Latent-space inversion (LSI): a deep learning framework for inverse mapping of subsurface flow data
This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to flow physics that governs the behavior of subsurface systems. Inverse modeling in hydrogeology and petroleum engineering involves minimizing...
Saved in:
| Published in: | Computational geosciences Vol. 26; no. 1; pp. 71 - 99 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.02.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1420-0597, 1573-1499 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to flow physics that governs the behavior of subsurface systems. Inverse modeling in hydrogeology and petroleum engineering involves minimizing the mismatch between observed and simulated data from a set of prior models. A myriad of approaches has been developed to accomplish this goal over the years, and their performance is dependent on the effectiveness of parameterization and the capability of data conditioning technique. We demonstrate LSI as a more robust and efficient approach for calibration of subsurface model over traditional approaches where dimensionality reduction of model parameters is done independently (decoupled) of flow data integration. LSI provides a compact description of the parameters in a latent space that does not only exploit the redundancy of large-scale geologic features but also retain features that are sensitive to flow data. Motivated by recent advances in machine learning research, LSI architecture involves a pair of deep convolutional autoencoders that are coupled to jointly extract spatial geologic features in subsurface models and temporal trends in flow data. The LSI architecture is trained offline using prior model realizations and their corresponding simulated flow responses (as training data) to effectively represent the model and data and to learn the complex nonlinear inverse mapping between data and model. Once field data becomes available, calibrated models can be rapidly obtained using the trained LSI architecture. The resulting data-informed model latent space can be explored to allow the generation of an ensemble of calibrated model realizations around the inversion solution. This is especially useful when observed data is noisy and multiple inversion solutions can be accepted within the noise range. We present several inversion examples to illustrate the performance of LSI and to discuss the advantages and limitations of data-driven inversion approaches compared to the conventional inverse modelling formulations. |
|---|---|
| AbstractList | This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to flow physics that governs the behavior of subsurface systems. Inverse modeling in hydrogeology and petroleum engineering involves minimizing the mismatch between observed and simulated data from a set of prior models. A myriad of approaches has been developed to accomplish this goal over the years, and their performance is dependent on the effectiveness of parameterization and the capability of data conditioning technique. We demonstrate LSI as a more robust and efficient approach for calibration of subsurface model over traditional approaches where dimensionality reduction of model parameters is done independently (decoupled) of flow data integration. LSI provides a compact description of the parameters in a latent space that does not only exploit the redundancy of large-scale geologic features but also retain features that are sensitive to flow data. Motivated by recent advances in machine learning research, LSI architecture involves a pair of deep convolutional autoencoders that are coupled to jointly extract spatial geologic features in subsurface models and temporal trends in flow data. The LSI architecture is trained offline using prior model realizations and their corresponding simulated flow responses (as training data) to effectively represent the model and data and to learn the complex nonlinear inverse mapping between data and model. Once field data becomes available, calibrated models can be rapidly obtained using the trained LSI architecture. The resulting data-informed model latent space can be explored to allow the generation of an ensemble of calibrated model realizations around the inversion solution. This is especially useful when observed data is noisy and multiple inversion solutions can be accepted within the noise range. We present several inversion examples to illustrate the performance of LSI and to discuss the advantages and limitations of data-driven inversion approaches compared to the conventional inverse modelling formulations. |
| Author | Jafarpour, Behnam Jiang, Anyue Razak, Syamil Mohd |
| Author_xml | – sequence: 1 givenname: Syamil Mohd surname: Razak fullname: Razak, Syamil Mohd organization: Mork Family Department of Chemical Engineering and Materials Science, University of Southern California – sequence: 2 givenname: Anyue surname: Jiang fullname: Jiang, Anyue organization: Mork Family Department of Chemical Engineering and Materials Science, University of Southern California – sequence: 3 givenname: Behnam orcidid: 0000-0003-1071-5299 surname: Jafarpour fullname: Jafarpour, Behnam email: jafarpou@usc.edu organization: Mork Family Department of Chemical Engineering and Materials Science, University of Southern California |
| BookMark | eNp9kM1LwzAchoNMcE7_AU8BL3qI5qNtGm8y_BgUPKjnkHbJ6OySmqQO_3szOxA87JTA73nf_PKcgol1VgNwQfANwZjfBoJzUSBMCSKY4AyVR2BKcs4QyYSYpHtGMUoMPwGnIawxxoIzMgVNpaK2EYVeNRq29kv70DoLr6rXxfUdVHCpdQ87rbxt7QoarzZ66_wHNM7vcQ03qu93U2dgGOoweLMrM53bwqWK6gwcG9UFfb4_Z-D98eFt_oyql6fF_L5CimU0orohJu3EBWtqpsqclIZRkWuWiywV1pmgZWIaTutC8KYmpU6DgpfFkuaCGTYDl2Nv793noEOUazd4m56UtKA8ecI5TlQ5Uo13IXhtZNNGFdOno1dtJwmWO6VyVCqTUvmrVJYpSv9Fe99ulP8-HGJjKCTYrrT_2-pA6gdJ04p8 |
| CitedBy_id | crossref_primary_10_1007_s11004_025_10223_3 crossref_primary_10_1016_j_earscirev_2023_104371 crossref_primary_10_1016_j_geothermics_2022_102643 crossref_primary_10_5194_hess_27_2621_2023 crossref_primary_10_1007_s10596_024_10298_7 crossref_primary_10_1016_j_jhydrol_2024_132368 |
| Cites_doi | 10.1016/j.envsoft.2013.10.025 10.1002/hyp.13127 10.1007/s11004-014-9532-3 10.1016/j.jcp.2010.07.005 10.1109/LGRS.2017.2766130 10.1016/j.neucom.2015.08.104 10.1002/2016WR019853 10.1007/s10596-010-9194-2 10.1016/j.cageo.2019.04.006 10.1016/j.cageo.2015.10.006 10.1016/j.petrol.2018.06.038 10.1016/j.cageo.2012.03.027 10.1007/s10596-008-9080-3 10.1007/s10236-003-0036-9 10.1007/s11004-007-9131-7 10.1007/s10040-004-0404-7 10.1109/TGRS.2010.2089464 10.1007/s11004-016-9659-5 10.1002/aic.690370209 10.1007/s10596-018-9731-y 10.1007/s10596-020-09971-4 10.2118/117274-PA 10.1016/j.jhydrol.2008.11.033 10.1016/j.advwatres.2017.09.029 10.1007/s10596-020-10014-1 10.1016/j.petrol.2013.04.018 10.1007/s10596-014-9466-3 10.1016/j.cageo.2019.06.002 10.1007/s11004-016-9672-8 10.1007/s10596-015-9483-x 10.1016/j.advwatres.2009.02.011 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2 10.1007/978-90-481-2322-3_11 10.1155/2012/805707 10.2118/143188-PA 10.1007/s10596-019-09929-1 10.1306/M711C10 10.1007/BFb0020217 10.1029/2018WR022643 10.2118/173192-PA 10.3997/2214-4609.202035217 10.2118/1307-PA 10.1016/j.cageo.2012.03.011 10.2118/5740-PA 10.1155/2019/3280961 10.2118/84936-PA 10.2118/1473-PA 10.1007/s00521-010-0501-6 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ JQ2 K7- L.G L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1007/s10596-021-10104-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1573-1499 |
| EndPage | 99 |
| ExternalDocumentID | 10_1007_s10596_021_10104_8 |
| GrantInformation_xml | – fundername: Energi Simulation |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9R PCBAR PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z81 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7UA 7XB 8AL 8FD 8FK C1K F1W H8D H96 JQ2 L.G L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-a342t-bc1f731793cb3a8518f3295e3594facb4928bc1c72b697cb18e94f6786d2593f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721462200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-0597 |
| IngestDate | Wed Nov 05 00:53:29 EST 2025 Tue Nov 18 21:24:01 EST 2025 Sat Nov 29 06:12:23 EST 2025 Fri Feb 21 02:47:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning Subsurface flow Model calibration Parameterization Latent space inversion |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-bc1f731793cb3a8518f3295e3594facb4928bc1c72b697cb18e94f6786d2593f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1071-5299 |
| PQID | 2627007050 |
| PQPubID | 55381 |
| PageCount | 29 |
| ParticipantIDs | proquest_journals_2627007050 crossref_citationtrail_10_1007_s10596_021_10104_8 crossref_primary_10_1007_s10596_021_10104_8 springer_journals_10_1007_s10596_021_10104_8 |
| PublicationCentury | 2000 |
| PublicationDate | 20220200 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationSubtitle | Modeling, Simulation and Data Analysis |
| PublicationTitle | Computational geosciences |
| PublicationTitleAbbrev | Comput Geosci |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Kramer (CR32) 1991; 37 Wang, Yao, Zhao (CR64) 2016; 184 Sun, Durlofsky (CR56) 2017; 49 CR39 Xiong, Zuo (CR65) 2016; 86 CR36 CR31 CR30 van Leeuwen, Evensen (CR61) 1996; 124 Aster, Borchers, Thurber (CR3) 2018 Laloy, Hérault, Lee, Jacques, Linde (CR33) 2017; 110 Li, Puzel, Davis (CR35) 2018; 32 Sebacher, Stordal, Hanea (CR54) 2015; 19 Todaro, D’Oria, Tandam, Gómez-Hernández (CR58) 2019; 131 CR2 Sarma, Durlofsky, Aziz (CR49) 2008; 40 Astrakova, Oliver (CR4) 2015; 47 Gómez-Hernández, Fu (CR18) 2010 Vincent, Larochelle, Lajoie, Bengio, Manzagol (CR62) 2010; 11 Lorentzen, Flornes, Nævdal (CR37) 2012; 17 Vo, Durlofsky (CR63) 2015; 19 Jiang, Durlofsky (CR28) 2021; 25 CR9 CR48 CR47 CR44 CR43 CR40 Carrera, Alcolea, Medina, Hidalgo, Slooten (CR6) 2005; 13 Van Der Maaten, Postma, Van den Herik (CR60) 2009; 10 Ping, Zhang (CR42) 2013; 108 Li, Misra (CR34) 2017; 14 Oliver, Chen (CR41) 2011; 15 CR17 Aanonsen, Nævdal, Oliver, Reynolds, Vallès (CR1) 2009; 14 Hakim-Elahi, Jafarpour (CR19) 2017; 53 Hendricks Franssen, Alcolea, Riva, Bakr, van der Wiel, Stauffer, Guadagnini (CR22) 2009; 32 CR14 Emerick (CR13) 2017; 49 CR57 Chang, Zhang, Lu (CR8) 2010; 229 CR12 CR11 CR55 CR10 CR53 Castilla-Rho, Mariethoz, Kelly, Andersen (CR7) 2014; 53 CR52 CR51 CR50 Jafarpour (CR24) 2011; 49 Mohd Razak, Jafarpour (CR38) 2020; 24 Evensen (CR15) 2003; 53 Canchumuni, Emerick (CR5) 2019; 128 Jafarpour, McLaughlin (CR25) 2008; 12 CR29 CR27 CR26 Ramsundar, Zadeh (CR46) 2018 CR23 CR67 Pyrcz, Deutsch (CR45) 2014 Valentin, Bom, Martins Compan, Correia, Menezes de Jesus, de Lima Souza, de Albuquerque, de Albuquerque, Faria (CR59) 2018; 170 Hendricks Franssen, Kinzelbach (CR21) 2009; 365 Evensen (CR16) 2018; 22 Yang, Tian, Yu, Ye, Qian, Qian (CR66) 2015; 11 He, Sarma, Durlofsky (CR20) 2013; 55 RC Aster (10104_CR3) 2018 10104_CR39 E Laloy (10104_CR33) 2017; 110 10104_CR36 10104_CR31 V Todaro (10104_CR58) 2019; 131 JC Castilla-Rho (10104_CR7) 2014; 53 AA Emerick (10104_CR13) 2017; 49 B Jafarpour (10104_CR25) 2008; 12 A Astrakova (10104_CR4) 2015; 47 10104_CR30 10104_CR2 L Van Der Maaten (10104_CR60) 2009; 10 JJ Gómez-Hernández (10104_CR18) 2010 H Chang (10104_CR8) 2010; 229 P Vincent (10104_CR62) 2010; 11 B Sebacher (10104_CR54) 2015; 19 MB Valentin (10104_CR59) 2018; 170 10104_CR29 PJ van Leeuwen (10104_CR61) 1996; 124 10104_CR26 10104_CR27 G Evensen (10104_CR16) 2018; 22 10104_CR23 10104_CR67 S Jiang (10104_CR28) 2021; 25 P Sarma (10104_CR49) 2008; 40 SI Aanonsen (10104_CR1) 2009; 14 RJ Lorentzen (10104_CR37) 2012; 17 10104_CR9 DS Oliver (10104_CR41) 2011; 15 HX Vo (10104_CR63) 2015; 19 J Carrera (10104_CR6) 2005; 13 Y Wang (10104_CR64) 2016; 184 H Li (10104_CR34) 2017; 14 G Evensen (10104_CR15) 2003; 53 10104_CR17 J Ping (10104_CR42) 2013; 108 B Jafarpour (10104_CR24) 2011; 49 10104_CR57 10104_CR14 10104_CR11 10104_CR55 10104_CR12 10104_CR53 10104_CR10 10104_CR51 10104_CR52 10104_CR50 MA Kramer (10104_CR32) 1991; 37 Y Xiong (10104_CR65) 2016; 86 HJ Hendricks Franssen (10104_CR22) 2009; 32 SWA Canchumuni (10104_CR5) 2019; 128 10104_CR48 10104_CR47 10104_CR44 HJ Hendricks Franssen (10104_CR21) 2009; 365 10104_CR43 10104_CR40 W Sun (10104_CR56) 2017; 49 L Li (10104_CR35) 2018; 32 L Yang (10104_CR66) 2015; 11 S Mohd Razak (10104_CR38) 2020; 24 S Hakim-Elahi (10104_CR19) 2017; 53 B Ramsundar (10104_CR46) 2018 MJ Pyrcz (10104_CR45) 2014 J He (10104_CR20) 2013; 55 |
| References_xml | – volume: 53 start-page: 35 year: 2014 end-page: 52 ident: CR7 article-title: Stochastic reconstruction of paleovalley bedrock morphology from sparse datasets publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2013.10.025 – ident: CR39 – ident: CR51 – ident: CR12 – start-page: 121 year: 2010 end-page: 126 ident: CR18 publication-title: Blocking Markov Chain Monte Carlo Schemes for Inverse Stochastic Hydrogeological Modeling – volume: 32 start-page: 2020 issue: 13 year: 2018 end-page: 2029 ident: CR35 article-title: Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers publication-title: Hydrol. Process. doi: 10.1002/hyp.13127 – ident: CR29 – volume: 47 start-page: 345 year: 2015 end-page: 367 ident: CR4 article-title: Conditioning Truncated Pluri-Gaussian Models to Facies Observations in Ensemble-Kalman-Based Data Assimilation publication-title: Math. Geosci. doi: 10.1007/s11004-014-9532-3 – volume: 229 start-page: 8011 issue: 20 year: 2010 end-page: 8030 ident: CR8 article-title: History matching of facies distribution with the EnKF and level set parameterization publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.07.005 – year: 2018 ident: CR3 publication-title: Parameter estimation and inverse problems – volume: 11 start-page: 1913 year: 2015 end-page: 1929 ident: CR66 article-title: Deep learning for extracting water body from landsat imagery publication-title: Int. J. Innov. Comput. Inf. Control – volume: 14 start-page: 2395 issue: 12 year: 2017 end-page: 2397 ident: CR34 article-title: Prediction of subsurface NMR T2 distributions in a shale petroleum system using variational autoencoder-based neural networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2766130 – volume: 184 start-page: 232 issue: C year: 2016 end-page: 242 ident: CR64 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomput. doi: 10.1016/j.neucom.2015.08.104 – volume: 53 start-page: 8226 issue: 10 year: 2017 end-page: 8249 ident: CR19 article-title: A distance transform for continuous parameterization of discrete geologic facies for subsurface flow model calibration publication-title: Water Resour. Res. doi: 10.1002/2016WR019853 – ident: CR67 – ident: CR50 – volume: 15 start-page: 185 issue: 1 year: 2011 end-page: 221 ident: CR41 article-title: Recent progress on reservoir history matching: a review publication-title: Comput. Geosci. doi: 10.1007/s10596-010-9194-2 – ident: CR11 – ident: CR9 – ident: CR57 – volume: 128 start-page: 87 year: 2019 end-page: 102 ident: CR5 article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.04.006 – ident: CR36 – volume: 86 start-page: 75 year: 2016 end-page: 82 ident: CR65 article-title: Recognition of geochemical anomalies using a deep autoencoder network publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – year: 2014 ident: CR45 publication-title: Geostatistical Reservoir Modeling – volume: 170 start-page: 315 year: 2018 end-page: 330 ident: CR59 article-title: Estimation of permeability and effective porosity logs using deep autoencoders in borehole image logs from the brazilian pre-salt carbonate publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.06.038 – ident: CR26 – volume: 55 start-page: 54 year: 2013 end-page: 69 ident: CR20 article-title: Reduced-order flow modeling and geological parameterization for ensemble-based data assimilation publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.03.027 – volume: 12 start-page: 227 issue: 2 year: 2008 end-page: 244 ident: CR25 article-title: History matching with an ensemble kalman filter and discrete cosine parameterization publication-title: Comput. Geosci. doi: 10.1007/s10596-008-9080-3 – volume: 53 start-page: 343 year: 2003 end-page: 367 ident: CR15 article-title: The ensemble kalman filter: theoretical formulation and practical implementation publication-title: Ocean Dyn. doi: 10.1007/s10236-003-0036-9 – ident: CR43 – year: 2018 ident: CR46 publication-title: TensorFlow for Deep Learning from Linear Regression to Reinforcement Learning – ident: CR47 – ident: CR14 – ident: CR2 – ident: CR53 – ident: CR30 – ident: CR10 – volume: 40 start-page: 3 issue: 1 year: 2008 end-page: 32 ident: CR49 article-title: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics publication-title: Math. Geosci. doi: 10.1007/s11004-007-9131-7 – volume: 13 start-page: 206 year: 2005 end-page: 222 ident: CR6 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0404-7 – volume: 49 start-page: 1520 issue: 5 year: 2011 end-page: 1535 ident: CR24 article-title: Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2089464 – ident: CR40 – volume: 49 start-page: 85 year: 2017 end-page: 120 ident: CR13 article-title: Investigation on principal component analysis parameterizations for history matching channelized facies models with ensemble-based data assimilation publication-title: Math. Geosci. doi: 10.1007/s11004-016-9659-5 – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: CR62 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – ident: CR27 – volume: 37 start-page: 233 issue: 2 year: 1991 end-page: 243 ident: CR32 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE J. doi: 10.1002/aic.690370209 – ident: CR23 – volume: 22 start-page: 885 year: 2018 end-page: 908 ident: CR16 article-title: Analysis of iterative ensemble smoothers for solving inverse problems publication-title: Comput. Geosci. doi: 10.1007/s10596-018-9731-y – ident: CR44 – ident: CR48 – volume: 24 start-page: 1625 year: 2020 end-page: 1649 ident: CR38 article-title: Convolutional neural networks (cnn) for feature-based model calibration under uncertain geologic scenarios publication-title: Comput. Geosci. doi: 10.1007/s10596-020-09971-4 – volume: 14 start-page: 393 issue: 3 year: 2009 end-page: 412 ident: CR1 article-title: Ensemble kalman filter in reservoir engineering—a review publication-title: SPE J. doi: 10.2118/117274-PA – volume: 365 start-page: 261 issue: 3 year: 2009 end-page: 274 ident: CR21 article-title: Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.11.033 – volume: 110 start-page: 387 year: 2017 end-page: 405 ident: CR33 article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.09.029 – volume: 25 start-page: 411 year: 2021 end-page: 432 ident: CR28 article-title: Data-space inversion using a recurrent autoencoder for time-series parameterization publication-title: Comput. Geosci. doi: 10.1007/s10596-020-10014-1 – volume: 108 start-page: 288 year: 2013 end-page: 303 ident: CR42 article-title: History matching of fracture distributions by ensemble Kalman filter combined with vector based level set parameterization publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2013.04.018 – ident: CR52 – ident: CR17 – ident: CR31 – volume: 19 start-page: 341 year: 2015 end-page: 369 ident: CR54 article-title: Bridging multipoint statistics and truncated Gaussian fields for improved estimation of channelized reservoirs with ensemble methods publication-title: Comput. Geosci. doi: 10.1007/s10596-014-9466-3 – ident: CR55 – volume: 17 start-page: 137 issue: 1 year: 2012 end-page: 151 ident: CR37 article-title: History matching channelized reservoirs using the ensemble kalman filter publication-title: Soc. Pet. Eng. – volume: 131 start-page: 32 year: 2019 end-page: 40 ident: CR58 article-title: Ensemble smoother with multiple data assimilation for reverse flow routing publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.06.002 – volume: 49 start-page: 679 year: 2017 end-page: 715 ident: CR56 article-title: A new data-space inversion procedure for efficient uncertainty quantification in subsurface flow problems publication-title: Math. Geosci. doi: 10.1007/s11004-016-9672-8 – volume: 19 start-page: 747 issue: 4 year: 2015 end-page: 767 ident: CR63 article-title: Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization publication-title: Comput. Geosci. doi: 10.1007/s10596-015-9483-x – volume: 32 start-page: 851 issue: 6 year: 2009 end-page: 872 ident: CR22 article-title: A comparison of seven methods for the inverse modelling of groundwater flow. application to the characterisation of well catchments publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.02.011 – volume: 10 start-page: 66 year: 2009 end-page: 71 ident: CR60 article-title: Dimensionality reduction: A comparative review publication-title: J. Mach. Learn. Res. – volume: 124 start-page: 2898 issue: 12 year: 1996 end-page: 2913 ident: CR61 article-title: Data assimilation and inverse methods in terms of a probabilistic formulation publication-title: Mon. Weather. Rev. doi: 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2 – start-page: 121 volume-title: Blocking Markov Chain Monte Carlo Schemes for Inverse Stochastic Hydrogeological Modeling year: 2010 ident: 10104_CR18 doi: 10.1007/978-90-481-2322-3_11 – volume: 55 start-page: 54 year: 2013 ident: 10104_CR20 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2012.03.027 – ident: 10104_CR67 doi: 10.1155/2012/805707 – volume: 13 start-page: 206 year: 2005 ident: 10104_CR6 publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0404-7 – volume: 32 start-page: 851 issue: 6 year: 2009 ident: 10104_CR22 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2009.02.011 – volume: 365 start-page: 261 issue: 3 year: 2009 ident: 10104_CR21 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.11.033 – volume: 184 start-page: 232 issue: C year: 2016 ident: 10104_CR64 publication-title: Neurocomput. doi: 10.1016/j.neucom.2015.08.104 – ident: 10104_CR51 – volume: 17 start-page: 137 issue: 1 year: 2012 ident: 10104_CR37 publication-title: Soc. Pet. Eng. doi: 10.2118/143188-PA – volume: 10 start-page: 66 year: 2009 ident: 10104_CR60 publication-title: J. Mach. Learn. Res. – volume: 12 start-page: 227 issue: 2 year: 2008 ident: 10104_CR25 publication-title: Comput. Geosci. doi: 10.1007/s10596-008-9080-3 – volume: 24 start-page: 1625 year: 2020 ident: 10104_CR38 publication-title: Comput. Geosci. doi: 10.1007/s10596-020-09971-4 – volume: 49 start-page: 85 year: 2017 ident: 10104_CR13 publication-title: Math. Geosci. doi: 10.1007/s11004-016-9659-5 – volume: 14 start-page: 393 issue: 3 year: 2009 ident: 10104_CR1 publication-title: SPE J. doi: 10.2118/117274-PA – volume: 170 start-page: 315 year: 2018 ident: 10104_CR59 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.06.038 – volume: 32 start-page: 2020 issue: 13 year: 2018 ident: 10104_CR35 publication-title: Hydrol. Process. doi: 10.1002/hyp.13127 – volume: 108 start-page: 288 year: 2013 ident: 10104_CR42 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2013.04.018 – ident: 10104_CR44 doi: 10.1007/s10596-019-09929-1 – ident: 10104_CR31 – volume: 19 start-page: 747 issue: 4 year: 2015 ident: 10104_CR63 publication-title: Comput. Geosci. doi: 10.1007/s10596-015-9483-x – ident: 10104_CR48 doi: 10.1306/M711C10 – volume: 22 start-page: 885 year: 2018 ident: 10104_CR16 publication-title: Comput. Geosci. doi: 10.1007/s10596-018-9731-y – volume-title: Geostatistical Reservoir Modeling year: 2014 ident: 10104_CR45 – ident: 10104_CR52 – ident: 10104_CR53 doi: 10.1007/BFb0020217 – ident: 10104_CR10 – volume-title: Parameter estimation and inverse problems year: 2018 ident: 10104_CR3 – ident: 10104_CR55 doi: 10.1029/2018WR022643 – volume: 11 start-page: 1913 year: 2015 ident: 10104_CR66 publication-title: Int. J. Innov. Comput. Inf. Control – volume: 25 start-page: 411 year: 2021 ident: 10104_CR28 publication-title: Comput. Geosci. doi: 10.1007/s10596-020-10014-1 – volume: 110 start-page: 387 year: 2017 ident: 10104_CR33 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.09.029 – ident: 10104_CR9 doi: 10.2118/173192-PA – volume: 131 start-page: 32 year: 2019 ident: 10104_CR58 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.06.002 – volume: 53 start-page: 8226 issue: 10 year: 2017 ident: 10104_CR19 publication-title: Water Resour. Res. doi: 10.1002/2016WR019853 – volume: 15 start-page: 185 issue: 1 year: 2011 ident: 10104_CR41 publication-title: Comput. Geosci. doi: 10.1007/s10596-010-9194-2 – volume: 40 start-page: 3 issue: 1 year: 2008 ident: 10104_CR49 publication-title: Math. Geosci. doi: 10.1007/s11004-007-9131-7 – volume: 49 start-page: 1520 issue: 5 year: 2011 ident: 10104_CR24 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2010.2089464 – ident: 10104_CR57 – ident: 10104_CR39 doi: 10.3997/2214-4609.202035217 – volume: 19 start-page: 341 year: 2015 ident: 10104_CR54 publication-title: Comput. Geosci. doi: 10.1007/s10596-014-9466-3 – volume: 86 start-page: 75 year: 2016 ident: 10104_CR65 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.10.006 – ident: 10104_CR23 doi: 10.2118/1307-PA – volume: 124 start-page: 2898 issue: 12 year: 1996 ident: 10104_CR61 publication-title: Mon. Weather. Rev. doi: 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2 – ident: 10104_CR30 – ident: 10104_CR11 – ident: 10104_CR14 doi: 10.1016/j.cageo.2012.03.011 – ident: 10104_CR43 – volume-title: TensorFlow for Deep Learning from Linear Regression to Reinforcement Learning year: 2018 ident: 10104_CR46 – ident: 10104_CR47 – ident: 10104_CR17 doi: 10.2118/5740-PA – ident: 10104_CR29 doi: 10.1155/2019/3280961 – ident: 10104_CR36 doi: 10.2118/84936-PA – volume: 53 start-page: 343 year: 2003 ident: 10104_CR15 publication-title: Ocean Dyn. doi: 10.1007/s10236-003-0036-9 – volume: 49 start-page: 679 year: 2017 ident: 10104_CR56 publication-title: Math. Geosci. doi: 10.1007/s11004-016-9672-8 – volume: 53 start-page: 35 year: 2014 ident: 10104_CR7 publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2013.10.025 – ident: 10104_CR26 doi: 10.2118/1473-PA – ident: 10104_CR50 – ident: 10104_CR2 doi: 10.1007/s00521-010-0501-6 – volume: 128 start-page: 87 year: 2019 ident: 10104_CR5 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.04.006 – volume: 229 start-page: 8011 issue: 20 year: 2010 ident: 10104_CR8 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.07.005 – ident: 10104_CR12 – volume: 14 start-page: 2395 issue: 12 year: 2017 ident: 10104_CR34 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2766130 – volume: 11 start-page: 3371 year: 2010 ident: 10104_CR62 publication-title: J. Mach. Learn. Res. – volume: 47 start-page: 345 year: 2015 ident: 10104_CR4 publication-title: Math. Geosci. doi: 10.1007/s11004-014-9532-3 – volume: 37 start-page: 233 issue: 2 year: 1991 ident: 10104_CR32 publication-title: AIChE J. doi: 10.1002/aic.690370209 – ident: 10104_CR27 – ident: 10104_CR40 |
| SSID | ssj0009731 |
| Score | 2.3464806 |
| Snippet | This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 71 |
| SubjectTerms | Calibration Contamination Data integration Deep learning Earth and Environmental Science Earth Sciences Feature extraction Flow mapping Flow simulation Geology Geotechnical Engineering & Applied Earth Sciences Hydrogeology Inverse problems Kalman filters Large scale integration Learning algorithms Learning behaviour Machine learning Mapping Mathematical Modeling and Industrial Mathematics Mathematical models Original Paper Parameterization Parameters Petroleum engineering Physics Redundancy Soil Science & Conservation Training Wavelet transforms |
| SummonAdditionalLinks | – databaseName: Science Database dbid: M2P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86FXzxW5xOyYMPigbTzzS-iIhfMMdAhb2VNk3GYHZz3Sb-916y1KLgXnwrJD1KL3f5Jfe7O4SOMxUy7nBFKM8oHFBoQKKUcUIFC8DOpaLKJAo3WasVdTq8bS_cCkurLH2icdTZQOg78gs31CFSRgN6NXwnumuUjq7aFhqLaAmQjaMpXU9uuyq6y0w_Qsd3dcCXM5s0Y1PnAkO_1YQuOJKQ6OfGVKHNXwFSs-_crf_3izfQmkWc-Hq2RDbRgsy30Mq96ej7CU-GAyqKbSSagDvzMQEfIyTu5dPZVRo-aT4_nl7iBGdSDrFtM9HFqqR1YcC9drrEb4ku-NDFA4UL8EmTkdLCVH_wgTUZdQe93t2-3DwQ24OBJJ7vjkkqHAV_EaxYpF4C8CxSnssD6QXcBwGpz90I5gjmpiFnInUiCQOwA4YZHKw85e2iWj7I5R7CABUpTZjyUgBxTLEkZJ4UMgPM4AcJderIKRUQC1ugXPfJ6MdVaWWttBiUFhulxVEdnX2_M5yV55g7u1FqKramWsSVmurovNR1Nfy3tP350g7QqqtTJQzDu4Fq49FEHqJlMR33itGRWahfgHDrHg priority: 102 providerName: ProQuest |
| Title | Latent-space inversion (LSI): a deep learning framework for inverse mapping of subsurface flow data |
| URI | https://link.springer.com/article/10.1007/s10596-021-10104-8 https://www.proquest.com/docview/2627007050 |
| Volume | 26 |
| WOSCitedRecordID | wos000721462200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-1499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-1499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: PCBAR dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-1499 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58ghffYn2UHDwoGsg-s_Gm0qpYS_GFeFl2s4kIdVvaqvjvnaS7VkUFveSSybBMMpkvOy-ArUyHXDhCUyYyhg8UFtAo5YIyyQPUc6WZtonCDd5sRre3olUkhfXLaPfSJWlv6g_JboENmDUhWPiIoNE4TKK5i0zDhovLm1GpXW67EDq-a9y8ghepMt_z-GyORhjzi1vUWpv63P--cx5mC3RJDobHYQHGVL4I08e2e-_rEsgGIst8QPEWkYo85M_Dn2Vku3F5urNPEpIp1SVFI4l7osvALYLItiBX5DExJR3uSUeTPt46Tz1tmOl254WYcNNluK7Xro5OaNFlgSae7w5oKh2NEkM9lamXIACLtOeKQHmB8JFB6gs3QhrJ3TQUXKZOpHACbVyY4dPJ094KTOSdXK0CQTDIWMK1lyJM45onIfeUVBmiAj9ImFMBpxR2LIsS5KYTRjseFU82wotReLEVXhxVYPd9TXdYgONX6o1yD-NCGfuxGxrvOmcBq8BeuWej6Z-5rf2NfB1mXJMcYWO6N2Bi0HtSmzAlnwcP_V4VJg9rzdZFFcbPOMXx3G3h2Aruqvb4vgFRBeKQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RCmovLRSqbkvBB5CoWgvHTuIYqaoqPleEFVKpxC1NHBsh0ex2s4D4U_2NjL0JUSuVG4feItkZKfHzeMbzZgZgvbSxVIGylKmSoYPCIpoUUlGmZYT73FhmfaJwKgeD5OxMnczA7zYXxtEqW53oFXU51O6OfIvHLkQqWcS-jH5R1zXKRVfbFhpTWByZ2xt02erP_V1c3w3O9_dOdw5p01WA5iLkE1rowErhcKkLkaPBkVjBVWREpEKb6yJUPME5WvIiVlIXQWJwAHV6XKKrIKxAuU_gaegqizmqID_pivxK3_8wCLkLMCvZJOk0qXqRp_s6Ahm6QDT58yDsrNu_ArL-nNt_-b_9oQV40VjU5Ot0CyzCjKlewfyB71h8i0-e46rrJdAp2tXVhKIO1YZcVNfTq0KymX7rf9gmOSmNGZGmjcY5sS1tjaBd30w35GfuClqck6ElNercq7F1wuzl8IY4su0yfH-Ub30Ns9WwMm-AoCnMWC6tKNBIlVbmsRRGmxJtojDKWdCDoF3wTDcF2F0fkMusKx3tQJIhSDIPkizpwcf7d0bT8iMPzl5pkZE1qqjOOlj04FOLrW7439LePixtDZ4dnh6nWdofHL2D59ylhXg2-wrMTsZX5j3M6evJRT1e9ZuEwI_Hxtwd5f1G_g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3faxQxEB5qq9IXf1a8tmoeFBQNzSa7m02hlGI9PXocByoUX7a72aQU6t719trSf82_rpNc1kXBvvXBt4VkB3bzZTKT-WYG4HVlU6kiZSlTFUMHhSU0K6WiTMsE97mxzPpE4aEcjbLDQzVegl9tLoyjVbY60SvqaqLdHfkWT12IVLKEbdlAixjv93enZ9R1kHKR1radxgIiB-bqEt23Zmewj2v9hvP-p28fv9DQYYAWIuZzWurISuEwqktRoPGRWcFVYkSiYlvoMlY8wzla8jJVUpdRZnAA9XtaodsgrEC5d2BFoo_p6ITj5EdX8Ff6XohRzF2wWcmQsBPS9hJP_XVkMnSHaPbnodhZun8FZ_2Z13_4P_-tR_AgWNpkb7E1HsOSqZ_Avc--k_EVPnnuq26egh6ivV3PKepWbchJfbG4QiRvh18H77ZJQSpjpiS01zgmtqWzEbT3w3RDfhau0MUxmVjSoC4-n1knzJ5OLokj4a7B91v51mewXE9q8xwImsiMFdKKEo1XaWWRSmG0qdBWipOCRT2I2sXPdSjM7vqDnOZdSWkHmBwBk3vA5FkP3v9-Z7ooS3Lj7M0WJXlQUU3eQaQHH1qcdcP_lrZ-s7RXcB-hlg8Ho4MNWOUuW8ST3DdheT47Ny_grr6YnzSzl36_EDi6bchdA9iaT-o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent-space+inversion+%28LSI%29%3A+a+deep+learning+framework+for+inverse+mapping+of+subsurface+flow+data&rft.jtitle=Computational+geosciences&rft.au=Razak%2C+Syamil+Mohd&rft.au=Jiang%2C+Anyue&rft.au=Jafarpour%2C+Behnam&rft.date=2022-02-01&rft.pub=Springer+International+Publishing&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=26&rft.issue=1&rft.spage=71&rft.epage=99&rft_id=info:doi/10.1007%2Fs10596-021-10104-8&rft.externalDocID=10_1007_s10596_021_10104_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon |