Distributed quasi-Newton derivative-free optimization method for optimization problems with multiple local optima
The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. T...
Saved in:
| Published in: | Computational geosciences Vol. 26; no. 4; pp. 847 - 863 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cham
Springer International Publishing
01.08.2022
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1420-0597, 1573-1499 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. This paper introduces a generalized form of the objective functions
F
(
x
,
y
(
x
)) =
f
(
x
) with both explicit variables
x
and implicit variables (or simulated responses),
y
(
x
). The split in explicit and implicit variables is such that partial derivatives of
F
(
x
,
y
) with respect to both
x
and
y
can be computed analytically. An ensemble of quasi-Newton optimization threads is distributed among multiple high-performance-computing (HPC) cluster nodes. The simulation results generated from one optimization thread are shared with others by updating a common set of training data points, which records simulated responses of all simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by the linear-interpolation method. The gradient of the objective function is then analytically computed using its partial derivatives with respect to
x
and
y
and the estimated sensitivities of
y
with respect to
x
. The Hessian is updated using the quasi-Newton formulation. A new search point for each distributed optimization thread is generated by solving a quasi-Newton trust-region subproblem (TRS) for the next iteration. The proposed distributed quasi-Newton (DQN) method is first validated on a synthetic history matching problem and its performance is found to be comparable with the DGN optimizer. Then, the DQN method is tested on a variety of optimization problems. For all test problems, the DQN method can find multiple optima of the objective function with reasonably small numbers of iterations. |
|---|---|
| AbstractList | The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. This paper introduces a generalized form of the objective functions
F
(
x
,
y
(
x
)) =
f
(
x
) with both explicit variables
x
and implicit variables (or simulated responses),
y
(
x
). The split in explicit and implicit variables is such that partial derivatives of
F
(
x
,
y
) with respect to both
x
and
y
can be computed analytically. An ensemble of quasi-Newton optimization threads is distributed among multiple high-performance-computing (HPC) cluster nodes. The simulation results generated from one optimization thread are shared with others by updating a common set of training data points, which records simulated responses of all simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by the linear-interpolation method. The gradient of the objective function is then analytically computed using its partial derivatives with respect to
x
and
y
and the estimated sensitivities of
y
with respect to
x
. The Hessian is updated using the quasi-Newton formulation. A new search point for each distributed optimization thread is generated by solving a quasi-Newton trust-region subproblem (TRS) for the next iteration. The proposed distributed quasi-Newton (DQN) method is first validated on a synthetic history matching problem and its performance is found to be comparable with the DGN optimizer. Then, the DQN method is tested on a variety of optimization problems. For all test problems, the DQN method can find multiple optima of the objective function with reasonably small numbers of iterations. The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. This paper introduces a generalized form of the objective functions F(x, y(x)) = f(x) with both explicit variables x and implicit variables (or simulated responses), y(x). The split in explicit and implicit variables is such that partial derivatives of F(x, y) with respect to both x and y can be computed analytically. An ensemble of quasi-Newton optimization threads is distributed among multiple high-performance-computing (HPC) cluster nodes. The simulation results generated from one optimization thread are shared with others by updating a common set of training data points, which records simulated responses of all simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by the linear-interpolation method. The gradient of the objective function is then analytically computed using its partial derivatives with respect to x and y and the estimated sensitivities of y with respect to x. The Hessian is updated using the quasi-Newton formulation. A new search point for each distributed optimization thread is generated by solving a quasi-Newton trust-region subproblem (TRS) for the next iteration. The proposed distributed quasi-Newton (DQN) method is first validated on a synthetic history matching problem and its performance is found to be comparable with the DGN optimizer. Then, the DQN method is tested on a variety of optimization problems. For all test problems, the DQN method can find multiple optima of the objective function with reasonably small numbers of iterations. |
| Author | Gao, Guohua Wang, Yixuan Saaf, Fredrik J.F.E. Vink, Jeroen C. Wells, Terence J. |
| Author_xml | – sequence: 1 givenname: Guohua orcidid: 0000-0001-7224-1004 surname: Gao fullname: Gao, Guohua email: Guohua.gao@shell.com organization: Shell Global Solutions (US) Inc – sequence: 2 givenname: Yixuan surname: Wang fullname: Wang, Yixuan organization: Shell Global Solutions (US) Inc – sequence: 3 givenname: Jeroen C. surname: Vink fullname: Vink, Jeroen C. organization: Shell Global Solutions International B.V – sequence: 4 givenname: Terence J. surname: Wells fullname: Wells, Terence J. organization: Shell Global Solutions International B.V – sequence: 5 givenname: Fredrik J.F.E. surname: Saaf fullname: Saaf, Fredrik J.F.E. organization: Shell Global Solutions (US) Inc |
| BookMark | eNp9kE1PxCAQholZE9ePP-CpiWd0KHRpj8bvxOhFz4Slg7Lpll2grvrrRWti9GA4QIb3mZn33SWT3vdIyCGDYwYgTyKDqplRKBllkA993SJTVklOmWiaSX6LEmjWyB2yG-MCABrJ2ZSsz11Mwc2HhG2xHnR09A43yfdFi8G96ORekNqAWPhVckv3niv5c4np2beF9eF3fRX8vMNlLDYuPRfLoUtu1WHReaO7Uan3ybbVXcSD73uPPF5ePJxd09v7q5uz01uquSgTnYtZbVhluGh4Y2opBRjgGqBmoLNFRFbZWrStZTiXVrSA1ppGtEIbkMLyPXI09s07rQeMSS38EPo8UpUSqkrwaiayqh5VJvgYA1plXPrykoJ2nWKgPgNWY8AqB6y-AlavGS3_oKuQ_YW3_yE-QjGL-ycMP1v9Q30ADHGTmQ |
| CitedBy_id | crossref_primary_10_1016_j_ijhydene_2025_03_031 crossref_primary_10_2118_212212_PA crossref_primary_10_1016_j_geoen_2023_212475 crossref_primary_10_3390_w16202940 crossref_primary_10_2118_210118_PA crossref_primary_10_1007_s10596_023_10197_3 |
| Cites_doi | 10.1007/s10596-019-09830-x 10.2118/92864-MS 10.2118/112873-PA 10.1002/nme.5342 10.2118/187430-PA 10.1007/b98874 10.1007/BF02066348 10.1007/s10596-015-9528-1 10.2118/175039-PA 10.2118/118926-PA 10.1137/0904038 10.1007/s10107-003-0490-7 10.1007/s10596-010-9194-2 10.1007/s10596-019-9823-3 10.1007/s10596-017-9657-9 10.2118/191373-PA 10.1145/321062.321069 10.1137/070708494 10.2118/87336-PA 10.2118/182639-PA 10.1137/S1052623497322735 10.1007/s10596-012-9320-4 10.15530/urtec-2016-2429986 10.1007/s12532-010-0011-7 10.1017/CBO9780511535642 10.1137/1.9780898717921 10.3997/2214-4609.201802140 10.1016/j.compfluid.2010.09.039 10.1093/comjnl/7.4.308 10.1007/s10596-013-9368-9 10.1137/040603371 10.2118/182602-PA 10.1145/1326548.1326553 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021 – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021. |
| DBID | AAYXX CITATION 3V. 7SC 7UA 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ JQ2 K7- L.G L7M L~C L~D M0N M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
| DOI | 10.1007/s10596-021-10101-x |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest SciTech Premium Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1573-1499 |
| EndPage | 863 |
| ExternalDocumentID | 10_1007_s10596_021_10101_x |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9R PCBAR PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7Y Z81 ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7UA 7XB 8AL 8FD 8FK C1K F1W H8D H96 JQ2 L.G L7M L~C L~D PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-a342t-b468c15c34939c87740c03a00810a010ee15f84ddf1eb7f4d0effc94d4ac074f3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706588500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1420-0597 |
| IngestDate | Wed Nov 05 02:19:50 EST 2025 Sat Nov 29 06:12:23 EST 2025 Tue Nov 18 20:51:59 EST 2025 Fri Feb 21 02:45:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Optimization algorithms MSC code: 90C39, Nonlinear programming Distributed quasi-Newton method Sensitivity matrix Information sharing mechanism Trust-region search |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-b468c15c34939c87740c03a00810a010ee15f84ddf1eb7f4d0effc94d4ac074f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7224-1004 |
| PQID | 2705543564 |
| PQPubID | 55381 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2705543564 crossref_citationtrail_10_1007_s10596_021_10101_x crossref_primary_10_1007_s10596_021_10101_x springer_journals_10_1007_s10596_021_10101_x |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationSubtitle | Modeling, Simulation and Data Analysis |
| PublicationTitle | Computational geosciences |
| PublicationTitleAbbrev | Comput Geosci |
| PublicationYear | 2022 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | LiRReynoldsACOliverDSHistory matching of three-phase flow production dataSPE J.20038432834010.2118/87336-PA MoreJJSorensenDCComputing a trust region stepSIAM J. Sci. Stat. Comput.19834355357210.1137/0904038 GouldNIMRobinsonDThorneHSOn solving trust-region and other regularized subproblems in optimizationMath. Program. Comput.201021215710.1007/s12532-010-0011-7 VolkovOVoskovDEffect of time stepping strategy on adjoint-based production optimizationComput. Geosci.201620370772210.1007/s10596-015-9528-1 Chen, C., et al.: EUR Assessment of Unconventional Assets Using Parallelized History Matching Workflow Together with RML Method. Paper URTeC-2429986 presented at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1–3 August (2016) PowellMJDLeast Frobenius norm updating of quadratic models that satisfy interpolation conditionsMath. Program.2004100118321510.1007/s10107-003-0490-7 AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Opt.20061718821710.1137/040603371 NelderJAMeadRA simplex method for function minimizationComput. J.1965730831310.1093/comjnl/7.4.308 OliverDSChenYRecent Progress on reservoir history matching: a reviewComput. Geosci.201115118521110.1007/s10596-010-9194-2 NocedalJWrightSJNumerical Optimization1999New York CitySpringer10.1007/b98874 GuoIntegration of Support Vector Regression with Distributed Gauss-Newton Optimization Method and Its Applications to the Uncertainty Assessment of Unconventional AssetsSPE Reserv. Eval. Eng.20182141007102610.2118/191373-PA Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press. (2008). https://doi.org/10.1017/CBO9780511535642 ChenYOliverDSEnsemble-based closed-loop optimization applied to Brugge fieldSPE Reserv. Eval. Eng.2010131567110.2118/118926-PA