Spatiotemporal deep learning approach on estimation of diaphragm wall deformation induced by excavation

This paper proposes a convolution neural network (CNN) based prediction method for concrete diaphragm wall (CDW) deflections. CNN algorithm is modified for processing the CDW deformation data collected from in-situ measurement in both time and space dimensions, and capable of making dynamic predicti...

Full description

Saved in:
Bibliographic Details
Published in:Acta geotechnica Vol. 16; no. 11; pp. 3631 - 3645
Main Authors: Zhao, Hua-jing, Liu, Wei, Shi, Pei-xin, Du, Jiang-tao, Chen, Xiu-ming
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2021
Springer Nature B.V
Subjects:
ISSN:1861-1125, 1861-1133
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes a convolution neural network (CNN) based prediction method for concrete diaphragm wall (CDW) deflections. CNN algorithm is modified for processing the CDW deformation data collected from in-situ measurement in both time and space dimensions, and capable of making dynamic prediction based on the extracted spatiotemporal features of wall deflection. The proposed method is validated through investigating a project of deep excavation in Suzhou, China. The predicted results show excellent agreement with field measurement and yield mean absolute errors of 0.86 mm and 1.55 mm for nowcasting and forecasting tasks, respectively. Three prevailing algorithms in time series prediction, namely, back propagation neural network, long short-term memory and autoregressive integrated moving average, are conducted for comparison. The results illustrate that the CNN outperforms the other algorithms in terms of accuracy and execution time. Therefore, the proposed CNN model is the most suitable for CDW deflection prediction, and can provide reasonable references for construction safety management on site.
AbstractList This paper proposes a convolution neural network (CNN) based prediction method for concrete diaphragm wall (CDW) deflections. CNN algorithm is modified for processing the CDW deformation data collected from in-situ measurement in both time and space dimensions, and capable of making dynamic prediction based on the extracted spatiotemporal features of wall deflection. The proposed method is validated through investigating a project of deep excavation in Suzhou, China. The predicted results show excellent agreement with field measurement and yield mean absolute errors of 0.86 mm and 1.55 mm for nowcasting and forecasting tasks, respectively. Three prevailing algorithms in time series prediction, namely, back propagation neural network, long short-term memory and autoregressive integrated moving average, are conducted for comparison. The results illustrate that the CNN outperforms the other algorithms in terms of accuracy and execution time. Therefore, the proposed CNN model is the most suitable for CDW deflection prediction, and can provide reasonable references for construction safety management on site.
This paper proposes a convolution neural network (CNN) based prediction method for concrete diaphragm wall (CDW) deflections. CNN algorithm is modified for processing the CDW deformation data collected from in-situ measurement in both time and space dimensions, and capable of making dynamic prediction based on the extracted spatiotemporal features of wall deflection. The proposed method is validated through investigating a project of deep excavation in Suzhou, China. The predicted results show excellent agreement with field measurement and yield mean absolute errors of 0.86 mm and 1.55 mm for nowcasting and forecasting tasks, respectively. Three prevailing algorithms in time series prediction, namely, back propagation neural network, long short-term memory and autoregressive integrated moving average, are conducted for comparison. The results illustrate that the CNN outperforms the other algorithms in terms of accuracy and execution time. Therefore, the proposed CNN model is the most suitable for CDW deflection prediction, and can provide reasonable references for construction safety management on site.
Author Zhao, Hua-jing
Chen, Xiu-ming
Du, Jiang-tao
Liu, Wei
Shi, Pei-xin
Author_xml – sequence: 1
  givenname: Hua-jing
  surname: Zhao
  fullname: Zhao, Hua-jing
  organization: School of Rail Transportation, Soochow University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-1748-9688
  surname: Liu
  fullname: Liu, Wei
  email: ggoulmmeng@suda.edu.cn
  organization: School of Rail Transportation, Soochow University
– sequence: 3
  givenname: Pei-xin
  surname: Shi
  fullname: Shi, Pei-xin
  organization: School of Rail Transportation, Soochow University
– sequence: 4
  givenname: Jiang-tao
  surname: Du
  fullname: Du, Jiang-tao
  organization: Guangzhou Metro Design and Research Institute Co., Ltd
– sequence: 5
  givenname: Xiu-ming
  surname: Chen
  fullname: Chen, Xiu-ming
  organization: Suzhou Rail Transit Group Co., Ltd
BookMark eNp9kMtOwzAQRS0EEm3hB1hZYh3wq3GzRBUvqRILYG1NHTtNldrBToH263GbCiQWXXnkuWfmzh2iU-edQeiKkhtKiLyNlApBMsJoRijLRbY9QQM6yWlGKeenvzUbn6NhjEtCcs5EPkDVawtd7Tuzan2ABpfGtLgxEFztKgxtGzzoBfYOm9jVq53WYW9xWUO7CFCt8Bc0O8z6cOjWrlxrU-L5BptvDZ_73wt0ZqGJ5vLwjtD7w_3b9CmbvTw-T-9mGXDBukxrogtBuZHGFhY0z-fScC3shFJpS1JoywmTnBRWyoJrYkspOYAAM5dcaD5C1_3cZPxjnTyrpV8Hl1YqNi7EpCDjQiYV61U6-BiDsaoN6biwUZSoXaCqD1SlQNU-ULVN0OQfpOtuf1wXoG6Oo7xHY9rjKhP-XB2hfgCK9I-A
CitedBy_id crossref_primary_10_3390_su132413579
crossref_primary_10_1016_j_oceaneng_2025_122856
crossref_primary_10_1680_jphmg_24_00083
crossref_primary_10_1080_19648189_2025_2541854
crossref_primary_10_1155_2024_5834253
crossref_primary_10_1016_j_aiig_2025_100140
crossref_primary_10_1016_j_gr_2022_05_015
crossref_primary_10_1016_j_oceaneng_2025_121137
crossref_primary_10_3390_app142411917
crossref_primary_10_1016_j_autcon_2022_104305
crossref_primary_10_1016_j_tust_2022_104759
crossref_primary_10_1016_j_enggeo_2023_107061
crossref_primary_10_1007_s11440_023_02099_6
crossref_primary_10_1007_s11831_025_10244_5
crossref_primary_10_1061_IJGNAI_GMENG_8855
crossref_primary_10_1016_j_jrmge_2024_02_048
crossref_primary_10_1155_2022_6071868
crossref_primary_10_1016_j_tust_2023_104998
crossref_primary_10_1186_s40703_025_00238_4
crossref_primary_10_1007_s00521_022_07764_7
crossref_primary_10_1016_j_aei_2025_103722
crossref_primary_10_1016_j_autcon_2024_105598
crossref_primary_10_1016_j_jrmge_2024_05_042
crossref_primary_10_1155_2022_5655592
crossref_primary_10_1016_j_compgeo_2024_106597
crossref_primary_10_1061_IJGNAI_GMENG_7795
crossref_primary_10_1016_j_cscm_2024_e02936
crossref_primary_10_1016_j_engfailanal_2024_108718
crossref_primary_10_1016_j_undsp_2023_09_013
crossref_primary_10_1515_geo_2022_0503
crossref_primary_10_1007_s13349_025_00917_x
crossref_primary_10_1007_s11440_023_01897_2
Cites_doi 10.1016/j.undsp.2018.03.002
10.1007/s10462-021-09967-1
10.1016/j.tust.2011.11.008
10.1007/s11440-019-00864-0
10.1016/j.trc.2015.03.014
10.1016/j.gsf.2020.01.011
10.1029/2000JD900719
10.1016/j.undsp.2019.12.002
10.1109/LWC.2018.2795605
10.1145/3065386
10.1109/CVPR.2014.223
10.1007/s11440-014-0360-x
10.1111/mice.12440
10.1016/j.tust.2018.11.046
10.1016/j.ress.2020.107050
10.3390/app9173553
10.1007/978-3-642-15825-4_10
10.1007/s11440-013-0284-x
10.1016/B978-0-12-398296-4.00010-6
10.1007/s10462-021-09975-1
10.1016/j.tust.2018.12.005
10.1007/s11440-017-0613-6
10.1016/j.oceaneng.2020.107263
10.1016/j.asoc.2014.05.028
10.1002/ett.3482
10.1111/mice.12363
10.1162/089976600300015015
10.3390/s17040818
10.1061/(ASCE)1090-0241(2001)127:3(203)
10.1007/s11440-008-0062-3
10.1007/s11709-019-0561-3
10.1016/j.ymssp.2020.107077
10.1016/j.cageo.2020.104470
10.1007/s00477-008-0262-2
10.1016/j.compgeo.2020.103711
10.1016/j.neucom.2017.09.069
10.1016/j.compgeo.2007.05.007
10.1016/j.tust.2020.103504
10.1016/j.conbuildmat.2018.08.011
10.1109/5.726791
10.1061/(ASCE)GT.1943-5606.0000553
10.1007/s11440-020-00947-3
10.1016/j.compgeo.2019.103300
10.1016/j.gsf.2020.02.011
10.1155/2009/308239
10.15302/J-FEM-2017015
10.1111/j.2517-6161.1974.tb00994.x
10.1109/CVPR.2014.222
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s11440-021-01264-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1861-1133
EndPage 3645
ExternalDocumentID 10_1007_s11440_021_01264_z
GrantInformation_xml – fundername: Science Project of Beijing Uni.-Construction Group Co, Ltd
  grantid: QTZC-2019-019
– fundername: National Natural Science Foundation of China
  grantid: 51978430; 51778386
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MM-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a342t-cc0c9413e7ef9fac36b7e3c4f8117fd09cf3027309f7793c0fd773aa4aeb734c3
IEDL.DBID BENPR
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661771900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-1125
IngestDate Wed Nov 26 05:09:06 EST 2025
Sat Nov 29 03:35:00 EST 2025
Tue Nov 18 21:19:08 EST 2025
Fri Feb 21 02:47:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Diaphragm wall
Deformation
Deep excavation
Deep learning prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-cc0c9413e7ef9fac36b7e3c4f8117fd09cf3027309f7793c0fd773aa4aeb734c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1748-9688
PQID 2594890597
PQPubID 54451
PageCount 15
ParticipantIDs proquest_journals_2594890597
crossref_primary_10_1007_s11440_021_01264_z
crossref_citationtrail_10_1007_s11440_021_01264_z
springer_journals_10_1007_s11440_021_01264_z
PublicationCentury 2000
PublicationDate 20211100
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 20211100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Acta geotechnica
PublicationTitleAbbrev Acta Geotech
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Hsieh, Ou (CR20) 2016; 11
Harahap, Ou (CR17) 2020; 119
Avci, Abdeljaber, Kiranyaz, Hussein, Gabbouj, Inman (CR2) 2021; 147
Taylor (CR47) 2001; 106
Ma, Dai, He, Ma, Wang, Wang (CR32) 2017; 17
Zhang, Yin, Zheng, Gao (CR52) 2020; 204
Gao, Mosalam (CR15) 2018; 33
Scherer, Müller, Behnke (CR41) 2010
CR38
Kong, Li, Jiang, Zhang, Song (CR23) 2018
CR37
Zhang, Zhang, Wang, Zhang, Goh (CR53) 2019; 84
CR36
Pourtaghi, Lotfollahi-Yaghin (CR39) 2012; 28
Fang, Wang, Peng, Hong (CR14) 2020
Qiu, Zhang, Feng, Zhang, Cui (CR40) 2018; 7
Wang, Shen, Xia, Wang, Zhu, Zhu (CR48) 2020
Bejani, Ghatee (CR6) 2020
Meng, Chen, Wu, Xie, Liu (CR34) 2020; 103
Chen, Hsiung (CR8) 2020; 15
Zhou, Zheng, He, Wang, Guo, Nie, Ma (CR56) 2020; 15
CR49
Chen, Han, Wang (CR7) 2014; 9
Kung, Hsiao, Schuster, Juang (CR26) 2007; 34
CR44
Zhang, Li, Li, Liu, Chen, Ding (CR51) 2021
Chen, Zhang, Wu, Wang, Zhong (CR9) 2019; 13
Shi, Wang (CR43) 2020
Zhang, Goh, Goh, Chew, Zhou, Zhang (CR50) 2018; 3
He, Xu, Stabetamal, Sheng (CR18) 2020; 126
Shahin, Jaksa, Maier (CR42) 2009
Das (CR11) 2013
Bagtzoglou, Hossain (CR4) 2009; 23
Clough, O’Rourke (CR10) 1990; 25
Karpathy, Toderici, Shetty, Leung, Li (CR22) 2014
Tan, Wei (CR46) 2011; 138
Bang, Park, Kim, Kim (CR5) 2019; 34
Li, Xiao, Wang, Chen (CR29) 2019; 85
Dorafshan, Thomas, Maguire (CR13) 2018; 186
Li, Li, Guo, Li, Chen (CR28) 2020
Ding, Xu (CR12) 2017; 4
Babu, Reddy (CR3) 2014; 23
Gers, Schmidhuber, Cummins (CR16) 2000; 12
Zheng, Zhang, Zhang, Zhou, Yang (CR54) 2020
Ma, Tao, Wang, Yu, Wang (CR33) 2015; 54
Hou, Wang, Zhang (CR19) 2009; 4
Lim, Ou, Hsieh (CR30) 2018; 13
Moormann (CR35) 2004; 44
Abdeljaber, Avci, Kiranyaz, Boashash, Sodano, Inman (CR1) 2018; 275
Hwang, Lee, Chou, Su (CR21) 2012; 7
Lecun, Bottou (CR27) 1998; 86
CR24
Stone (CR45) 1974; 36
Long (CR31) 2001; 127
Krizhevsky, Sutskever, Hinton (CR25) 2017; 60
Zhou, Ouyang, Ming, Zhang, Du, Liu (CR55) 2019; 9
A Krizhevsky (1264_CR25) 2017; 60
LY Ding (1264_CR12) 2017; 4
C Qiu (1264_CR40) 2018; 7
A Karpathy (1264_CR22) 2014
1264_CR36
1264_CR37
Y Gao (1264_CR15) 2018; 33
AC Bagtzoglou (1264_CR4) 2009; 23
A Pourtaghi (1264_CR39) 2012; 28
JH Li (1264_CR28) 2020
Y Lecun (1264_CR27) 1998; 86
1264_CR38
Z Fang (1264_CR14) 2020
KE Taylor (1264_CR47) 2001; 106
PG Hsieh (1264_CR20) 2016; 11
C Shi (1264_CR43) 2020
WG Zhang (1264_CR50) 2018; 3
O Abdeljaber (1264_CR1) 2018; 275
M Long (1264_CR31) 2001; 127
1264_CR24
M Stone (1264_CR45) 1974; 36
SK Das (1264_CR11) 2013
RP Chen (1264_CR9) 2019; 13
XZ He (1264_CR18) 2020; 126
M Bejani (1264_CR6) 2020
FA Gers (1264_CR16) 2000; 12
W Zhang (1264_CR53) 2019; 84
WG Zhang (1264_CR51) 2021
Y Tan (1264_CR46) 2011; 138
FH Kong (1264_CR23) 2018
A Lim (1264_CR30) 2018; 13
C Zhou (1264_CR55) 2019; 9
P Zhang (1264_CR52) 2020; 204
YM Hou (1264_CR19) 2009; 4
RN Hwang (1264_CR21) 2012; 7
HZ Zhou (1264_CR56) 2020; 15
D Scherer (1264_CR41) 2010
S Bang (1264_CR5) 2019; 34
C Moormann (1264_CR35) 2004; 44
X Wang (1264_CR48) 2020
SE Harahap (1264_CR17) 2020; 119
MG Li (1264_CR29) 2019; 85
B Chen (1264_CR8) 2020; 15
XL Ma (1264_CR32) 2017; 17
1264_CR49
XL Ma (1264_CR33) 2015; 54
MA Shahin (1264_CR42) 2009
O Avci (1264_CR2) 2021; 147
G Zheng (1264_CR54) 2020
S Dorafshan (1264_CR13) 2018; 186
FF Meng (1264_CR34) 2020; 103
1264_CR44
GTC Kung (1264_CR26) 2007; 34
CN Babu (1264_CR3) 2014; 23
JJ Chen (1264_CR7) 2014; 9
GW Clough (1264_CR10) 1990; 25
References_xml – volume: 3
  start-page: 150
  issue: 2
  year: 2018
  end-page: 165
  ident: CR50
  article-title: Performance of braced excavation in residual soil with groundwater drawdown
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2018.03.002
– year: 2021
  ident: CR51
  article-title: Application of deep learning algorithms in geotechnical engineering: a short critical review
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09967-1
– volume: 28
  start-page: 257
  year: 2012
  end-page: 271
  ident: CR39
  article-title: Wavenet ability assessment in comparison to ANN for predicting the maximum surface settlement caused by tunneling
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2011.11.008
– volume: 15
  start-page: 1577
  year: 2020
  end-page: 1593
  ident: CR8
  article-title: Observations of the ground and structural behaviors induced by a deep excavation in loose sands
  publication-title: Acta Geotech
  doi: 10.1007/s11440-019-00864-0
– ident: CR49
– volume: 54
  start-page: 187
  year: 2015
  end-page: 197
  ident: CR33
  article-title: Long short-term memory neural network for traffic speed prediction using remote microwave sensor data
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2015.03.014
– year: 2020
  ident: CR43
  article-title: Non-parametric machine learning methods for interpolation of spatially varying non-stationary and non-Gaussian geotechnical properties
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.01.011
– volume: 106
  start-page: 7183
  issue: 7
  year: 2001
  end-page: 7192
  ident: CR47
  article-title: Summarizing multiple aspects of model performance in a single diagram
  publication-title: J Geophys Res
  doi: 10.1029/2000JD900719
– year: 2020
  ident: CR54
  article-title: Neural network and support vector machine models for the prediction of the liquefaction-induced uplift displacement of tunnels
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2019.12.002
– volume: 7
  start-page: 554
  issue: 4
  year: 2018
  end-page: 557
  ident: CR40
  article-title: Spatio-temporal wireless traffic prediction with recurrent neural network
  publication-title: IEEE Wirel Commun Lett
  doi: 10.1109/LWC.2018.2795605
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR25
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– year: 2014
  ident: CR22
  article-title: Large-scale video classification with convolutional neural networks
  publication-title: IEEE Comput Vis Pattern Recognit
  doi: 10.1109/CVPR.2014.223
– volume: 11
  start-page: 177
  year: 2016
  end-page: 189
  ident: CR20
  article-title: Simplified approach to estimate the maximum wall deflection for deep excavations with cross walls in clay under the undrained condition
  publication-title: Acta Geotech
  doi: 10.1007/s11440-014-0360-x
– volume: 34
  start-page: 713
  year: 2019
  end-page: 727
  ident: CR5
  article-title: Encoder-decoder network for pixel-level road crack detection in black-box images
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12440
– volume: 84
  start-page: 461
  year: 2019
  end-page: 471
  ident: CR53
  article-title: A Multivariate Adaptive Regression Splines model for determining horizontal wall deflection envelope for braced excavations in clays
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.11.046
– year: 2020
  ident: CR48
  article-title: Multi-scale deep intra-class transfer learning for bearing fault diagnosis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107050
– volume: 9
  start-page: 3553
  issue: 17
  year: 2019
  ident: CR55
  article-title: A stratigraphic prediction method based on machine learning
  publication-title: Appl Sci
  doi: 10.3390/app9173553
– volume: 44
  start-page: 87
  issue: 1
  year: 2004
  end-page: 98
  ident: CR35
  article-title: Analysis of wall and ground movements due to deep excavation in soft soil based on a new worldwide database
  publication-title: J Jpn Geotech Soc
– year: 2010
  ident: CR41
  article-title: Evaluation of pooling operations in convolutional architectures for object recognition
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-642-15825-4_10
– volume: 9
  start-page: 981
  year: 2014
  end-page: 991
  ident: CR7
  article-title: Numerical analysis of the installation effect of diaphragm walls in saturated soft clay
  publication-title: Acta Geotech
  doi: 10.1007/s11440-013-0284-x
– year: 2013
  ident: CR11
  article-title: Artificial neural networks in geotechnical engineering: modeling and application issues
  publication-title: Metaheuristics Water Geotech Transp Eng
  doi: 10.1016/B978-0-12-398296-4.00010-6
– year: 2020
  ident: CR6
  article-title: Overfitting control in shallow and deep neural networks: a systematic review
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09975-1
– ident: CR36
– volume: 85
  start-page: 268
  year: 2019
  end-page: 281
  ident: CR29
  article-title: Numerical study on responses of an existing metro line to staged deep excavations
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.12.005
– volume: 13
  start-page: 973
  year: 2018
  end-page: 995
  ident: CR30
  article-title: Investigation of the integrated retaining system to limit deformations induced by deep excavation
  publication-title: Acta Geotech
  doi: 10.1007/s11440-017-0613-6
– volume: 204
  start-page: 107263
  year: 2020
  ident: CR52
  article-title: A LSTM surrogate modelling approach for caisson foundations
  publication-title: Ocean Engg
  doi: 10.1016/j.oceaneng.2020.107263
– volume: 23
  start-page: 27
  year: 2014
  end-page: 38
  ident: CR3
  article-title: A moving-average-filter-based hybrid ARIMA-ANN model for forecasting time series data
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.028
– year: 2018
  ident: CR23
  article-title: Big data-driven machine learning-enabled traffic flow prediction
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.3482
– volume: 33
  start-page: 748
  year: 2018
  end-page: 768
  ident: CR15
  article-title: Deep transfer learning for image-based structural damage recognition
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12363
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  end-page: 2471
  ident: CR16
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput
  doi: 10.1162/089976600300015015
– volume: 17
  start-page: 818
  issue: 4
  year: 2017
  ident: CR32
  article-title: Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction
  publication-title: Sensors
  doi: 10.3390/s17040818
– volume: 127
  start-page: 203
  issue: 3
  year: 2001
  end-page: 224
  ident: CR31
  article-title: Database for retaining wall and ground movements due to deep excavations
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2001)127:3(203)
– volume: 25
  start-page: 439
  year: 1990
  end-page: 470
  ident: CR10
  article-title: Construction induced movements of in situ walls. Design and performance of earth retaining structures
  publication-title: ASCE Spec Publ
– volume: 4
  start-page: 7
  year: 2009
  end-page: 16
  ident: CR19
  article-title: Finite-element modeling of a complex deep excavation in Shanghai
  publication-title: Acta Geotech
  doi: 10.1007/s11440-008-0062-3
– volume: 7
  start-page: 1
  issue: 1
  year: 2012
  end-page: 12
  ident: CR21
  article-title: Evaluation of performance of diaphragm walls by wall deflection paths
  publication-title: J GeoEng
– volume: 13
  start-page: 1363
  issue: 6
  year: 2019
  end-page: 1378
  ident: CR9
  article-title: Prediction of shield tunneling-induced ground settlement using machine learning techniques
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-019-0561-3
– ident: CR37
– volume: 147
  start-page: 107077
  year: 2021
  ident: CR2
  article-title: A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107077
– year: 2020
  ident: CR14
  article-title: Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104470
– volume: 23
  start-page: 933
  issue: 7
  year: 2009
  end-page: 945
  ident: CR4
  article-title: Radial basis function neural network for hydrologic inversion: an appraisal with classical and spatio-temporal geostatistical techniques in the context of site characterization
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-008-0262-2
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  end-page: 147
  ident: CR45
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: J R Stat Soc
– volume: 126
  start-page: 103711
  year: 2020
  ident: CR18
  article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103711
– volume: 275
  start-page: 1308
  year: 2018
  end-page: 1317
  ident: CR1
  article-title: 1-D CNNs for structural damage detection: verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
– volume: 34
  start-page: 385
  issue: 5
  year: 2007
  end-page: 396
  ident: CR26
  article-title: A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.05.007
– volume: 103
  start-page: 103504
  year: 2020
  ident: CR34
  article-title: Observed behaviors of a long and deep excavation and collinear underlying tunnels in Shenzhen granite residual soil
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103504
– volume: 186
  start-page: 1031
  year: 2018
  end-page: 1045
  ident: CR13
  article-title: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.08.011
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  ident: CR27
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– ident: CR44
– volume: 138
  start-page: 69
  issue: 1
  year: 2011
  end-page: 88
  ident: CR46
  article-title: Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in shanghai soft clay
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000553
– ident: CR38
– volume: 15
  start-page: 2691
  year: 2020
  end-page: 2703
  ident: CR56
  article-title: Numerical modelling of retaining structure displacements in multi-bench retained excavations
  publication-title: Acta Geotech
  doi: 10.1007/s11440-020-00947-3
– volume: 119
  start-page: 103300
  year: 2020
  ident: CR17
  article-title: Finite element analysis of time-dependent behavior in deep excavations
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2019.103300
– year: 2020
  ident: CR28
  article-title: Advanced prediction of tunnel boring machine performance based on big data
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.02.011
– year: 2009
  ident: CR42
  article-title: Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
  publication-title: Adv Artif Neural Syst
  doi: 10.1155/2009/308239
– volume: 4
  start-page: 4
  issue: 1
  year: 2017
  end-page: 19
  ident: CR12
  article-title: A review of metro construction in China: organization, market, cost, safety and schedule
  publication-title: Front Eng Manag
  doi: 10.15302/J-FEM-2017015
– ident: CR24
– year: 2018
  ident: 1264_CR23
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.3482
– volume: 3
  start-page: 150
  issue: 2
  year: 2018
  ident: 1264_CR50
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2018.03.002
– volume: 15
  start-page: 2691
  year: 2020
  ident: 1264_CR56
  publication-title: Acta Geotech
  doi: 10.1007/s11440-020-00947-3
– year: 2020
  ident: 1264_CR28
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.02.011
– volume: 44
  start-page: 87
  issue: 1
  year: 2004
  ident: 1264_CR35
  publication-title: J Jpn Geotech Soc
– year: 2021
  ident: 1264_CR51
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09967-1
– ident: 1264_CR44
– year: 2009
  ident: 1264_CR42
  publication-title: Adv Artif Neural Syst
  doi: 10.1155/2009/308239
– volume: 147
  start-page: 107077
  year: 2021
  ident: 1264_CR2
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2020.107077
– volume: 119
  start-page: 103300
  year: 2020
  ident: 1264_CR17
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2019.103300
– volume: 23
  start-page: 27
  year: 2014
  ident: 1264_CR3
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.028
– volume: 54
  start-page: 187
  year: 2015
  ident: 1264_CR33
  publication-title: Transp Res Part C Emerg Technol
  doi: 10.1016/j.trc.2015.03.014
– volume: 11
  start-page: 177
  year: 2016
  ident: 1264_CR20
  publication-title: Acta Geotech
  doi: 10.1007/s11440-014-0360-x
– volume: 7
  start-page: 1
  issue: 1
  year: 2012
  ident: 1264_CR21
  publication-title: J GeoEng
– volume: 13
  start-page: 973
  year: 2018
  ident: 1264_CR30
  publication-title: Acta Geotech
  doi: 10.1007/s11440-017-0613-6
– year: 2010
  ident: 1264_CR41
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-642-15825-4_10
– volume: 36
  start-page: 111
  issue: 2
  year: 1974
  ident: 1264_CR45
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: 1264_CR37
  doi: 10.1109/CVPR.2014.222
– volume: 84
  start-page: 461
  year: 2019
  ident: 1264_CR53
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.11.046
– volume: 17
  start-page: 818
  issue: 4
  year: 2017
  ident: 1264_CR32
  publication-title: Sensors
  doi: 10.3390/s17040818
– volume: 12
  start-page: 2451
  issue: 10
  year: 2000
  ident: 1264_CR16
  publication-title: Neural Comput
  doi: 10.1162/089976600300015015
– volume: 106
  start-page: 7183
  issue: 7
  year: 2001
  ident: 1264_CR47
  publication-title: J Geophys Res
  doi: 10.1029/2000JD900719
– volume: 9
  start-page: 981
  year: 2014
  ident: 1264_CR7
  publication-title: Acta Geotech
  doi: 10.1007/s11440-013-0284-x
– volume: 4
  start-page: 7
  year: 2009
  ident: 1264_CR19
  publication-title: Acta Geotech
  doi: 10.1007/s11440-008-0062-3
– year: 2020
  ident: 1264_CR48
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107050
– volume: 127
  start-page: 203
  issue: 3
  year: 2001
  ident: 1264_CR31
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)1090-0241(2001)127:3(203)
– volume: 85
  start-page: 268
  year: 2019
  ident: 1264_CR29
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2018.12.005
– volume: 186
  start-page: 1031
  year: 2018
  ident: 1264_CR13
  publication-title: Constr Build Mater
  doi: 10.1016/j.conbuildmat.2018.08.011
– ident: 1264_CR36
– volume: 138
  start-page: 69
  issue: 1
  year: 2011
  ident: 1264_CR46
  publication-title: J Geotech Geoenviron Eng
  doi: 10.1061/(ASCE)GT.1943-5606.0000553
– volume: 23
  start-page: 933
  issue: 7
  year: 2009
  ident: 1264_CR4
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-008-0262-2
– year: 2013
  ident: 1264_CR11
  publication-title: Metaheuristics Water Geotech Transp Eng
  doi: 10.1016/B978-0-12-398296-4.00010-6
– volume: 28
  start-page: 257
  year: 2012
  ident: 1264_CR39
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2011.11.008
– year: 2020
  ident: 1264_CR14
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104470
– volume: 15
  start-page: 1577
  year: 2020
  ident: 1264_CR8
  publication-title: Acta Geotech
  doi: 10.1007/s11440-019-00864-0
– volume: 126
  start-page: 103711
  year: 2020
  ident: 1264_CR18
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103711
– year: 2020
  ident: 1264_CR43
  publication-title: Geosci Front
  doi: 10.1016/j.gsf.2020.01.011
– year: 2020
  ident: 1264_CR54
  publication-title: Undergr Space
  doi: 10.1016/j.undsp.2019.12.002
– volume: 275
  start-page: 1308
  year: 2018
  ident: 1264_CR1
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.069
– year: 2014
  ident: 1264_CR22
  publication-title: IEEE Comput Vis Pattern Recognit
  doi: 10.1109/CVPR.2014.223
– volume: 33
  start-page: 748
  year: 2018
  ident: 1264_CR15
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12363
– year: 2020
  ident: 1264_CR6
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-09975-1
– volume: 34
  start-page: 385
  issue: 5
  year: 2007
  ident: 1264_CR26
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2007.05.007
– volume: 9
  start-page: 3553
  issue: 17
  year: 2019
  ident: 1264_CR55
  publication-title: Appl Sci
  doi: 10.3390/app9173553
– volume: 34
  start-page: 713
  year: 2019
  ident: 1264_CR5
  publication-title: Comput Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12440
– volume: 13
  start-page: 1363
  issue: 6
  year: 2019
  ident: 1264_CR9
  publication-title: Front Struct Civ Eng
  doi: 10.1007/s11709-019-0561-3
– ident: 1264_CR49
– volume: 204
  start-page: 107263
  year: 2020
  ident: 1264_CR52
  publication-title: Ocean Engg
  doi: 10.1016/j.oceaneng.2020.107263
– volume: 7
  start-page: 554
  issue: 4
  year: 2018
  ident: 1264_CR40
  publication-title: IEEE Wirel Commun Lett
  doi: 10.1109/LWC.2018.2795605
– volume: 103
  start-page: 103504
  year: 2020
  ident: 1264_CR34
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2020.103504
– ident: 1264_CR24
  doi: 10.1145/3065386
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 1264_CR27
  publication-title: Proc IEEE
  doi: 10.1109/5.726791
– volume: 4
  start-page: 4
  issue: 1
  year: 2017
  ident: 1264_CR12
  publication-title: Front Eng Manag
  doi: 10.15302/J-FEM-2017015
– volume: 25
  start-page: 439
  year: 1990
  ident: 1264_CR10
  publication-title: ASCE Spec Publ
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 1264_CR25
  publication-title: Commun ACM
  doi: 10.1145/3065386
– ident: 1264_CR38
SSID ssj0063246
Score 2.4380414
Snippet This paper proposes a convolution neural network (CNN) based prediction method for concrete diaphragm wall (CDW) deflections. CNN algorithm is modified for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3631
SubjectTerms Algorithms
Artificial neural networks
Back propagation networks
Complex Fluids and Microfluidics
Construction accidents & safety
Construction industry
Convolution
Deep learning
Deflection
Deformation
Diaphragm wall
Dimensions
Engineering
Excavation
Feature extraction
Foundations
Geoengineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Long short-term memory
Machine learning
Measurement
Neural networks
Occupational safety
Predictions
Research Paper
Safety management
Soft and Granular Matter
Soil Science & Conservation
Solid Mechanics
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86fdAHv8XplDz4poG2aZvmUcThgwxhKnsrSZobwtzGNr_215ukqVVRQZ-bhHB3ubv07vcLQscAPJNScEIpVSTWoIkIpCQiC7gyNgRCOE1fsU4n6_X4tQeFTatu96ok6Tx1DXZzdUjbUmCcahqT-SJaSizbjL2jd-8q_2v5xx2mKEtDYrKJxENlvl_jcziqc8wvZVEXbdrr_9vnBlrz2SU-K81hEy3o4RZa_cA5uI36XddD7SmpBrjQeoz92xF9XFGM49EQW_6NEtiIR4CNHRm9i_4DfhYDO-0d9ojNtd4YSIHlK9YvSpQ_eXfQbfvi5vyS-NcWiKBxNCNKBYqbkKaZBg5C0VQyTVUMFooKhVEd2BonDTgwc6hVAAVjVIhYaMlorOguagxHQ72HsAyBpUmhixgik6CYrK7IpM5SAWGmJCRNFFZCz5WnIrcvYgzymkTZCjE3QsydEPN5E528zxmXRBy_jm5Vusz9oZzmkaWm4SafZE10Wumu_vzzavt_G36AViKrfodYbKHGbPKoD9GyeprdTydHzljfAEuN5yI
  priority: 102
  providerName: Springer Nature
Title Spatiotemporal deep learning approach on estimation of diaphragm wall deformation induced by excavation
URI https://link.springer.com/article/10.1007/s11440-021-01264-z
https://www.proquest.com/docview/2594890597
Volume 16
WOSCitedRecordID wos000661771900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: RSV
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFH4R8KAHfxtRJD1408axjnU7GTUQD0oIqOG2tF1LTJAh4C_-etutAzWRi5deujbLvq-vb3193wM4USoMOGchJoQI7EklMXM4xyxwQqE5pBhLkb6lrVbQ64Vte-A2sdcqc5uYGuo4EeaM_Nw1uiKhdgboxegFm6pRJrpqS2gUoGSUyjTPS1eNVruT22KjRZ7mFwV-DWvPom7TZrLkuTSuaa4oaCPte3j2c2ta-Ju_QqTpztPc_O87b8GG9TnRZUaSbViRwx1Y_6ZEuAv9bnqz2gpVDVAs5QjZihJ9lAuPo2SIjCpHlu6IEoU0uzQbWP8ZvbOBGTZPhkT6Z1_TJkb8E8kPwbKj3z14aDbur2-wrcGAGfHcKRbCEaHe6CSVKlRMEJ9TSYSnTIKqijWgykQ-iRMqqpe6cFRMKWHMY5JT4gmyD8VhMpQHgHhNUb8ey9hTrnZbtK8XB1wGPlO1QHBVL0Mt__yRsALlpk7GIFpIKxvIIg1ZlEIWzcpwOh8zyuQ5lj5dyXGK7FKdRAuQynCWI73o_nu2w-WzHcGaa8iV5i1WoDgdv8pjWBVv06fJuGqJWoXCnds2Le3qttN9_AKP7_UA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQQIO7Iiy-gAnsEhjN04OCLEKRKkQi8QteK2QSlpoWT-Kb8TOQgEJbhw4J7aSzJvxxOP3BmDFmCgUgkeYECIx1UZj7gmBeehF0mLIcJ5ausbq9fDqKjrtg7eCC-OOVRYxMQ3UqiXdHvmG73RFIpsMsK32HXZdo1x1tWihkcHiWL882V-2zubRnrXvqu8f7F_sHuK8qwDmhPpdLKUnIxu6NdMmMlySQDBNJDWOcmmUfUTjannEiwyz4JWeUYwRzinXghEqiZ23HwYooUG1BAM7-_XTsyL2O-3zlM8UBhVsM5lqTtPJyHppHdUdibCLQkDx69elsJfffivJpivdwdh_-0bjMJrn1Gg7c4IJ6NPJJIx8UlqcgsZ5enI8F-JqIqV1G-UdMxqoEFZHrQQ51ZGMzolaBlnvsWjnjVv0xJtu2AfZE90kyrqFQuIF6WfJs63tabj8kzedgVLSSvQsIFExLKgqrajxbVpmc1kVCh0G3FRCKUy1DJXC3LHMBdhdH5Bm3JOOdhCJLUTiFCLxaxnWPsa0M_mRX-9eKHAR56GoE_dAUYb1Alm9yz_PNvf7bMswdHhxUotrR_XjeRj2HbBTjuYClLr3D3oRBuVj96Zzv5Q7CYLrv8bcO7zsUGM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48CwiUGAPcIJVHa_j9R6qqrREVK2iiIfUm9nXRJWCE5pAaX9af11n7XUDSPTWA2d7V7b3m4d35_sG4BWiKozRigshLM88eq4TY7guEmUJQ6h1vdIHcjgsDg_VaAXOWy5MKKtsfWLtqN3Uhj3yjTToiihKBuQGxrKI0e5ga_adhw5S4aS1bafRQGTfn57Q79t8c2-X1vp1mg7ef975wGOHAa5Fli64tYlV5Ma99KhQW5Eb6YXNMNAv0dHjYjjXE4lCSUC2CTophdaZ9kaKzAqa9wasFnmu0g6sjnbebX9s40DQQa-5TUXe45TV9CNlpyHu1WeqoTyCAkSe8bM_w-Iy1_3reLaOeoN7__P3ug93Y67NthvjeAArvnoId35TYHwE4091RXkU6Jow5_2MxU4aY9YKrrNpxYIaSUPzZFNkZFVkBXr8jZ3oSRh2SQJlR5Ujc3HMnDL_y-pmy3sNvlzLmz6GTjWt_BNgpocy7zvvMkwpXaMc1xXGF7nGXmEN9rvQa5e-tFGYPfQHmZRLSekAl5LgUtZwKc-68OZyzKyRJbny7vUWI2V0UfNyCZAuvG1Rtrz879meXj3bS7hFQCsP9ob7z-B2GjBeUzfXobM4_uGfw037c3E0P34R7YXB1-uG3AVMz1kM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+deep+learning+approach+on+estimation+of+diaphragm+wall+deformation+induced+by+excavation&rft.jtitle=Acta+geotechnica&rft.au=Zhao%2C+Hua-jing&rft.au=Liu%2C+Wei&rft.au=Shi%2C+Pei-xin&rft.au=Du%2C+Jiang-tao&rft.date=2021-11-01&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=16&rft.issue=11&rft.spage=3631&rft.epage=3645&rft_id=info:doi/10.1007%2Fs11440-021-01264-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11440_021_01264_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon