Latent-space inversion (LSI): a deep learning framework for inverse mapping of subsurface flow data

This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to flow physics that governs the behavior of subsurface systems. Inverse modeling in hydrogeology and petroleum engineering involves minimizing...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences Vol. 26; no. 1; pp. 71 - 99
Main Authors: Razak, Syamil Mohd, Jiang, Anyue, Jafarpour, Behnam
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.02.2022
Springer Nature B.V
Subjects:
ISSN:1420-0597, 1573-1499
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to flow physics that governs the behavior of subsurface systems. Inverse modeling in hydrogeology and petroleum engineering involves minimizing the mismatch between observed and simulated data from a set of prior models. A myriad of approaches has been developed to accomplish this goal over the years, and their performance is dependent on the effectiveness of parameterization and the capability of data conditioning technique. We demonstrate LSI as a more robust and efficient approach for calibration of subsurface model over traditional approaches where dimensionality reduction of model parameters is done independently (decoupled) of flow data integration. LSI provides a compact description of the parameters in a latent space that does not only exploit the redundancy of large-scale geologic features but also retain features that are sensitive to flow data. Motivated by recent advances in machine learning research, LSI architecture involves a pair of deep convolutional autoencoders that are coupled to jointly extract spatial geologic features in subsurface models and temporal trends in flow data. The LSI architecture is trained offline using prior model realizations and their corresponding simulated flow responses (as training data) to effectively represent the model and data and to learn the complex nonlinear inverse mapping between data and model. Once field data becomes available, calibrated models can be rapidly obtained using the trained LSI architecture. The resulting data-informed model latent space can be explored to allow the generation of an ensemble of calibrated model realizations around the inversion solution. This is especially useful when observed data is noisy and multiple inversion solutions can be accepted within the noise range. We present several inversion examples to illustrate the performance of LSI and to discuss the advantages and limitations of data-driven inversion approaches compared to the conventional inverse modelling formulations.
AbstractList This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to flow physics that governs the behavior of subsurface systems. Inverse modeling in hydrogeology and petroleum engineering involves minimizing the mismatch between observed and simulated data from a set of prior models. A myriad of approaches has been developed to accomplish this goal over the years, and their performance is dependent on the effectiveness of parameterization and the capability of data conditioning technique. We demonstrate LSI as a more robust and efficient approach for calibration of subsurface model over traditional approaches where dimensionality reduction of model parameters is done independently (decoupled) of flow data integration. LSI provides a compact description of the parameters in a latent space that does not only exploit the redundancy of large-scale geologic features but also retain features that are sensitive to flow data. Motivated by recent advances in machine learning research, LSI architecture involves a pair of deep convolutional autoencoders that are coupled to jointly extract spatial geologic features in subsurface models and temporal trends in flow data. The LSI architecture is trained offline using prior model realizations and their corresponding simulated flow responses (as training data) to effectively represent the model and data and to learn the complex nonlinear inverse mapping between data and model. Once field data becomes available, calibrated models can be rapidly obtained using the trained LSI architecture. The resulting data-informed model latent space can be explored to allow the generation of an ensemble of calibrated model realizations around the inversion solution. This is especially useful when observed data is noisy and multiple inversion solutions can be accepted within the noise range. We present several inversion examples to illustrate the performance of LSI and to discuss the advantages and limitations of data-driven inversion approaches compared to the conventional inverse modelling formulations.
Author Jafarpour, Behnam
Jiang, Anyue
Razak, Syamil Mohd
Author_xml – sequence: 1
  givenname: Syamil Mohd
  surname: Razak
  fullname: Razak, Syamil Mohd
  organization: Mork Family Department of Chemical Engineering and Materials Science, University of Southern California
– sequence: 2
  givenname: Anyue
  surname: Jiang
  fullname: Jiang, Anyue
  organization: Mork Family Department of Chemical Engineering and Materials Science, University of Southern California
– sequence: 3
  givenname: Behnam
  orcidid: 0000-0003-1071-5299
  surname: Jafarpour
  fullname: Jafarpour, Behnam
  email: jafarpou@usc.edu
  organization: Mork Family Department of Chemical Engineering and Materials Science, University of Southern California
BookMark eNp9kM1LwzAchoNMcE7_AU8BL3qI5qNtGm8y_BgUPKjnkHbJ6OySmqQO_3szOxA87JTA73nf_PKcgol1VgNwQfANwZjfBoJzUSBMCSKY4AyVR2BKcs4QyYSYpHtGMUoMPwGnIawxxoIzMgVNpaK2EYVeNRq29kv70DoLr6rXxfUdVHCpdQ87rbxt7QoarzZ66_wHNM7vcQ03qu93U2dgGOoweLMrM53bwqWK6gwcG9UFfb4_Z-D98eFt_oyql6fF_L5CimU0orohJu3EBWtqpsqclIZRkWuWiywV1pmgZWIaTutC8KYmpU6DgpfFkuaCGTYDl2Nv793noEOUazd4m56UtKA8ecI5TlQ5Uo13IXhtZNNGFdOno1dtJwmWO6VyVCqTUvmrVJYpSv9Fe99ulP8-HGJjKCTYrrT_2-pA6gdJ04p8
CitedBy_id crossref_primary_10_1007_s11004_025_10223_3
crossref_primary_10_1016_j_earscirev_2023_104371
crossref_primary_10_1016_j_geothermics_2022_102643
crossref_primary_10_5194_hess_27_2621_2023
crossref_primary_10_1007_s10596_024_10298_7
crossref_primary_10_1016_j_jhydrol_2024_132368
Cites_doi 10.1016/j.envsoft.2013.10.025
10.1002/hyp.13127
10.1007/s11004-014-9532-3
10.1016/j.jcp.2010.07.005
10.1109/LGRS.2017.2766130
10.1016/j.neucom.2015.08.104
10.1002/2016WR019853
10.1007/s10596-010-9194-2
10.1016/j.cageo.2019.04.006
10.1016/j.cageo.2015.10.006
10.1016/j.petrol.2018.06.038
10.1016/j.cageo.2012.03.027
10.1007/s10596-008-9080-3
10.1007/s10236-003-0036-9
10.1007/s11004-007-9131-7
10.1007/s10040-004-0404-7
10.1109/TGRS.2010.2089464
10.1007/s11004-016-9659-5
10.1002/aic.690370209
10.1007/s10596-018-9731-y
10.1007/s10596-020-09971-4
10.2118/117274-PA
10.1016/j.jhydrol.2008.11.033
10.1016/j.advwatres.2017.09.029
10.1007/s10596-020-10014-1
10.1016/j.petrol.2013.04.018
10.1007/s10596-014-9466-3
10.1016/j.cageo.2019.06.002
10.1007/s11004-016-9672-8
10.1007/s10596-015-9483-x
10.1016/j.advwatres.2009.02.011
10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
10.1007/978-90-481-2322-3_11
10.1155/2012/805707
10.2118/143188-PA
10.1007/s10596-019-09929-1
10.1306/M711C10
10.1007/BFb0020217
10.1029/2018WR022643
10.2118/173192-PA
10.3997/2214-4609.202035217
10.2118/1307-PA
10.1016/j.cageo.2012.03.011
10.2118/5740-PA
10.1155/2019/3280961
10.2118/84936-PA
10.2118/1473-PA
10.1007/s00521-010-0501-6
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s10596-021-10104-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1573-1499
EndPage 99
ExternalDocumentID 10_1007_s10596_021_10104_8
GrantInformation_xml – fundername: Energi Simulation
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z81
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7UA
7XB
8AL
8FD
8FK
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-a342t-bc1f731793cb3a8518f3295e3594facb4928bc1c72b697cb18e94f6786d2593f3
IEDL.DBID RSV
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000721462200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-0597
IngestDate Wed Nov 05 00:53:29 EST 2025
Tue Nov 18 21:24:01 EST 2025
Sat Nov 29 06:12:23 EST 2025
Fri Feb 21 02:47:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Subsurface flow
Model calibration
Parameterization
Latent space inversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-bc1f731793cb3a8518f3295e3594facb4928bc1c72b697cb18e94f6786d2593f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1071-5299
PQID 2627007050
PQPubID 55381
PageCount 29
ParticipantIDs proquest_journals_2627007050
crossref_citationtrail_10_1007_s10596_021_10104_8
crossref_primary_10_1007_s10596_021_10104_8
springer_journals_10_1007_s10596_021_10104_8
PublicationCentury 2000
PublicationDate 20220200
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 2
  year: 2022
  text: 20220200
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle Modeling, Simulation and Data Analysis
PublicationTitle Computational geosciences
PublicationTitleAbbrev Comput Geosci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Kramer (CR32) 1991; 37
Wang, Yao, Zhao (CR64) 2016; 184
Sun, Durlofsky (CR56) 2017; 49
CR39
Xiong, Zuo (CR65) 2016; 86
CR36
CR31
CR30
van Leeuwen, Evensen (CR61) 1996; 124
Aster, Borchers, Thurber (CR3) 2018
Laloy, Hérault, Lee, Jacques, Linde (CR33) 2017; 110
Li, Puzel, Davis (CR35) 2018; 32
Sebacher, Stordal, Hanea (CR54) 2015; 19
Todaro, D’Oria, Tandam, Gómez-Hernández (CR58) 2019; 131
CR2
Sarma, Durlofsky, Aziz (CR49) 2008; 40
Astrakova, Oliver (CR4) 2015; 47
Gómez-Hernández, Fu (CR18) 2010
Vincent, Larochelle, Lajoie, Bengio, Manzagol (CR62) 2010; 11
Lorentzen, Flornes, Nævdal (CR37) 2012; 17
Vo, Durlofsky (CR63) 2015; 19
Jiang, Durlofsky (CR28) 2021; 25
CR9
CR48
CR47
CR44
CR43
CR40
Carrera, Alcolea, Medina, Hidalgo, Slooten (CR6) 2005; 13
Van Der Maaten, Postma, Van den Herik (CR60) 2009; 10
Ping, Zhang (CR42) 2013; 108
Li, Misra (CR34) 2017; 14
Oliver, Chen (CR41) 2011; 15
CR17
Aanonsen, Nævdal, Oliver, Reynolds, Vallès (CR1) 2009; 14
Hakim-Elahi, Jafarpour (CR19) 2017; 53
Hendricks Franssen, Alcolea, Riva, Bakr, van der Wiel, Stauffer, Guadagnini (CR22) 2009; 32
CR14
Emerick (CR13) 2017; 49
CR57
Chang, Zhang, Lu (CR8) 2010; 229
CR12
CR11
CR55
CR10
CR53
Castilla-Rho, Mariethoz, Kelly, Andersen (CR7) 2014; 53
CR52
CR51
CR50
Jafarpour (CR24) 2011; 49
Mohd Razak, Jafarpour (CR38) 2020; 24
Evensen (CR15) 2003; 53
Canchumuni, Emerick (CR5) 2019; 128
Jafarpour, McLaughlin (CR25) 2008; 12
CR29
CR27
CR26
Ramsundar, Zadeh (CR46) 2018
CR23
CR67
Pyrcz, Deutsch (CR45) 2014
Valentin, Bom, Martins Compan, Correia, Menezes de Jesus, de Lima Souza, de Albuquerque, de Albuquerque, Faria (CR59) 2018; 170
Hendricks Franssen, Kinzelbach (CR21) 2009; 365
Evensen (CR16) 2018; 22
Yang, Tian, Yu, Ye, Qian, Qian (CR66) 2015; 11
He, Sarma, Durlofsky (CR20) 2013; 55
RC Aster (10104_CR3) 2018
10104_CR39
E Laloy (10104_CR33) 2017; 110
10104_CR36
10104_CR31
V Todaro (10104_CR58) 2019; 131
JC Castilla-Rho (10104_CR7) 2014; 53
AA Emerick (10104_CR13) 2017; 49
B Jafarpour (10104_CR25) 2008; 12
A Astrakova (10104_CR4) 2015; 47
10104_CR30
10104_CR2
L Van Der Maaten (10104_CR60) 2009; 10
JJ Gómez-Hernández (10104_CR18) 2010
H Chang (10104_CR8) 2010; 229
P Vincent (10104_CR62) 2010; 11
B Sebacher (10104_CR54) 2015; 19
MB Valentin (10104_CR59) 2018; 170
10104_CR29
PJ van Leeuwen (10104_CR61) 1996; 124
10104_CR26
10104_CR27
G Evensen (10104_CR16) 2018; 22
10104_CR23
10104_CR67
S Jiang (10104_CR28) 2021; 25
P Sarma (10104_CR49) 2008; 40
SI Aanonsen (10104_CR1) 2009; 14
RJ Lorentzen (10104_CR37) 2012; 17
10104_CR9
DS Oliver (10104_CR41) 2011; 15
HX Vo (10104_CR63) 2015; 19
J Carrera (10104_CR6) 2005; 13
Y Wang (10104_CR64) 2016; 184
H Li (10104_CR34) 2017; 14
G Evensen (10104_CR15) 2003; 53
10104_CR17
J Ping (10104_CR42) 2013; 108
B Jafarpour (10104_CR24) 2011; 49
10104_CR57
10104_CR14
10104_CR11
10104_CR55
10104_CR12
10104_CR53
10104_CR10
10104_CR51
10104_CR52
10104_CR50
MA Kramer (10104_CR32) 1991; 37
Y Xiong (10104_CR65) 2016; 86
HJ Hendricks Franssen (10104_CR22) 2009; 32
SWA Canchumuni (10104_CR5) 2019; 128
10104_CR48
10104_CR47
10104_CR44
HJ Hendricks Franssen (10104_CR21) 2009; 365
10104_CR43
10104_CR40
W Sun (10104_CR56) 2017; 49
L Li (10104_CR35) 2018; 32
L Yang (10104_CR66) 2015; 11
S Mohd Razak (10104_CR38) 2020; 24
S Hakim-Elahi (10104_CR19) 2017; 53
B Ramsundar (10104_CR46) 2018
MJ Pyrcz (10104_CR45) 2014
J He (10104_CR20) 2013; 55
References_xml – volume: 53
  start-page: 35
  year: 2014
  end-page: 52
  ident: CR7
  article-title: Stochastic reconstruction of paleovalley bedrock morphology from sparse datasets
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2013.10.025
– ident: CR39
– ident: CR51
– ident: CR12
– start-page: 121
  year: 2010
  end-page: 126
  ident: CR18
  publication-title: Blocking Markov Chain Monte Carlo Schemes for Inverse Stochastic Hydrogeological Modeling
– volume: 32
  start-page: 2020
  issue: 13
  year: 2018
  end-page: 2029
  ident: CR35
  article-title: Data assimilation in groundwater modelling: ensemble Kalman filter versus ensemble smoothers
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13127
– ident: CR29
– volume: 47
  start-page: 345
  year: 2015
  end-page: 367
  ident: CR4
  article-title: Conditioning Truncated Pluri-Gaussian Models to Facies Observations in Ensemble-Kalman-Based Data Assimilation
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-014-9532-3
– volume: 229
  start-page: 8011
  issue: 20
  year: 2010
  end-page: 8030
  ident: CR8
  article-title: History matching of facies distribution with the EnKF and level set parameterization
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.07.005
– year: 2018
  ident: CR3
  publication-title: Parameter estimation and inverse problems
– volume: 11
  start-page: 1913
  year: 2015
  end-page: 1929
  ident: CR66
  article-title: Deep learning for extracting water body from landsat imagery
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 14
  start-page: 2395
  issue: 12
  year: 2017
  end-page: 2397
  ident: CR34
  article-title: Prediction of subsurface NMR T2 distributions in a shale petroleum system using variational autoencoder-based neural networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766130
– volume: 184
  start-page: 232
  issue: C
  year: 2016
  end-page: 242
  ident: CR64
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomput.
  doi: 10.1016/j.neucom.2015.08.104
– volume: 53
  start-page: 8226
  issue: 10
  year: 2017
  end-page: 8249
  ident: CR19
  article-title: A distance transform for continuous parameterization of discrete geologic facies for subsurface flow model calibration
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019853
– ident: CR67
– ident: CR50
– volume: 15
  start-page: 185
  issue: 1
  year: 2011
  end-page: 221
  ident: CR41
  article-title: Recent progress on reservoir history matching: a review
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-010-9194-2
– ident: CR11
– ident: CR9
– ident: CR57
– volume: 128
  start-page: 87
  year: 2019
  end-page: 102
  ident: CR5
  article-title: Towards a robust parameterization for conditioning facies models using deep variational autoencoders and ensemble smoother
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.04.006
– ident: CR36
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: CR65
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– year: 2014
  ident: CR45
  publication-title: Geostatistical Reservoir Modeling
– volume: 170
  start-page: 315
  year: 2018
  end-page: 330
  ident: CR59
  article-title: Estimation of permeability and effective porosity logs using deep autoencoders in borehole image logs from the brazilian pre-salt carbonate
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.038
– ident: CR26
– volume: 55
  start-page: 54
  year: 2013
  end-page: 69
  ident: CR20
  article-title: Reduced-order flow modeling and geological parameterization for ensemble-based data assimilation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.03.027
– volume: 12
  start-page: 227
  issue: 2
  year: 2008
  end-page: 244
  ident: CR25
  article-title: History matching with an ensemble kalman filter and discrete cosine parameterization
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-008-9080-3
– volume: 53
  start-page: 343
  year: 2003
  end-page: 367
  ident: CR15
  article-title: The ensemble kalman filter: theoretical formulation and practical implementation
  publication-title: Ocean Dyn.
  doi: 10.1007/s10236-003-0036-9
– ident: CR43
– year: 2018
  ident: CR46
  publication-title: TensorFlow for Deep Learning from Linear Regression to Reinforcement Learning
– ident: CR47
– ident: CR14
– ident: CR2
– ident: CR53
– ident: CR30
– ident: CR10
– volume: 40
  start-page: 3
  issue: 1
  year: 2008
  end-page: 32
  ident: CR49
  article-title: Kernel principal component analysis for efficient, differentiable parameterization of multipoint geostatistics
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-007-9131-7
– volume: 13
  start-page: 206
  year: 2005
  end-page: 222
  ident: CR6
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0404-7
– volume: 49
  start-page: 1520
  issue: 5
  year: 2011
  end-page: 1535
  ident: CR24
  article-title: Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2089464
– ident: CR40
– volume: 49
  start-page: 85
  year: 2017
  end-page: 120
  ident: CR13
  article-title: Investigation on principal component analysis parameterizations for history matching channelized facies models with ensemble-based data assimilation
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-016-9659-5
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: CR62
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: CR27
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  end-page: 243
  ident: CR32
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– ident: CR23
– volume: 22
  start-page: 885
  year: 2018
  end-page: 908
  ident: CR16
  article-title: Analysis of iterative ensemble smoothers for solving inverse problems
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-018-9731-y
– ident: CR44
– ident: CR48
– volume: 24
  start-page: 1625
  year: 2020
  end-page: 1649
  ident: CR38
  article-title: Convolutional neural networks (cnn) for feature-based model calibration under uncertain geologic scenarios
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-09971-4
– volume: 14
  start-page: 393
  issue: 3
  year: 2009
  end-page: 412
  ident: CR1
  article-title: Ensemble kalman filter in reservoir engineering—a review
  publication-title: SPE J.
  doi: 10.2118/117274-PA
– volume: 365
  start-page: 261
  issue: 3
  year: 2009
  end-page: 274
  ident: CR21
  article-title: Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.11.033
– volume: 110
  start-page: 387
  year: 2017
  end-page: 405
  ident: CR33
  article-title: Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.029
– volume: 25
  start-page: 411
  year: 2021
  end-page: 432
  ident: CR28
  article-title: Data-space inversion using a recurrent autoencoder for time-series parameterization
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-10014-1
– volume: 108
  start-page: 288
  year: 2013
  end-page: 303
  ident: CR42
  article-title: History matching of fracture distributions by ensemble Kalman filter combined with vector based level set parameterization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.04.018
– ident: CR52
– ident: CR17
– ident: CR31
– volume: 19
  start-page: 341
  year: 2015
  end-page: 369
  ident: CR54
  article-title: Bridging multipoint statistics and truncated Gaussian fields for improved estimation of channelized reservoirs with ensemble methods
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-014-9466-3
– ident: CR55
– volume: 17
  start-page: 137
  issue: 1
  year: 2012
  end-page: 151
  ident: CR37
  article-title: History matching channelized reservoirs using the ensemble kalman filter
  publication-title: Soc. Pet. Eng.
– volume: 131
  start-page: 32
  year: 2019
  end-page: 40
  ident: CR58
  article-title: Ensemble smoother with multiple data assimilation for reverse flow routing
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.06.002
– volume: 49
  start-page: 679
  year: 2017
  end-page: 715
  ident: CR56
  article-title: A new data-space inversion procedure for efficient uncertainty quantification in subsurface flow problems
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-016-9672-8
– volume: 19
  start-page: 747
  issue: 4
  year: 2015
  end-page: 767
  ident: CR63
  article-title: Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9483-x
– volume: 32
  start-page: 851
  issue: 6
  year: 2009
  end-page: 872
  ident: CR22
  article-title: A comparison of seven methods for the inverse modelling of groundwater flow. application to the characterisation of well catchments
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.02.011
– volume: 10
  start-page: 66
  year: 2009
  end-page: 71
  ident: CR60
  article-title: Dimensionality reduction: A comparative review
  publication-title: J. Mach. Learn. Res.