OliverDSOn conditional simulation to inaccurate dataMath. Geol.19962881181710.1007/BF02066348 Rafiee, J., Reynolds, A.C.: A Two-Level MCMC Based on the Distributed Gauss-Newton Method for Uncertainty Quantification. The 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September (2018) Chen, C., et al.: Assisted History Matching Using Three Derivative-Free Optimization Algorithms. Paper SPE-154112-MS presented at the SPE Europec/EAGE Annual Conference held in Copenhagen, Denmark, 4–7 June (2012) HookeRJeevesTADirect search solution of numerical and Statical problemsJ. Assoc. Comput. Mach.1961821222910.1145/321062.321069 GaoGaussian Mixture Model Fitting Method for Uncertainty Quantification by Conditioning to Production DataComput. Geosci.202024266368110.1007/s10596-019-9823-3 GaoGVinkJCChenCAlpakFOduKA parallelized and hybrid data-integration algorithm for history matching of geologically complex reservoirsSPE J.20162162155217410.2118/175039-PA JansenJDAdjoint-based optimization of multi-phase flow through porous media—a reviewComput. Fluids2011461405110.1016/j.compfluid.2010.09.039 Wild, S.M.: Derivative Free Optimization Algorithms for Computationally Expensive Functions. Ph.D Thesis, Cornell University (2009) DoSTReynoldsACTheoretical connections between optimization algorithms based on an approximation gradientComput. Geosci.201317695997310.1007/s10596-013-9368-9 RojasMSantosSASorensenDCAlgorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularizationACM Trans. Math. Softw.200834212810.1145/1326548.1326553 GaoGVinkJCChenCel KhamraYTarrahiMDistributed gauss-Newton optimization method for history matching problems with multiple best matchesComput. Geosci.2017215–61325134210.1007/s10596-017-9657-9 Gao, G., et al.: A gauss-Newton trust region solver for large scale history matching problems. SPE J. 22(6), (2017). https://doi.org/10.2118/182602-PA Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM. (2005). https://doi.org/10.1137/1.9780898717921 Ding, Y., Lushi, E., Li, Q.: Investigation of Quasi-Newton methods for Unconstrained Optimization. (http://people.math.sfu.ca/~elushi/project_833.pdf), Simon Fraser University, Canada (2004) GaoPerformance Enhancement of Gauss-Newton Trust Region Solver for Distributed Gauss-Newton Optimization methodsComput. Geosci.202024283785210.1007/s10596-019-09830-x Sarma, P., Durlofsky, L., Aziz, K.: Implementation of Adjoint Solution for Optimal Control of Smart Wells. Paper SPE 92864 presented at the SPE Reservoir Simulation Symposium held in the Woodlands, Texas, USA, 31 Jan.-2 Feb. (2005) FonsecaRRChenBJansenJDReynoldsACA stochastic simplex approximate gradient (StoSAG) for optimization under uncertaintyInt. J. Numer. Methods Eng.20171091756177610.1002/nme.5342 ErwayJBGillPEGriffinJDIterative methods for finding a trust-region stepSIAM J. Optim.20092021110113110.1137/070708494 GouldNIMLucidiSRomaMTointPLSolving the trust-region subproblem using the Lanczos methodSIAM J. Optim.19999250452510.1137/S1052623497322735 ChenCGaoGLiRCaoRChenTVinkJCGelderblomPGlobal-search distributed-gauss-Newton optimization method and its integration with the randomized-maximum-likelihood method for uncertainty quantification of reservoir performanceSPE J.20182351496151710.2118/182639-PA GuoEnhancing the Performance of the Distributed Gauss-Newton Optimization Method by Reducing the Effect of Numerical Noise and Truncation Error with Support-Vector-RegressionSPE J.20182362428244310.2118/187430-PA ZhaoHLiGReynoldsACYaoJLarge-scale history matching with quadratic interpolation modelsComput. Geosci.20121711713810.1007/s10596-012-9320-4 ChenYOliverDSZhangDEfficient ensemble-based closed-loop production optimizationSPE J.200914463464510.2118/112873-PA ST Do (10101_CR15) 2013; 17 Guo (10101_CR20) 2018; 21 RR Fonseca (10101_CR16) 2017; 109 JB Erway (10101_CR32) 2009; 20 H Zhao (10101_CR12) 2012; 17 Gao (10101_CR24) 2020; 24 JD Jansen (10101_CR2) 2011; 46 Y Chen (10101_CR13) 2009; 14 JJ More (10101_CR31) 1983; 4 C Audet (10101_CR7) 2006; 17 JA Nelder (10101_CR6) 1965; 7 10101_CR22 Gao (10101_CR35) 2020; 24 10101_CR23 10101_CR25 MJD Powell (10101_CR11) 2004; 100 DS Oliver (10101_CR19) 1996; 28 10101_CR27 10101_CR28 10101_CR29 Guo (10101_CR21) 2018; 23 NIM Gould (10101_CR33) 1999; 9 R Li (10101_CR3) 2003; 8 C Chen (10101_CR18) 2018; 23 G Gao (10101_CR9) 2016; 21 G Gao (10101_CR17) 2017; 21 R Hooke (10101_CR8) 1961; 8 10101_CR4 NIM Gould (10101_CR30) 2010; 2 DS Oliver (10101_CR26) 2011; 15 O Volkov (10101_CR5) 2016; 20 Y Chen (10101_CR14) 2010; 13 10101_CR10 J Nocedal (10101_CR1) 1999 M Rojas (10101_CR34) 2008; 34 10101_CR36 |
| References_xml | – reference: OliverDSOn conditional simulation to inaccurate dataMath. Geol.19962881181710.1007/BF02066348 – reference: GaoGVinkJCChenCel KhamraYTarrahiMDistributed gauss-Newton optimization method for history matching problems with multiple best matchesComput. Geosci.2017215–61325134210.1007/s10596-017-9657-9 – reference: RojasMSantosSASorensenDCAlgorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularizationACM Trans. Math. Softw.200834212810.1145/1326548.1326553 – reference: ZhaoHLiGReynoldsACYaoJLarge-scale history matching with quadratic interpolation modelsComput. Geosci.20121711713810.1007/s10596-012-9320-4 – reference: ChenYOliverDSEnsemble-based closed-loop optimization applied to Brugge fieldSPE Reserv. Eval. Eng.2010131567110.2118/118926-PA – reference: Wild, S.M.: Derivative Free Optimization Algorithms for Computationally Expensive Functions. Ph.D Thesis, Cornell University (2009) – reference: NocedalJWrightSJNumerical Optimization1999New York CitySpringer10.1007/b98874 – reference: HookeRJeevesTADirect search solution of numerical and Statical problemsJ. Assoc. Comput. Mach.1961821222910.1145/321062.321069 – reference: ChenYOliverDSZhangDEfficient ensemble-based closed-loop production optimizationSPE J.200914463464510.2118/112873-PA – reference: Chen, C., et al.: Assisted History Matching Using Three Derivative-Free Optimization Algorithms. Paper SPE-154112-MS presented at the SPE Europec/EAGE Annual Conference held in Copenhagen, Denmark, 4–7 June (2012) – reference: ChenCGaoGLiRCaoRChenTVinkJCGelderblomPGlobal-search distributed-gauss-Newton optimization method and its integration with the randomized-maximum-likelihood method for uncertainty quantification of reservoir performanceSPE J.20182351496151710.2118/182639-PA – reference: PowellMJDLeast Frobenius norm updating of quadratic models that satisfy interpolation conditionsMath. Program.2004100118321510.1007/s10107-003-0490-7 – reference: GuoEnhancing the Performance of the Distributed Gauss-Newton Optimization Method by Reducing the Effect of Numerical Noise and Truncation Error with Support-Vector-RegressionSPE J.20182362428244310.2118/187430-PA – reference: Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press. (2008). https://doi.org/10.1017/CBO9780511535642 – reference: GouldNIMRobinsonDThorneHSOn solving trust-region and other regularized subproblems in optimizationMath. Program. Comput.201021215710.1007/s12532-010-0011-7 – reference: OliverDSChenYRecent Progress on reservoir history matching: a reviewComput. Geosci.201115118521110.1007/s10596-010-9194-2 – reference: ErwayJBGillPEGriffinJDIterative methods for finding a trust-region stepSIAM J. Optim.20092021110113110.1137/070708494 – reference: GaoGVinkJCChenCAlpakFOduKA parallelized and hybrid data-integration algorithm for history matching of geologically complex reservoirsSPE J.20162162155217410.2118/175039-PA – reference: Ding, Y., Lushi, E., Li, Q.: Investigation of Quasi-Newton methods for Unconstrained Optimization. (http://people.math.sfu.ca/~elushi/project_833.pdf), Simon Fraser University, Canada (2004) – reference: GouldNIMLucidiSRomaMTointPLSolving the trust-region subproblem using the Lanczos methodSIAM J. Optim.19999250452510.1137/S1052623497322735 – reference: VolkovOVoskovDEffect of time stepping strategy on adjoint-based production optimizationComput. Geosci.201620370772210.1007/s10596-015-9528-1 – reference: NelderJAMeadRA simplex method for function minimizationComput. J.1965730831310.1093/comjnl/7.4.308 – reference: LiRReynoldsACOliverDSHistory matching of three-phase flow production dataSPE J.20038432834010.2118/87336-PA – reference: Gao, G., et al.: A gauss-Newton trust region solver for large scale history matching problems. SPE J. 22(6), (2017). https://doi.org/10.2118/182602-PA – reference: JansenJDAdjoint-based optimization of multi-phase flow through porous media—a reviewComput. Fluids2011461405110.1016/j.compfluid.2010.09.039 – reference: Rafiee, J., Reynolds, A.C.: A Two-Level MCMC Based on the Distributed Gauss-Newton Method for Uncertainty Quantification. The 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September (2018) – reference: Sarma, P., Durlofsky, L., Aziz, K.: Implementation of Adjoint Solution for Optimal Control of Smart Wells. Paper SPE 92864 presented at the SPE Reservoir Simulation Symposium held in the Woodlands, Texas, USA, 31 Jan.-2 Feb. (2005) – reference: GuoIntegration of Support Vector Regression with Distributed Gauss-Newton Optimization Method and Its Applications to the Uncertainty Assessment of Unconventional AssetsSPE Reserv. Eval. Eng.20182141007102610.2118/191373-PA – reference: GaoPerformance Enhancement of Gauss-Newton Trust Region Solver for Distributed Gauss-Newton Optimization methodsComput. Geosci.202024283785210.1007/s10596-019-09830-x – reference: MoreJJSorensenDCComputing a trust region stepSIAM J. Sci. Stat. Comput.19834355357210.1137/0904038 – reference: Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM. (2005). https://doi.org/10.1137/1.9780898717921 – reference: AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Opt.20061718821710.1137/040603371 – reference: Chen, C., et al.: EUR Assessment of Unconventional Assets Using Parallelized History Matching Workflow Together with RML Method. Paper URTeC-2429986 presented at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1–3 August (2016) – reference: GaoGaussian Mixture Model Fitting Method for Uncertainty Quantification by Conditioning to Production DataComput. Geosci.202024266368110.1007/s10596-019-9823-3 – reference: DoSTReynoldsACTheoretical connections between optimization algorithms based on an approximation gradientComput. Geosci.201317695997310.1007/s10596-013-9368-9 – reference: FonsecaRRChenBJansenJDReynoldsACA stochastic simplex approximate gradient (StoSAG) for optimization under uncertaintyInt. J. Numer. Methods Eng.20171091756177610.1002/nme.5342 – volume: 24 start-page: 837 issue: 2 year: 2020 ident: 10101_CR24 publication-title: Comput. Geosci. doi: 10.1007/s10596-019-09830-x – ident: 10101_CR4 doi: 10.2118/92864-MS – ident: 10101_CR36 – volume: 14 start-page: 634 issue: 4 year: 2009 ident: 10101_CR13 publication-title: SPE J. doi: 10.2118/112873-PA – volume: 109 start-page: 1756 year: 2017 ident: 10101_CR16 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.5342 – volume: 23 start-page: 2428 issue: 6 year: 2018 ident: 10101_CR21 publication-title: SPE J. doi: 10.2118/187430-PA – volume-title: Numerical Optimization year: 1999 ident: 10101_CR1 doi: 10.1007/b98874 – volume: 28 start-page: 811 year: 1996 ident: 10101_CR19 publication-title: Math. Geol. doi: 10.1007/BF02066348 – volume: 20 start-page: 707 issue: 3 year: 2016 ident: 10101_CR5 publication-title: Comput. Geosci. doi: 10.1007/s10596-015-9528-1 – volume: 21 start-page: 2155 issue: 6 year: 2016 ident: 10101_CR9 publication-title: SPE J. doi: 10.2118/175039-PA – volume: 13 start-page: 56 issue: 1 year: 2010 ident: 10101_CR14 publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/118926-PA – volume: 4 start-page: 553 issue: 3 year: 1983 ident: 10101_CR31 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0904038 – ident: 10101_CR25 – volume: 100 start-page: 183 issue: 1 year: 2004 ident: 10101_CR11 publication-title: Math. Program. doi: 10.1007/s10107-003-0490-7 – volume: 15 start-page: 185 issue: 1 year: 2011 ident: 10101_CR26 publication-title: Comput. Geosci. doi: 10.1007/s10596-010-9194-2 – volume: 24 start-page: 663 issue: 2 year: 2020 ident: 10101_CR35 publication-title: Comput. Geosci. doi: 10.1007/s10596-019-9823-3 – volume: 21 start-page: 1325 issue: 5–6 year: 2017 ident: 10101_CR17 publication-title: Comput. Geosci. doi: 10.1007/s10596-017-9657-9 – volume: 21 start-page: 1007 issue: 4 year: 2018 ident: 10101_CR20 publication-title: SPE Reserv. Eval. Eng. doi: 10.2118/191373-PA – volume: 8 start-page: 212 year: 1961 ident: 10101_CR8 publication-title: J. Assoc. Comput. Mach. doi: 10.1145/321062.321069 – volume: 20 start-page: 1110 issue: 2 year: 2009 ident: 10101_CR32 publication-title: SIAM J. Optim. doi: 10.1137/070708494 – volume: 8 start-page: 328 issue: 4 year: 2003 ident: 10101_CR3 publication-title: SPE J. doi: 10.2118/87336-PA – volume: 23 start-page: 1496 issue: 5 year: 2018 ident: 10101_CR18 publication-title: SPE J. doi: 10.2118/182639-PA – volume: 9 start-page: 504 issue: 2 year: 1999 ident: 10101_CR33 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497322735 – volume: 17 start-page: 117 year: 2012 ident: 10101_CR12 publication-title: Comput. Geosci. doi: 10.1007/s10596-012-9320-4 – ident: 10101_CR29 doi: 10.15530/urtec-2016-2429986 – volume: 2 start-page: 21 issue: 1 year: 2010 ident: 10101_CR30 publication-title: Math. Program. Comput. doi: 10.1007/s12532-010-0011-7 – ident: 10101_CR27 doi: 10.1017/CBO9780511535642 – ident: 10101_CR28 doi: 10.1137/1.9780898717921 – ident: 10101_CR22 doi: 10.3997/2214-4609.201802140 – volume: 46 start-page: 40 issue: 1 year: 2011 ident: 10101_CR2 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2010.09.039 – volume: 7 start-page: 308 year: 1965 ident: 10101_CR6 publication-title: Comput. J. doi: 10.1093/comjnl/7.4.308 – volume: 17 start-page: 959 issue: 6 year: 2013 ident: 10101_CR15 publication-title: Comput. Geosci. doi: 10.1007/s10596-013-9368-9 – volume: 17 start-page: 188 year: 2006 ident: 10101_CR7 publication-title: SIAM J. Opt. doi: 10.1137/040603371 – ident: 10101_CR23 doi: 10.2118/182602-PA – ident: 10101_CR10 – volume: 34 start-page: 1 issue: 2 year: 2008 ident: 10101_CR34 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1326548.1326553 |
| SSID | ssj0009731 |
| Score | 2.340855 |
| Snippet | The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 847 |
| SubjectTerms | Aquatic reptiles Computation Data points Derivatives Earth and Environmental Science Earth Sciences Geotechnical Engineering & Applied Earth Sciences History Hydrogeology Interpolation Iterative methods Matching Mathematical Modeling and Industrial Mathematics Methods Objective function Optimization Original Paper Sensitivity Simulation Soil Science & Conservation |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kKnjxLVar7MGbLjTJpskeRa2eRHzRW8i-oKCtbdqi_97ZzcZYUUHJLdmEZPYx32Zmvg_gqGMiGxxSFDfLkjJuDEVUHVDcOvOYS8Hi0DixieT6Ou31-I0vCiuqbPcqJOlW6k_FbrFLmLUpWHhQRI6L6O5SOx1v7x5rqt3EqRAGLLRhXp74UpnvnzHvjmqM-SUs6rxNd-1_77kOqx5dktNyOGzAgh5swvKlU-9924LRuaXJtQpXWpHRNC_6FBc5RH9E4UCcOQ5wasZakyGuJM--RJOUKtME4e38eS9GUxD7M5dUqYnEuceyZb4ND92L-7Mr6jUXaB6xcEIF66QyiGXEeMRliuCwLdtRbpFDO8fP0TqITcqUMoEWiWGqrY2RnCmWS0QjJtqBxmA40LtAQiOSOE9MJHDOh1oIzbS09P1aMKZ43ISgMn0mPSG51cV4ymoqZWvKDE2ZOVNmr004_rjnpaTj-LV1q-rRzE_NIgstfxCCxA5rwknVg_Xln5-297fm-7AS2lIJlyzYgsZkPNUHsCRnk34xPnRD9h0iM-gH priority: 102 providerName: Springer Nature |
| Title | Distributed quasi-Newton derivative-free optimization method for optimization problems with multiple local optima |
| URI | https://link.springer.com/article/10.1007/s10596-021-10101-x https://www.proquest.com/docview/2705543564 |
| Volume | 26 |
| WOSCitedRecordID | wos000706588500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-1499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-1499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: PCBAR dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1573-1499 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009731 issn: 1420-0597 databaseCode: RSV dateStart: 19970401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH64ghd3sW7MwZsONpNJ0zmJS1UQS6kL4iUks0BBu6WV-u99M50YFPQigTkkkxDyXt77Zt7yARzWTGiDQ4riYllSLoyhiKoDiktnEQmZ8YgZRzYRN5v152fR8htuuU-rLGyiM9SqJ-0e-QmzbV_Qt9f4aX9ALWuUja56Co1ZmA8YC6ye38a0bLobOz7CgDMb8BWxL5rxpXORS7-1CV140Ml3x1SizR8BUud3rlb--8arsOwRJzmbqsgazOjuOixeO0bfjw0YXNrWuZb1SisyGKd5h6LhQ0RIFCrnu-sLTs1Qa9JD6_LmyzbJlHmaIOT9ft4T1OTEbvCSIl2ROJc5nZluwuNV4-HihnoeBpqGnI1oxmt1GUQy5CIUso6AsSqrYWrRRDXFj6d1EJk6V8oEOosNV1VtjBRc8VQiQjHhFsx1e129DYSZLI7S2IQZ2gGms0xzLW1Lf51xrkRUgaAQQiJ9k3LLlfGalO2VreASFFziBJdMKnD0dU9_2qLjz9l7hbQS_7vmSSmqChwX8i4v__60nb-ftgtLzJZLuITBPZgbDcd6Hxbk-6iTDw9g_rzRbLUPnNLieMdaOLaiFxzb90-fft_1vQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64ohd3cVxz0JMGp2k6nRxExB118KAgXmqbBQZ0to6j_il_oy9pa1HQmwfprU0Dbb68JW_5ADZrxrfBIUXRWZaUC2MoWtUeRddZBEImPGDGkU2EjUb97k5cD8F7UQtj0yoLmegEtWpLe0a-y2zbF9TtNb7f6VLLGmWjqwWFRgaLC_32gi5bund-hOu7xdjJ8c3hGc1ZBWjsc9anCa_VpRdInwtfyDqaP1VZ9WOrG6sxeidae4Gpc6WMp5PQcFXVxkjBFY8l6lvj47zDMMo5Oku4f66D-7LJb-j4Dz3ObIBZhHmRTl6qF7h0X5tAhhd9_aoIS-v2W0DW6bmT6f_2h2ZgKreoyUG2BWZhSLfmYPzUMRa_zUP3yLYGtqxeWpHuc5w2KQp2tHiJws03cH3PqelpTdooPZ_yslSSMWsTNOm_3s8JeFJiD7BJkY5JnEmQjYwX4PZPvncRRlrtll4CwkwSBnFo_ATlHNNJormWlrJAJ5wrEVTAKxY9knkTdssF8hiV7aMtUCIESuSAEr1WYPvznU7WguTX0asFOqJcHKVRCY0K7BT4Kh__PNvy77NtwMTZzdVldHneuFiBSWZLQ1xy5CqM9HvPeg3G5KDfTHvrbqMQePhr3H0A4C1OdQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RaCsu0FIqtjzqQzkVi43jbNYHhBDbpYhqtQcqIS5p4oeEBLvsZqHw1_rrOuM4jUCCG4cqt8SxFOfzPDyPD-BLx8UUHDIcnWXNpXKOo1UdcXSdVaJ0IRPhPNlEOhh0z87UcA7-1LUwlFZZy0QvqM1Y0xn5rqC2L6jbO3LXhbSIYa-_fz3hxCBFkdaaTqOCyIm9_43uW7l33MN_vS1E_9vp4XceGAZ4Hksx44XsdHWU6FiqWOkumkJt3Y5z0pPtHD0Va6PEdaUxLrJF6qRpW-e0kkbmGnWvi3HeV7CQoo9Jjt8wOW8a_qaeCzGSgoLNKg0FO6FsL_Gpv5RMhhe_e6gUG0v3UXDW67z-8v-8Wu9gKVja7KDaGu9hzo5W4M2RZzK-_wCTHrUMJrYva9jkJi8vOAp8tISZwU156_uhcze1lo1Rql6FclVWMW4zNPUf3g_EPCWjg21Wp2kybypUI_NV-Pki3_sR5kfjkV0DJlyRJnnq4gLln7BFYaXVRGVgCymNSloQ1QDIdGjOThwhl1nTVppAkyFoMg-a7K4FX_-9c121Jnl29EaNlCyIqTJrYNKCnRprzeOnZ_v0_Gyf4S3CLftxPDhZh0VBFSM-Z3ID5mfTG7sJr_Xt7KKcbvk9w-DXS8PuL8IQV0k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+quasi-Newton+derivative-free+optimization+method+for+optimization+problems+with+multiple+local+optima&rft.jtitle=Computational+geosciences&rft.au=Gao%2C+Guohua&rft.au=Wang%2C+Yixuan&rft.au=Vink%2C+Jeroen+C&rft.au=Wells%2C+Terence+J&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=26&rft.issue=4&rft.spage=847&rft.epage=863&rft_id=info:doi/10.1007%2Fs10596-021-10101-x&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon |