering, Chongqing Jiaotong University |
| BookMark | eNp9kE1LAzEQhoMoWD_-gKeA165Oku1mcyziFxS8KHgLs9lsG12TNUkp-uvdWkHw4GkYZp73nXmPyL4P3hJyxuCCAcjLxBhUqgAuCqg4g6LeIxM2k2Nbl7BPJqA4K0DA8yE5SukFgLGKqwn5nFNvN1PaYcpTir6laMw6YrYU-2WILq_eaBciHaJtncnOL2kKrqepD4OlKWPjepc_aIPJtjR4mgaMMWxoshjN6lelaNC8jjJhwCVmF_wJOeiwT_b0px6Tp5vrx6u7YvFwe381XxQoSp6LVnaI0qoZlq1plGLAZSVNjZxxY0rbyE4ZhWiEaUDImWDCKNHV40A0oqzEMTnf6Y7e72ubsn4J6-hHS80VE7IGwetxi--2TAwpRdvpIbo3jB-agd5mrHcZ6zFj_Z2x3kL1H8i4_P1cjuj6_1GxQ9Po45c2_l71D_UFU_mUyQ |
| CitedBy_id | crossref_primary_10_3390_su16209085 crossref_primary_10_3390_electronics14010126 crossref_primary_10_1007_s10462_025_11175_0 |
| Cites_doi | 10.1155/2016/6708183 10.1007/s11053-021-09911-8 10.1177/0049124118782543 10.1007/s11069-021-05115-8 10.1007/s11053-005-6951-3 10.1016/j.cageo.2011.09.011 10.1016/j.cageo.2012.09.003 10.1155/2018/1048756 10.13722/j.cnki.jrme.2018.1470-en 10.16285/j.rsm.2007.12.035 10.1016/j.ijmst.2022.07.002 10.46544/AMS.v27i3.02 10.1016/j.tust.2020.103699 10.1007/s00366-021-01374-y 10.1016/j.compgeo.2010.08.011 10.1038/s41598-021-97484-0 10.1016/j.conbuildmat.2022.127200 10.1007/s11069-020-04388-9 10.12989/gae.2022.30.6.489 10.1108/02644401011073700 10.1016/j.irfa.2015.03.010 10.1016/j.jafrearsci.2011.09.004 10.16030/j.cnki.issn.1000-3665.2018.02.19 10.1016/j.ijmst.2018.11.002 10.1016/j.catena.2018.12.035 10.1061/(ASCE)CP.1943-5487.0000607 10.3390/app12052656 10.1007/s12205-018-1337-3 10.1080/20964471.2018.1472392 10.1016/j.ssci.2019.05.046 10.1016/j.geomorph.2009.06.006 10.1109/ACCESS.2020.3004995 10.1016/j.gsf.2014.10.003 10.1080/10106049.2017.1323964 10.16652/j.issn.1004⁃373x.2019.05.018 10.1016/j.measurement.2021.110654 10.1016/j.jrmge.2022.03.005 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 3V. 7ST 7TG 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M2P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U SOI |
| DOI | 10.1007/s11069-023-06210-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1573-0840 |
| EndPage | 319 |
| ExternalDocumentID | 10_1007_s11069_023_06210_8 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51804178; 51804051 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67M 67Z 6KP 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDH EIOEI EIS EJD EPAXT ESBYG FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L6V L8X LAK LK5 LLZTM M2P M4Y M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z85 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ZY4 ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BANNL CITATION PHGZM PHGZT PQGLB 7ST 7TG 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KL. KR7 L.G PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-a342t-d7faa7e95a4dcb99102767c8a212cc4eb7f9c9aac3cb0375313c93f8eb73b3463 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001077478000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0921-030X |
| IngestDate | Wed Nov 05 04:08:13 EST 2025 Tue Nov 18 22:10:20 EST 2025 Sat Nov 29 05:54:55 EST 2025 Fri Feb 21 02:41:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Slope stability BP neural network Safety factor Sparrow search algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-d7faa7e95a4dcb99102767c8a212cc4eb7f9c9aac3cb0375313c93f8eb73b3463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2913780328 |
| PQPubID | 54179 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2913780328 crossref_primary_10_1007_s11069_023_06210_8 crossref_citationtrail_10_1007_s11069_023_06210_8 springer_journals_10_1007_s11069_023_06210_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20240100 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Natural hazards (Dordrecht) |
| PublicationTitleAbbrev | Nat Hazards |
| PublicationYear | 2024 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | Song, Gong, Gao, Wang, Cui, Li, Wei (CR23) 2012; 42 Huang, Yu, Ye, Ye, Cheng (CR12) 2022; 330 Zhang, Yang (CR36) 2021; 105 Zhang, Goh (CR35) 2016; 7 Basahel, Mitri (CR4) 2019; 29 Duxbury (CR5) 2021; 50 Wang, Zhao, Wu, Zhang, Liu (CR28) 2022 Sun, Cai, Xie, Yi (CR24) 2019; 42 Mahmoodzadeh, Mohammadi, Farid Hama Ali, Hashim Ibrahim, Nariman Abdulhamid, Nejati (CR18) 2022; 15 Johari, Javadi, Habibagahi (CR14) 2010; 38 Lai, Qiu, Feng, Chen, Fan (CR17) 2016; 2016 Feng, Li, Yuan, Zeng, Sun (CR8) 2018; 22 Kawabata, Bandibas (CR15) 2009; 113 Zhao, Wang, Yi, Yang, Tong (CR39) 2022; 12 Xin, Chen, Li, Lu, Li, Wang (CR29) 2022; 189 Aye, Gupta, Hammoudeh, Kim (CR3) 2015; 41 Erzin, Cetin (CR6) 2013; 51 Gong (CR10) 2021; 11 Altuntov, Erkayaoğlu (CR2) 2021; 30 Xue, Zhang, Liu (CR33) 2007; 28 Mahmoodzadeh, Ali, Ibrahim, Mohammed, Rashidi, Mahmood, Ali (CR20) 2022; 27 Zhu, Cai, Huang, Zhang, Guo (CR41) 2019; 6 Hong, Miao, Liu, Zhu (CR11) 2019; 176 Miliaresis, Sabatakakis, Koukis (CR22) 2005; 14 Xu, Liu, Wang, Wang (CR30) 2021; 109 Mahmoodzadeh, Mohammadi, Abdulhamid, Ali, Ibrahim, Rashidi (CR19) 2022; 28 Wang, Zhou, Fu, Li, Wang (CR26) 2018; 45 Xue (CR31) 2017; 31 Jiang, Lian, Lu, Gu, Ruan, Xie (CR13) 2018 Wang, Lu, Wei, Wei, Behbahani, Iseley (CR27) 2020; 8 Zhang, Shen, Huang, Xie (CR37) 2022; 14 Ahangar-Asr, Faramarzi, Javadi (CR1) 2010; 27 Kim, Lee, Jung, Lee (CR16) 2018; 33 Zhou, Li, Yang, Wang, Shi, Yao, Mitri (CR40) 2019; 118 Taalab, Cheng, Zhang (CR25) 2018; 2 Farrokhzad, Barari, Choobbasti, Ibsen (CR7) 2011; 61 Mahmoodzaden, Nejati, Mohammadi, Ibrahim, Rashidi, Mohammed (CR21) 2022; 30 Zeng, Nait Amar, Mohammed, Motahari, Hasanipanah (CR34) 2021; 38 J Lai (6210_CR17) 2016; 2016 D Kawabata (6210_CR15) 2009; 113 P Sun (6210_CR24) 2019; 42 G Miliaresis (6210_CR22) 2005; 14 C Xu (6210_CR30) 2021; 109 A Mahmoodzadeh (6210_CR20) 2022; 27 H Basahel (6210_CR4) 2019; 29 X Wang (6210_CR27) 2020; 8 W Zhang (6210_CR35) 2016; 7 Y Song (6210_CR23) 2012; 42 X Feng (6210_CR8) 2018; 22 D Zhang (6210_CR37) 2022; 14 F Zeng (6210_CR34) 2021; 38 Y Erzin (6210_CR6) 2013; 51 S Zhao (6210_CR39) 2022; 12 A Mahmoodzadeh (6210_CR19) 2022; 28 G Wang (6210_CR28) 2022 A Mahmoodzadeh (6210_CR18) 2022; 15 H Hong (6210_CR11) 2019; 176 J Xin (6210_CR29) 2022; 189 X Xue (6210_CR31) 2017; 31 A Johari (6210_CR14) 2010; 38 SW Duxbury (6210_CR5) 2021; 50 J Wang (6210_CR26) 2018; 45 X Zhu (6210_CR41) 2019; 6 K Taalab (6210_CR25) 2018; 2 J Zhou (6210_CR40) 2019; 118 G Aye (6210_CR3) 2015; 41 JC Kim (6210_CR16) 2018; 33 Y Zhang (6210_CR36) 2021; 105 F Farrokhzad (6210_CR7) 2011; 61 S Huang (6210_CR12) 2022; 330 B Gong (6210_CR10) 2021; 11 S Jiang (6210_CR13) 2018 X Xue (6210_CR33) 2007; 28 FK Altuntov (6210_CR2) 2021; 30 A Ahangar-Asr (6210_CR1) 2010; 27 A Mahmoodzaden (6210_CR21) 2022; 30 |
| References_xml | – volume: 2016 start-page: 6708183 year: 2016 ident: CR17 article-title: Prediction of soil deformation in tunnelling using artificial neural networks publication-title: Comput Intell Neurosci doi: 10.1155/2016/6708183 – volume: 30 start-page: 4047 issue: 6 year: 2021 end-page: 4062 ident: CR2 article-title: A New approach to optimize ultimate geometry of open pit mines with variable overall slope angles publication-title: Nat Resour Res doi: 10.1007/s11053-021-09911-8 – volume: 50 start-page: 491 issue: 2 year: 2021 end-page: 530 ident: CR5 article-title: Diagnosing multicollinearity in exponential random graph models publication-title: Sociol Methods Res doi: 10.1177/0049124118782543 – volume: 15 start-page: 1 year: 2022 end-page: 29 ident: CR18 article-title: Prediction of safety factors for slope stability: comparison of machine learning techniques publication-title: Natl Hazards doi: 10.1007/s11069-021-05115-8 – volume: 14 start-page: 91 issue: 2 year: 2005 end-page: 100 ident: CR22 article-title: Terrain pattern recognition and spatial decision making for regional slope stability studies publication-title: Nat Resour Res doi: 10.1007/s11053-005-6951-3 – volume: 42 start-page: 189 year: 2012 end-page: 199 ident: CR23 article-title: Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.09.011 – volume: 51 start-page: 305 issue: 51 year: 2013 end-page: 313 ident: CR6 article-title: The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.09.003 – year: 2018 ident: CR13 article-title: Ensemble prediction algorithm of anomaly monitoring based on big data analysis platform of open-pit mine slope publication-title: Complexity doi: 10.1155/2018/1048756 – volume: 6 start-page: 1233 year: 2019 end-page: 1241 ident: CR41 article-title: Research on mechanical properties and damage evolution law of expensive soils under the cyclic action of coupling wetting-drying and freeze-thaw publication-title: Chin J Rock Mech Eng doi: 10.13722/j.cnki.jrme.2018.1470-en – volume: 28 start-page: 2643 issue: 12 year: 2007 end-page: 2648 ident: CR33 article-title: Evaluation of slope stability based on genetic algorithm and fuzzy neural network publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2007.12.035 – year: 2022 ident: CR28 article-title: Intelligent prediction of slope stability based on visual exploratory data analysis of 77 in situ cases publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2022.07.002 – volume: 27 start-page: 581 issue: 3 year: 2022 end-page: 588 ident: CR20 article-title: Application of autoregressive model in the construction management of tunnels publication-title: Acta Mont Slovaca doi: 10.46544/AMS.v27i3.02 – volume: 109 start-page: 103699 year: 2021 ident: CR30 article-title: Prediction of tunnel boring machine operating parameters using various machine learning algorithms publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103699 – volume: 38 start-page: 1 year: 2021 end-page: 12 ident: CR34 article-title: Improving the performance of LSSVM model in predicting the safety factor for circular failure slope through optimization algorithms publication-title: Eng Comput doi: 10.1007/s00366-021-01374-y – volume: 38 start-page: 2 issue: 1 year: 2010 end-page: 13 ident: CR14 article-title: Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.08.011 – volume: 28 start-page: 359 issue: 4 year: 2022 end-page: 374 ident: CR19 article-title: Forecasting tunnel path geology using Gaussian process regression publication-title: Geomech Eng doi: 10.1016/j.tust.2020.103699 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 10 ident: CR10 article-title: Study of PLSR-BP model for stability assessment of loess slope based on particle swarm optimization publication-title: Sci Rep doi: 10.1038/s41598-021-97484-0 – volume: 330 start-page: 127200 year: 2022 ident: CR12 article-title: Pore structure change and physico-mechanical properties deterioration of sandstone suffering freeze-thaw actions publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.127200 – volume: 105 start-page: 2027 year: 2021 end-page: 2043 ident: CR36 article-title: A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model publication-title: Nat Hazards doi: 10.1007/s11069-020-04388-9 – volume: 30 start-page: 489 issue: 6 year: 2022 end-page: 502 ident: CR21 article-title: Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines publication-title: Geomech Eng doi: 10.12989/gae.2022.30.6.489 – volume: 27 start-page: 878 issue: 7–8 year: 2010 end-page: 893 ident: CR1 article-title: A new approach for prediction of the stability of soil and rock slopes publication-title: Eng Comput Int J for Comput Aided Eng doi: 10.1108/02644401011073700 – volume: 41 start-page: 257 year: 2015 end-page: 266 ident: CR3 article-title: Forecasting the price of gold using dynamic model averaging publication-title: Int Rev Financ Anal doi: 10.1016/j.irfa.2015.03.010 – volume: 61 start-page: 349 issue: 5 year: 2011 end-page: 357 ident: CR7 article-title: Neural network-based model for landslide susceptibility and soil longitudinal profile analyses: two case studies publication-title: J Afr Earth Sc doi: 10.1016/j.jafrearsci.2011.09.004 – volume: 45 start-page: 123 issue: 2 year: 2018 end-page: 130 ident: CR26 article-title: Application of factor analysis and probabilistic neural network model on evaluation of the slope stability publication-title: Hydrogeol Eng Geol doi: 10.16030/j.cnki.issn.1000-3665.2018.02.19 – volume: 29 start-page: 357 issue: 3 year: 2019 end-page: 370 ident: CR4 article-title: Probabilistic assessment of rock slopes stability using the response surface approach—a case study publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2018.11.002 – volume: 176 start-page: 45 year: 2019 end-page: 64 ident: CR11 article-title: Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping publication-title: Catena doi: 10.1016/j.catena.2018.12.035 – volume: 31 start-page: 04016041 issue: 1 year: 2017 ident: CR31 article-title: Prediction of slope stability based on hybrid PSO and LSSVM publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000607 – volume: 12 start-page: 2656 issue: 5 year: 2022 ident: CR39 article-title: Intelligent classification of surrounding rock of tunnel based on 10 machine learning algorithms publication-title: Appl Sci doi: 10.3390/app12052656 – volume: 22 start-page: 941 issue: 3 year: 2018 end-page: 950 ident: CR8 article-title: Prediction of slope stability using naive bayes classifier publication-title: KSCE J Civ Eng doi: 10.1007/s12205-018-1337-3 – volume: 2 start-page: 159 issue: 2 year: 2018 end-page: 178 ident: CR25 article-title: Mapping landslide susceptibility and types using random forest publication-title: Big Earth Data doi: 10.1080/20964471.2018.1472392 – volume: 118 start-page: 505 year: 2019 end-page: 518 ident: CR40 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Saf Sci doi: 10.1016/j.ssci.2019.05.046 – volume: 113 start-page: 97 issue: 1–2 year: 2009 end-page: 109 ident: CR15 article-title: Landslide susceptibility mapping using geological data, a DEM from ASTER images and an artificial neural network (ANN) publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.06.006 – volume: 8 start-page: 119527 year: 2020 end-page: 119543 ident: CR27 article-title: Application of artificial neural network in tunnel engineering: a systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004995 – volume: 7 start-page: 45 issue: 1 year: 2016 end-page: 52 ident: CR35 article-title: Multivariate adaptive regression splines and neural network models for prediction of pile drivability publication-title: Geosci Front doi: 10.1016/j.gsf.2014.10.003 – volume: 33 start-page: 1000 issue: 9 year: 2018 end-page: 1015 ident: CR16 article-title: Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang publication-title: Korea Geocarto Int doi: 10.1080/10106049.2017.1323964 – volume: 42 start-page: 75 issue: 5 year: 2019 end-page: 78 ident: CR24 article-title: Slope stability evaluation based on genetic optimization neural network publication-title: Modern Electron Tech doi: 10.16652/j.issn.1004⁃373x.2019.05.018 – volume: 189 start-page: 110654 year: 2022 ident: CR29 article-title: Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP neural network model publication-title: Measurement doi: 10.1016/j.measurement.2021.110654 – volume: 14 start-page: 1100 issue: 4 year: 2022 end-page: 1114 ident: CR37 article-title: Auto machine learning-based modelling and prediction of excavation-induced tunnel displacement publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.03.005 – volume: 7 start-page: 45 issue: 1 year: 2016 ident: 6210_CR35 publication-title: Geosci Front doi: 10.1016/j.gsf.2014.10.003 – volume: 118 start-page: 505 year: 2019 ident: 6210_CR40 publication-title: Saf Sci doi: 10.1016/j.ssci.2019.05.046 – volume: 33 start-page: 1000 issue: 9 year: 2018 ident: 6210_CR16 publication-title: Korea Geocarto Int doi: 10.1080/10106049.2017.1323964 – volume: 28 start-page: 2643 issue: 12 year: 2007 ident: 6210_CR33 publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2007.12.035 – volume: 14 start-page: 1100 issue: 4 year: 2022 ident: 6210_CR37 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.03.005 – volume: 50 start-page: 491 issue: 2 year: 2021 ident: 6210_CR5 publication-title: Sociol Methods Res doi: 10.1177/0049124118782543 – year: 2018 ident: 6210_CR13 publication-title: Complexity doi: 10.1155/2018/1048756 – volume: 28 start-page: 359 issue: 4 year: 2022 ident: 6210_CR19 publication-title: Geomech Eng doi: 10.1016/j.tust.2020.103699 – volume: 330 start-page: 127200 year: 2022 ident: 6210_CR12 publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2022.127200 – volume: 42 start-page: 75 issue: 5 year: 2019 ident: 6210_CR24 publication-title: Modern Electron Tech doi: 10.16652/j.issn.1004⁃373x.2019.05.018 – volume: 29 start-page: 357 issue: 3 year: 2019 ident: 6210_CR4 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2018.11.002 – volume: 2016 start-page: 6708183 year: 2016 ident: 6210_CR17 publication-title: Comput Intell Neurosci doi: 10.1155/2016/6708183 – volume: 176 start-page: 45 year: 2019 ident: 6210_CR11 publication-title: Catena doi: 10.1016/j.catena.2018.12.035 – year: 2022 ident: 6210_CR28 publication-title: Int J Min Sci Technol doi: 10.1016/j.ijmst.2022.07.002 – volume: 6 start-page: 1233 year: 2019 ident: 6210_CR41 publication-title: Chin J Rock Mech Eng doi: 10.13722/j.cnki.jrme.2018.1470-en – volume: 14 start-page: 91 issue: 2 year: 2005 ident: 6210_CR22 publication-title: Nat Resour Res doi: 10.1007/s11053-005-6951-3 – volume: 109 start-page: 103699 year: 2021 ident: 6210_CR30 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103699 – volume: 31 start-page: 04016041 issue: 1 year: 2017 ident: 6210_CR31 publication-title: J Comput Civ Eng doi: 10.1061/(ASCE)CP.1943-5487.0000607 – volume: 113 start-page: 97 issue: 1–2 year: 2009 ident: 6210_CR15 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.06.006 – volume: 42 start-page: 189 year: 2012 ident: 6210_CR23 publication-title: Comput Geosci doi: 10.1016/j.cageo.2011.09.011 – volume: 38 start-page: 1 year: 2021 ident: 6210_CR34 publication-title: Eng Comput doi: 10.1007/s00366-021-01374-y – volume: 2 start-page: 159 issue: 2 year: 2018 ident: 6210_CR25 publication-title: Big Earth Data doi: 10.1080/20964471.2018.1472392 – volume: 51 start-page: 305 issue: 51 year: 2013 ident: 6210_CR6 publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.09.003 – volume: 8 start-page: 119527 year: 2020 ident: 6210_CR27 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004995 – volume: 30 start-page: 489 issue: 6 year: 2022 ident: 6210_CR21 publication-title: Geomech Eng doi: 10.12989/gae.2022.30.6.489 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 6210_CR10 publication-title: Sci Rep doi: 10.1038/s41598-021-97484-0 – volume: 27 start-page: 581 issue: 3 year: 2022 ident: 6210_CR20 publication-title: Acta Mont Slovaca doi: 10.46544/AMS.v27i3.02 – volume: 22 start-page: 941 issue: 3 year: 2018 ident: 6210_CR8 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-018-1337-3 – volume: 61 start-page: 349 issue: 5 year: 2011 ident: 6210_CR7 publication-title: J Afr Earth Sc doi: 10.1016/j.jafrearsci.2011.09.004 – volume: 30 start-page: 4047 issue: 6 year: 2021 ident: 6210_CR2 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09911-8 – volume: 12 start-page: 2656 issue: 5 year: 2022 ident: 6210_CR39 publication-title: Appl Sci doi: 10.3390/app12052656 – volume: 189 start-page: 110654 year: 2022 ident: 6210_CR29 publication-title: Measurement doi: 10.1016/j.measurement.2021.110654 – volume: 27 start-page: 878 issue: 7–8 year: 2010 ident: 6210_CR1 publication-title: Eng Comput Int J for Comput Aided Eng doi: 10.1108/02644401011073700 – volume: 105 start-page: 2027 year: 2021 ident: 6210_CR36 publication-title: Nat Hazards doi: 10.1007/s11069-020-04388-9 – volume: 15 start-page: 1 year: 2022 ident: 6210_CR18 publication-title: Natl Hazards doi: 10.1007/s11069-021-05115-8 – volume: 41 start-page: 257 year: 2015 ident: 6210_CR3 publication-title: Int Rev Financ Anal doi: 10.1016/j.irfa.2015.03.010 – volume: 38 start-page: 2 issue: 1 year: 2010 ident: 6210_CR14 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.08.011 – volume: 45 start-page: 123 issue: 2 year: 2018 ident: 6210_CR26 publication-title: Hydrogeol Eng Geol doi: 10.16030/j.cnki.issn.1000-3665.2018.02.19 |
| SSID | ssj0011629 |
| Score | 2.4016113 |
| Snippet | Slope stability prediction is one of the most essential and critical tasks in mining and geotechnical projects. A fast and precise slope stability prediction... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 297 |
| SubjectTerms | Algorithms Back propagation Back propagation networks Civil Engineering Coefficient of variation Coefficients Decision trees Earth and Environmental Science Earth Sciences Environmental Management Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrogeology Independent variables Natural Hazards Neural networks Original Paper Predictions Regression coefficients Safety Search algorithms Slope stability Soil stability Support vector machines |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEA6-QC8-d3HWBzl4cwLTST-So4jiQUR0V-bWVOehg7Pdw3S74P76rfTDRlFhPSddhFSS-qqr6itCjvTIJmBixyxHNYQZjBjE0jAHjiM-ziJV0zHcXSZXV3I8VtdtUVjZZbt3Icn6pe6L3dB7UQxtDBvF6KgwuUiW0dxJ37Dh5vbuJXYQxLxh2OM-WWg0bktl3pfx2hz1GPNNWLS2NucbX1vnJllv0SU9aY7DFlmw-TZZbRudPzzvkL8nFHH0kDooqyGF3FDQ-snTRVCY3hfzSfXwmyKOpbO5j-D4nGhaFpMpLafFzFKEknUy7TP11s_QIqf4InkaR9pcmV4Ky0A_ohh0yu9r7X8jv87Pfp5esLb9AgMR8oqZxAEkVkUQGp0hjkQPNk60BLR2Woc2S5zSCkALnflOuiIQWgkncUBkIozFd7KUF7ndJVSGWRQaIyON-CyOnVI2jKQJOAfnAd6ABJ0WUt1yk_sWGdO0Z1X2u5rirqb1rqZyQI5fvpk1zByfzt7vlJu2t7RMuQpEIj2j4IAMO2X2wx9L-_F_0_fIGkcs1Py52SdL1fzJHpAV_aealPPD-vT-A6Iz6YI priority: 102 providerName: Springer Nature |
| Title | A new, fast, and accurate algorithm for predicting soil slope stability based on sparrow search algorithm-back propagation |
| URI | https://link.springer.com/article/10.1007/s11069-023-06210-8 https://www.proquest.com/docview/2913780328 |
| Volume | 120 |
| WOSCitedRecordID | wos001077478000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0840 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011629 issn: 0921-030X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BiwQX3oiFUvnAjbXY2HnYJ1RQKw6wWrVQ7S2a-NFWLMmySZHKr2eceBuBRC9ccnEyivTZnm88428AXpuZK9DmnjtBMKQVzjjmynKPXhA_rjLdyzGcfirmc7Vc6kU8cGtjWeV2T-w3atuYcEb-VuhEFiqov71b_-Cha1TIrsYWGrdhl5hNEkq6PovFdRYhycWgtSdC2dBsGS_NDFfnKBbSnDwWn-UU9nD1p2Ma2eZfCdLe7xw9-N8_fgj3I-NkB8MUeQS3XP0Y7sbm5-dXT-DXASNuPWUe227KsLYMjbkMEhIMV2dksTv_zojbsvUmZHVCnTRrm4sVa1fN2jGil32B7RULHtGypma0SwVpRzYso9EKr9B8IzMUqJ_1M-IpfD06_PLhI48tGTjKVHTcFh6xcDrD1JqKuCVFtXlhFJIHNCZ1VeG10YhGmip015WJNFp6RQOykmkun8FO3dTuOTCVVllqrcoMcbY891q7NFM2EQJ9IH0TSLZ4lCbqlYe2GatyVFoOGJaEYdljWKoJvLn-Zj2oddz49t4WuDKu3LYcUZvAdAv9OPxvay9utvYS7gniQ8PpzR7sdJtL9wrumJ_dRbvZh933h_PF8X4_f8OzOKHn8cnpb6Ln90I |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgtReeCMWCvgAJ9ZiYzuJfUCoAqpWXVY9FLS34PhBK7bJsklBy4_iNzLOoxFI9NYDZycjOf488008_gbguZm4VNvEU8dwGUSuJ1Qn0lKvPUN-nMeqkWP4NE1nMzmfq6MN-NXfhQlllb1PbBy1LU34R_6KqYinMqi_vVl-o6FrVDhd7VtotLA4dOsfmLJVrw_e4fq-YGzv_fHbfdp1FaCaC1ZTm3qtU6diLazJkR5hYpakRmp04sYIl6deGaW14SYPDWJ5xI3iXuIAz7lIONq9BtdFUBYLpYLs6OLUIkpYq-3HQpnSZN5d0mmv6mHupShGSDpJMM2i8s9AOLDbvw5kmzi3d-t_-0K34WbHqMluuwXuwIYr7sJW19z9ZH0Pfu4SzB3GxOuqHhNdWKKNOQ8SGUQvvuAM6pMzgtydLFfh1CrUgZOqPF2QalEuHUH63BQQr0mI-JaUBUEvHKQrSTvbwQrNtfmKZkr00g3i78PHK5n6A9gsysI9BCJFHgtrZWyQkyaJV8qJWNqIMe0DqR1B1K9_Zjo99tAWZJENStIBMxliJmswk8kRvLx4Z9mqkVz69E4PlKzzTFU2oGQE4x5qw_C_rT263Noz2No__jDNpgezw8ewzZD7tX-qdmCzXp27J3DDfK9Pq9XTZs8Q-HzVEPwNCpRR5w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIulEcRCy34ACfW6sZxEvuAUKFdUbVarRCgvQXHD1qxJMsmBS0_jV_HOI9GINFbD5ydjOTk8_gbz_gbgGd6bBNlYkctw9_AMzWmKhaGOuUY8uMskrUcw8eTZDoV87mcbcCv7i6ML6vsfGLtqE2h_Rn5HpNBmAiv_rbn2rKI2cHk1fIb9R2kfKa1a6fRQOTYrn9g-Fa-PDrAf_2cscnh-zdvadthgKqQs4qaxCmVWBkpbnSGVAmDtDjRQqFD15rbLHFSS6V0qDPfLDYMQi1DJ3AgzEIeh2j3GmwmSDL4ADZfH05n7y5yGEHMGqU_5ouWxvP2yk5zcQ8jMUlxv6TjGIMuKv7cFnuu-1d6tt71Jlv_8_e6A7dbrk32m8VxFzZsfg9utm3fT9f34ec-wahiRJwqqxFRuSFK63MvnkHU4jPOoDr9SpDVk-XK57N8hTgpi7MFKRfF0hIk1nVp8Zp4LmBIkRP0z17UkjSz7a3QTOkvaKZA_12vhW34cCVTfwCDvMjtQyCCZxE3RkQa2WocOyktj4QJGFPO090hBB0WUt0qtfuGIYu015j2-EkRP2mNn1QM4cXFO8tGp-TSp3c60KStzyrTHjFDGHWw64f_be3R5daewg1EXnpyND1-DLcYksLmCGsHBtXq3O7Cdf29OitXT9oFRODTVWPwN_zxXAE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new%2C+fast%2C+and+accurate+algorithm+for+predicting+soil+slope+stability+based+on+sparrow+search+algorithm-back+propagation&rft.jtitle=Natural+hazards+%28Dordrecht%29&rft.au=Zheng%2C+Binbin&rft.au=Wang%2C+Jiahe&rft.au=Feng%2C+Shuhu&rft.au=Yang%2C+Han&rft.date=2024-01-01&rft.issn=0921-030X&rft.eissn=1573-0840&rft.volume=120&rft.issue=1&rft.spage=297&rft.epage=319&rft_id=info:doi/10.1007%2Fs11069-023-06210-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11069_023_06210_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-030X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-030X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-030X&client=summon |