– volume: 124
  start-page: 2898
  issue: 12
  year: 1996
  end-page: 2913
  ident: CR61
  article-title: Data assimilation and inverse methods in terms of a probabilistic formulation
  publication-title: Mon. Weather. Rev.
  doi: 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
– start-page: 121
  volume-title: Blocking Markov Chain Monte Carlo Schemes for Inverse Stochastic Hydrogeological Modeling
  year: 2010
  ident: 10104_CR18
  doi: 10.1007/978-90-481-2322-3_11
– volume: 55
  start-page: 54
  year: 2013
  ident: 10104_CR20
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2012.03.027
– ident: 10104_CR67
  doi: 10.1155/2012/805707
– volume: 13
  start-page: 206
  year: 2005
  ident: 10104_CR6
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0404-7
– volume: 32
  start-page: 851
  issue: 6
  year: 2009
  ident: 10104_CR22
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.02.011
– volume: 365
  start-page: 261
  issue: 3
  year: 2009
  ident: 10104_CR21
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.11.033
– volume: 184
  start-page: 232
  issue: C
  year: 2016
  ident: 10104_CR64
  publication-title: Neurocomput.
  doi: 10.1016/j.neucom.2015.08.104
– ident: 10104_CR51
– volume: 17
  start-page: 137
  issue: 1
  year: 2012
  ident: 10104_CR37
  publication-title: Soc. Pet. Eng.
  doi: 10.2118/143188-PA
– volume: 10
  start-page: 66
  year: 2009
  ident: 10104_CR60
  publication-title: J. Mach. Learn. Res.
– volume: 12
  start-page: 227
  issue: 2
  year: 2008
  ident: 10104_CR25
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-008-9080-3
– volume: 24
  start-page: 1625
  year: 2020
  ident: 10104_CR38
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-09971-4
– volume: 49
  start-page: 85
  year: 2017
  ident: 10104_CR13
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-016-9659-5
– volume: 14
  start-page: 393
  issue: 3
  year: 2009
  ident: 10104_CR1
  publication-title: SPE J.
  doi: 10.2118/117274-PA
– volume: 170
  start-page: 315
  year: 2018
  ident: 10104_CR59
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2018.06.038
– volume: 32
  start-page: 2020
  issue: 13
  year: 2018
  ident: 10104_CR35
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.13127
– volume: 108
  start-page: 288
  year: 2013
  ident: 10104_CR42
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2013.04.018
– ident: 10104_CR44
  doi: 10.1007/s10596-019-09929-1
– ident: 10104_CR31
– volume: 19
  start-page: 747
  issue: 4
  year: 2015
  ident: 10104_CR63
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9483-x
– ident: 10104_CR48
  doi: 10.1306/M711C10
– volume: 22
  start-page: 885
  year: 2018
  ident: 10104_CR16
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-018-9731-y
– volume-title: Geostatistical Reservoir Modeling
  year: 2014
  ident: 10104_CR45
– ident: 10104_CR52
– ident: 10104_CR53
  doi: 10.1007/BFb0020217
– ident: 10104_CR10
– volume-title: Parameter estimation and inverse problems
  year: 2018
  ident: 10104_CR3
– ident: 10104_CR55
  doi: 10.1029/2018WR022643
– volume: 11
  start-page: 1913
  year: 2015
  ident: 10104_CR66
  publication-title: Int. J. Innov. Comput. Inf. Control
– volume: 25
  start-page: 411
  year: 2021
  ident: 10104_CR28
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-10014-1
– volume: 110
  start-page: 387
  year: 2017
  ident: 10104_CR33
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.09.029
– ident: 10104_CR9
  doi: 10.2118/173192-PA
– volume: 131
  start-page: 32
  year: 2019
  ident: 10104_CR58
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.06.002
– volume: 53
  start-page: 8226
  issue: 10
  year: 2017
  ident: 10104_CR19
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019853
– volume: 15
  start-page: 185
  issue: 1
  year: 2011
  ident: 10104_CR41
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-010-9194-2
– volume: 40
  start-page: 3
  issue: 1
  year: 2008
  ident: 10104_CR49
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-007-9131-7
– volume: 49
  start-page: 1520
  issue: 5
  year: 2011
  ident: 10104_CR24
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2010.2089464
– ident: 10104_CR57
– ident: 10104_CR39
  doi: 10.3997/2214-4609.202035217
– volume: 19
  start-page: 341
  year: 2015
  ident: 10104_CR54
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-014-9466-3
– volume: 86
  start-page: 75
  year: 2016
  ident: 10104_CR65
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.10.006
– ident: 10104_CR23
  doi: 10.2118/1307-PA
– volume: 124
  start-page: 2898
  issue: 12
  year: 1996
  ident: 10104_CR61
  publication-title: Mon. Weather. Rev.
  doi: 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
– ident: 10104_CR30
– ident: 10104_CR11
– ident: 10104_CR14
  doi: 10.1016/j.cageo.2012.03.011
– ident: 10104_CR43
– volume-title: TensorFlow for Deep Learning from Linear Regression to Reinforcement Learning
  year: 2018
  ident: 10104_CR46
– ident: 10104_CR47
– ident: 10104_CR17
  doi: 10.2118/5740-PA
– ident: 10104_CR29
  doi: 10.1155/2019/3280961
– ident: 10104_CR36
  doi: 10.2118/84936-PA
– volume: 53
  start-page: 343
  year: 2003
  ident: 10104_CR15
  publication-title: Ocean Dyn.
  doi: 10.1007/s10236-003-0036-9
– volume: 49
  start-page: 679
  year: 2017
  ident: 10104_CR56
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-016-9672-8
– volume: 53
  start-page: 35
  year: 2014
  ident: 10104_CR7
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2013.10.025
– ident: 10104_CR26
  doi: 10.2118/1473-PA
– ident: 10104_CR50
– ident: 10104_CR2
  doi: 10.1007/s00521-010-0501-6
– volume: 128
  start-page: 87
  year: 2019
  ident: 10104_CR5
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.04.006
– volume: 229
  start-page: 8011
  issue: 20
  year: 2010
  ident: 10104_CR8
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.07.005
– ident: 10104_CR12
– volume: 14
  start-page: 2395
  issue: 12
  year: 2017
  ident: 10104_CR34
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2766130
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10104_CR62
  publication-title: J. Mach. Learn. Res.
– volume: 47
  start-page: 345
  year: 2015
  ident: 10104_CR4
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-014-9532-3
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  ident: 10104_CR32
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– ident: 10104_CR27
– ident: 10104_CR40
SSID ssj0009731
Score 2.3464806
Snippet This paper presents Latent-Space Inversion (LSI) as a new data-informed inversion and parameterization framework where dimensionality reduction is tailored to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Calibration
Contamination
Data integration
Deep learning
Earth and Environmental Science
Earth Sciences
Feature extraction
Flow mapping
Flow simulation
Geology
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Inverse problems
Kalman filters
Large scale integration
Learning algorithms
Learning behaviour
Machine learning
Mapping
Mathematical Modeling and Industrial Mathematics
Mathematical models
Original Paper
Parameterization
Parameters
Petroleum engineering
Physics
Redundancy
Soil Science & Conservation
Training
Wavelet transforms
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86FXzxW5xOyYMPigbTzzS-iIhfMMdAhb2VNk3GYHZz3Sb-916y1KLgXnwrJD1KL3f5Jfe7O4SOMxUy7nBFKM8oHFBoQKKUcUIFC8DOpaLKJAo3WasVdTq8bS_cCkurLH2icdTZQOg78gs31CFSRgN6NXwnumuUjq7aFhqLaAmQjaMpXU9uuyq6y0w_Qsd3dcCXM5s0Y1PnAkO_1YQuOJKQ6OfGVKHNXwFSs-_crf_3izfQmkWc-Hq2RDbRgsy30Mq96ej7CU-GAyqKbSSagDvzMQEfIyTu5dPZVRo-aT4_nl7iBGdSDrFtM9HFqqR1YcC9drrEb4ku-NDFA4UL8EmTkdLCVH_wgTUZdQe93t2-3DwQ24OBJJ7vjkkqHAV_EaxYpF4C8CxSnssD6QXcBwGpz90I5gjmpiFnInUiCQOwA4YZHKw85e2iWj7I5R7CABUpTZjyUgBxTLEkZJ4UMgPM4AcJderIKRUQC1ugXPfJ6MdVaWWttBiUFhulxVEdnX2_M5yV55g7u1FqKramWsSVmurovNR1Nfy3tP350g7QqqtTJQzDu4Fq49FEHqJlMR33itGRWahfgHDrHg
  priority: 102
  providerName: ProQuest
Title Latent-space inversion (LSI): a deep learning framework for inverse mapping of subsurface flow data
URI https://link.springer.com/article/10.1007/s10596-021-10104-8
https://www.proquest.com/docview/2627007050
Volume 26
WOSCitedRecordID wos000721462200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: PCBAR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB58ghffYn2UHDwoGsg-s_Gm0qpYS_GFeFl2s4kIdVvaqvjvnaS7VkUFveSSybBMMpkvOy-ArUyHXDhCUyYyhg8UFtAo5YIyyQPUc6WZtonCDd5sRre3olUkhfXLaPfSJWlv6g_JboENmDUhWPiIoNE4TKK5i0zDhovLm1GpXW67EDq-a9y8ghepMt_z-GyORhjzi1vUWpv63P--cx5mC3RJDobHYQHGVL4I08e2e-_rEsgGIst8QPEWkYo85M_Dn2Vku3F5urNPEpIp1SVFI4l7osvALYLItiBX5DExJR3uSUeTPt46Tz1tmOl254WYcNNluK7Xro5OaNFlgSae7w5oKh2NEkM9lamXIACLtOeKQHmB8JFB6gs3QhrJ3TQUXKZOpHACbVyY4dPJ094KTOSdXK0CQTDIWMK1lyJM45onIfeUVBmiAj9ImFMBpxR2LIsS5KYTRjseFU82wotReLEVXhxVYPd9TXdYgONX6o1yD-NCGfuxGxrvOmcBq8BeuWej6Z-5rf2NfB1mXJMcYWO6N2Bi0HtSmzAlnwcP_V4VJg9rzdZFFcbPOMXx3G3h2Aruqvb4vgFRBeKQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RCmovLRSqbkvBB5CoWgvHTuIYqaoqPleEFVKpxC1NHBsh0ex2s4D4U_2NjL0JUSuVG4feItkZKfHzeMbzZgZgvbSxVIGylKmSoYPCIpoUUlGmZYT73FhmfaJwKgeD5OxMnczA7zYXxtEqW53oFXU51O6OfIvHLkQqWcS-jH5R1zXKRVfbFhpTWByZ2xt02erP_V1c3w3O9_dOdw5p01WA5iLkE1rowErhcKkLkaPBkVjBVWREpEKb6yJUPME5WvIiVlIXQWJwAHV6XKKrIKxAuU_gaegqizmqID_pivxK3_8wCLkLMCvZJOk0qXqRp_s6Ahm6QDT58yDsrNu_ArL-nNt_-b_9oQV40VjU5Ot0CyzCjKlewfyB71h8i0-e46rrJdAp2tXVhKIO1YZcVNfTq0KymX7rf9gmOSmNGZGmjcY5sS1tjaBd30w35GfuClqck6ElNercq7F1wuzl8IY4su0yfH-Ub30Ns9WwMm-AoCnMWC6tKNBIlVbmsRRGmxJtojDKWdCDoF3wTDcF2F0fkMusKx3tQJIhSDIPkizpwcf7d0bT8iMPzl5pkZE1qqjOOlj04FOLrW7439LePixtDZ4dnh6nWdofHL2D59ylhXg2-wrMTsZX5j3M6evJRT1e9ZuEwI_Hxtwd5f1G_g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3faxQxEB5qq9IXf1a8tmoeFBQNzSa7m02hlGI9PXocByoUX7a72aQU6t719trSf82_rpNc1kXBvvXBt4VkB3bzZTKT-WYG4HVlU6kiZSlTFUMHhSU0K6WiTMsE97mxzPpE4aEcjbLDQzVegl9tLoyjVbY60SvqaqLdHfkWT12IVLKEbdlAixjv93enZ9R1kHKR1radxgIiB-bqEt23Zmewj2v9hvP-p28fv9DQYYAWIuZzWurISuEwqktRoPGRWcFVYkSiYlvoMlY8wzla8jJVUpdRZnAA9XtaodsgrEC5d2BFoo_p6ITj5EdX8Ff6XohRzF2wWcmQsBPS9hJP_XVkMnSHaPbnodhZun8FZ_2Z13_4P_-tR_AgWNpkb7E1HsOSqZ_Avc--k_EVPnnuq26egh6ivV3PKepWbchJfbG4QiRvh18H77ZJQSpjpiS01zgmtqWzEbT3w3RDfhau0MUxmVjSoC4-n1knzJ5OLokj4a7B91v51mewXE9q8xwImsiMFdKKEo1XaWWRSmG0qdBWipOCRT2I2sXPdSjM7vqDnOZdSWkHmBwBk3vA5FkP3v9-Z7ooS3Lj7M0WJXlQUU3eQaQHH1qcdcP_lrZ-s7RXcB-hlg8Ho4MNWOUuW8ST3DdheT47Ny_grr6YnzSzl36_EDi6bchdA9iaT-o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Latent-space+inversion+%28LSI%29%3A+a+deep+learning+framework+for+inverse+mapping+of+subsurface+flow+data&rft.jtitle=Computational+geosciences&rft.au=Razak%2C+Syamil+Mohd&rft.au=Jiang%2C+Anyue&rft.au=Jafarpour%2C+Behnam&rft.date=2022-02-01&rft.pub=Springer+International+Publishing&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=26&rft.issue=1&rft.spage=71&rft.epage=99&rft_id=info:doi/10.1007%2Fs10596-021-10104-8&rft.externalDocID=10_1007_s10596_021_10104_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon