Distributed quasi-Newton derivative-free optimization method for optimization problems with multiple local optima

The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. T...

Full description

Saved in:
Bibliographic Details
Published in:Computational geosciences Vol. 26; no. 4; pp. 847 - 863
Main Authors: Gao, Guohua, Wang, Yixuan, Vink, Jeroen C., Wells, Terence J., Saaf, Fredrik J.F.E.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.08.2022
Springer Nature B.V
Subjects:
ISSN:1420-0597, 1573-1499
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. This paper introduces a generalized form of the objective functions F ( x ,  y ( x )) =  f ( x ) with both explicit variables x and implicit variables (or simulated responses), y ( x ). The split in explicit and implicit variables is such that partial derivatives of F ( x ,  y ) with respect to both x and y can be computed analytically. An ensemble of quasi-Newton optimization threads is distributed among multiple high-performance-computing (HPC) cluster nodes. The simulation results generated from one optimization thread are shared with others by updating a common set of training data points, which records simulated responses of all simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by the linear-interpolation method. The gradient of the objective function is then analytically computed using its partial derivatives with respect to x and y and the estimated sensitivities of y with respect to x . The Hessian is updated using the quasi-Newton formulation. A new search point for each distributed optimization thread is generated by solving a quasi-Newton trust-region subproblem (TRS) for the next iteration. The proposed distributed quasi-Newton (DQN) method is first validated on a synthetic history matching problem and its performance is found to be comparable with the DGN optimizer. Then, the DQN method is tested on a variety of optimization problems. For all test problems, the DQN method can find multiple optima of the objective function with reasonably small numbers of iterations.
AbstractList The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. This paper introduces a generalized form of the objective functions F ( x ,  y ( x )) =  f ( x ) with both explicit variables x and implicit variables (or simulated responses), y ( x ). The split in explicit and implicit variables is such that partial derivatives of F ( x ,  y ) with respect to both x and y can be computed analytically. An ensemble of quasi-Newton optimization threads is distributed among multiple high-performance-computing (HPC) cluster nodes. The simulation results generated from one optimization thread are shared with others by updating a common set of training data points, which records simulated responses of all simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by the linear-interpolation method. The gradient of the objective function is then analytically computed using its partial derivatives with respect to x and y and the estimated sensitivities of y with respect to x . The Hessian is updated using the quasi-Newton formulation. A new search point for each distributed optimization thread is generated by solving a quasi-Newton trust-region subproblem (TRS) for the next iteration. The proposed distributed quasi-Newton (DQN) method is first validated on a synthetic history matching problem and its performance is found to be comparable with the DGN optimizer. Then, the DQN method is tested on a variety of optimization problems. For all test problems, the DQN method can find multiple optima of the objective function with reasonably small numbers of iterations.
The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches. However, this method is not applicable for generic optimization problems, e.g., life-cycle production optimization or well location optimization. This paper introduces a generalized form of the objective functions F(x, y(x)) = f(x) with both explicit variables x and implicit variables (or simulated responses), y(x). The split in explicit and implicit variables is such that partial derivatives of F(x, y) with respect to both x and y can be computed analytically. An ensemble of quasi-Newton optimization threads is distributed among multiple high-performance-computing (HPC) cluster nodes. The simulation results generated from one optimization thread are shared with others by updating a common set of training data points, which records simulated responses of all simulation jobs. The sensitivity matrix at the current best solution of each optimization thread is approximated by the linear-interpolation method. The gradient of the objective function is then analytically computed using its partial derivatives with respect to x and y and the estimated sensitivities of y with respect to x. The Hessian is updated using the quasi-Newton formulation. A new search point for each distributed optimization thread is generated by solving a quasi-Newton trust-region subproblem (TRS) for the next iteration. The proposed distributed quasi-Newton (DQN) method is first validated on a synthetic history matching problem and its performance is found to be comparable with the DGN optimizer. Then, the DQN method is tested on a variety of optimization problems. For all test problems, the DQN method can find multiple optima of the objective function with reasonably small numbers of iterations.
Author Gao, Guohua
Wang, Yixuan
Saaf, Fredrik J.F.E.
Vink, Jeroen C.
Wells, Terence J.
Author_xml – sequence: 1
  givenname: Guohua
  orcidid: 0000-0001-7224-1004
  surname: Gao
  fullname: Gao, Guohua
  email: Guohua.gao@shell.com
  organization: Shell Global Solutions (US) Inc
– sequence: 2
  givenname: Yixuan
  surname: Wang
  fullname: Wang, Yixuan
  organization: Shell Global Solutions (US) Inc
– sequence: 3
  givenname: Jeroen C.
  surname: Vink
  fullname: Vink, Jeroen C.
  organization: Shell Global Solutions International B.V
– sequence: 4
  givenname: Terence J.
  surname: Wells
  fullname: Wells, Terence J.
  organization: Shell Global Solutions International B.V
– sequence: 5
  givenname: Fredrik J.F.E.
  surname: Saaf
  fullname: Saaf, Fredrik J.F.E.
  organization: Shell Global Solutions (US) Inc
BookMark eNp9kE1PxCAQholZE9ePP-CpiWd0KHRpj8bvxOhFz4Slg7Lpll2grvrrRWti9GA4QIb3mZn33SWT3vdIyCGDYwYgTyKDqplRKBllkA993SJTVklOmWiaSX6LEmjWyB2yG-MCABrJ2ZSsz11Mwc2HhG2xHnR09A43yfdFi8G96ORekNqAWPhVckv3niv5c4np2beF9eF3fRX8vMNlLDYuPRfLoUtu1WHReaO7Uan3ybbVXcSD73uPPF5ePJxd09v7q5uz01uquSgTnYtZbVhluGh4Y2opBRjgGqBmoLNFRFbZWrStZTiXVrSA1ppGtEIbkMLyPXI09s07rQeMSS38EPo8UpUSqkrwaiayqh5VJvgYA1plXPrykoJ2nWKgPgNWY8AqB6y-AlavGS3_oKuQ_YW3_yE-QjGL-ycMP1v9Q30ADHGTmQ
CitedBy_id crossref_primary_10_1016_j_ijhydene_2025_03_031
crossref_primary_10_2118_212212_PA
crossref_primary_10_1016_j_geoen_2023_212475
crossref_primary_10_3390_w16202940
crossref_primary_10_2118_210118_PA
crossref_primary_10_1007_s10596_023_10197_3
Cites_doi 10.1007/s10596-019-09830-x
10.2118/92864-MS
10.2118/112873-PA
10.1002/nme.5342
10.2118/187430-PA
10.1007/b98874
10.1007/BF02066348
10.1007/s10596-015-9528-1
10.2118/175039-PA
10.2118/118926-PA
10.1137/0904038
10.1007/s10107-003-0490-7
10.1007/s10596-010-9194-2
10.1007/s10596-019-9823-3
10.1007/s10596-017-9657-9
10.2118/191373-PA
10.1145/321062.321069
10.1137/070708494
10.2118/87336-PA
10.2118/182639-PA
10.1137/S1052623497322735
10.1007/s10596-012-9320-4
10.15530/urtec-2016-2429986
10.1007/s12532-010-0011-7
10.1017/CBO9780511535642
10.1137/1.9780898717921
10.3997/2214-4609.201802140
10.1016/j.compfluid.2010.09.039
10.1093/comjnl/7.4.308
10.1007/s10596-013-9368-9
10.1137/040603371
10.2118/182602-PA
10.1145/1326548.1326553
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10596-021-10101-x
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1573-1499
EndPage 863
ExternalDocumentID 10_1007_s10596_021_10101_x
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z81
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7UA
7XB
8AL
8FD
8FK
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a342t-b468c15c34939c87740c03a00810a010ee15f84ddf1eb7f4d0effc94d4ac074f3
IEDL.DBID K7-
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706588500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-0597
IngestDate Wed Nov 05 02:19:50 EST 2025
Sat Nov 29 06:12:23 EST 2025
Tue Nov 18 20:51:59 EST 2025
Fri Feb 21 02:45:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Optimization algorithms
MSC code: 90C39, Nonlinear programming
Distributed quasi-Newton method
Sensitivity matrix
Information sharing mechanism
Trust-region search
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-b468c15c34939c87740c03a00810a010ee15f84ddf1eb7f4d0effc94d4ac074f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7224-1004
PQID 2705543564
PQPubID 55381
PageCount 17
ParticipantIDs proquest_journals_2705543564
crossref_citationtrail_10_1007_s10596_021_10101_x
crossref_primary_10_1007_s10596_021_10101_x
springer_journals_10_1007_s10596_021_10101_x
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle Modeling, Simulation and Data Analysis
PublicationTitle Computational geosciences
PublicationTitleAbbrev Comput Geosci
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References LiRReynoldsACOliverDSHistory matching of three-phase flow production dataSPE J.20038432834010.2118/87336-PA
MoreJJSorensenDCComputing a trust region stepSIAM J. Sci. Stat. Comput.19834355357210.1137/0904038
GouldNIMRobinsonDThorneHSOn solving trust-region and other regularized subproblems in optimizationMath. Program. Comput.201021215710.1007/s12532-010-0011-7
VolkovOVoskovDEffect of time stepping strategy on adjoint-based production optimizationComput. Geosci.201620370772210.1007/s10596-015-9528-1
Chen, C., et al.: EUR Assessment of Unconventional Assets Using Parallelized History Matching Workflow Together with RML Method. Paper URTeC-2429986 presented at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1–3 August (2016)
PowellMJDLeast Frobenius norm updating of quadratic models that satisfy interpolation conditionsMath. Program.2004100118321510.1007/s10107-003-0490-7
AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Opt.20061718821710.1137/040603371
NelderJAMeadRA simplex method for function minimizationComput. J.1965730831310.1093/comjnl/7.4.308
OliverDSChenYRecent Progress on reservoir history matching: a reviewComput. Geosci.201115118521110.1007/s10596-010-9194-2
NocedalJWrightSJNumerical Optimization1999New York CitySpringer10.1007/b98874
GuoIntegration of Support Vector Regression with Distributed Gauss-Newton Optimization Method and Its Applications to the Uncertainty Assessment of Unconventional AssetsSPE Reserv. Eval. Eng.20182141007102610.2118/191373-PA
Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press. (2008). https://doi.org/10.1017/CBO9780511535642
ChenYOliverDSEnsemble-based closed-loop optimization applied to Brugge fieldSPE Reserv. Eval. Eng.2010131567110.2118/118926-PA
OliverDSOn conditional simulation to inaccurate dataMath. Geol.19962881181710.1007/BF02066348
Rafiee, J., Reynolds, A.C.: A Two-Level MCMC Based on the Distributed Gauss-Newton Method for Uncertainty Quantification. The 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September (2018)
Chen, C., et al.: Assisted History Matching Using Three Derivative-Free Optimization Algorithms. Paper SPE-154112-MS presented at the SPE Europec/EAGE Annual Conference held in Copenhagen, Denmark, 4–7 June (2012)
HookeRJeevesTADirect search solution of numerical and Statical problemsJ. Assoc. Comput. Mach.1961821222910.1145/321062.321069
GaoGaussian Mixture Model Fitting Method for Uncertainty Quantification by Conditioning to Production DataComput. Geosci.202024266368110.1007/s10596-019-9823-3
GaoGVinkJCChenCAlpakFOduKA parallelized and hybrid data-integration algorithm for history matching of geologically complex reservoirsSPE J.20162162155217410.2118/175039-PA
JansenJDAdjoint-based optimization of multi-phase flow through porous media—a reviewComput. Fluids2011461405110.1016/j.compfluid.2010.09.039
Wild, S.M.: Derivative Free Optimization Algorithms for Computationally Expensive Functions. Ph.D Thesis, Cornell University (2009)
DoSTReynoldsACTheoretical connections between optimization algorithms based on an approximation gradientComput. Geosci.201317695997310.1007/s10596-013-9368-9
RojasMSantosSASorensenDCAlgorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularizationACM Trans. Math. Softw.200834212810.1145/1326548.1326553
GaoGVinkJCChenCel KhamraYTarrahiMDistributed gauss-Newton optimization method for history matching problems with multiple best matchesComput. Geosci.2017215–61325134210.1007/s10596-017-9657-9
Gao, G., et al.: A gauss-Newton trust region solver for large scale history matching problems. SPE J. 22(6), (2017). https://doi.org/10.2118/182602-PA
Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM. (2005). https://doi.org/10.1137/1.9780898717921
Ding, Y., Lushi, E., Li, Q.: Investigation of Quasi-Newton methods for Unconstrained Optimization. (http://people.math.sfu.ca/~elushi/project_833.pdf), Simon Fraser University, Canada (2004)
GaoPerformance Enhancement of Gauss-Newton Trust Region Solver for Distributed Gauss-Newton Optimization methodsComput. Geosci.202024283785210.1007/s10596-019-09830-x
Sarma, P., Durlofsky, L., Aziz, K.: Implementation of Adjoint Solution for Optimal Control of Smart Wells. Paper SPE 92864 presented at the SPE Reservoir Simulation Symposium held in the Woodlands, Texas, USA, 31 Jan.-2 Feb. (2005)
FonsecaRRChenBJansenJDReynoldsACA stochastic simplex approximate gradient (StoSAG) for optimization under uncertaintyInt. J. Numer. Methods Eng.20171091756177610.1002/nme.5342
ErwayJBGillPEGriffinJDIterative methods for finding a trust-region stepSIAM J. Optim.20092021110113110.1137/070708494
GouldNIMLucidiSRomaMTointPLSolving the trust-region subproblem using the Lanczos methodSIAM J. Optim.19999250452510.1137/S1052623497322735
ChenCGaoGLiRCaoRChenTVinkJCGelderblomPGlobal-search distributed-gauss-Newton optimization method and its integration with the randomized-maximum-likelihood method for uncertainty quantification of reservoir performanceSPE J.20182351496151710.2118/182639-PA
GuoEnhancing the Performance of the Distributed Gauss-Newton Optimization Method by Reducing the Effect of Numerical Noise and Truncation Error with Support-Vector-RegressionSPE J.20182362428244310.2118/187430-PA
ZhaoHLiGReynoldsACYaoJLarge-scale history matching with quadratic interpolation modelsComput. Geosci.20121711713810.1007/s10596-012-9320-4
ChenYOliverDSZhangDEfficient ensemble-based closed-loop production optimizationSPE J.200914463464510.2118/112873-PA
ST Do (10101_CR15) 2013; 17
Guo (10101_CR20) 2018; 21
RR Fonseca (10101_CR16) 2017; 109
JB Erway (10101_CR32) 2009; 20
H Zhao (10101_CR12) 2012; 17
Gao (10101_CR24) 2020; 24
JD Jansen (10101_CR2) 2011; 46
Y Chen (10101_CR13) 2009; 14
JJ More (10101_CR31) 1983; 4
C Audet (10101_CR7) 2006; 17
JA Nelder (10101_CR6) 1965; 7
10101_CR22
Gao (10101_CR35) 2020; 24
10101_CR23
10101_CR25
MJD Powell (10101_CR11) 2004; 100
DS Oliver (10101_CR19) 1996; 28
10101_CR27
10101_CR28
10101_CR29
Guo (10101_CR21) 2018; 23
NIM Gould (10101_CR33) 1999; 9
R Li (10101_CR3) 2003; 8
C Chen (10101_CR18) 2018; 23
G Gao (10101_CR9) 2016; 21
G Gao (10101_CR17) 2017; 21
R Hooke (10101_CR8) 1961; 8
10101_CR4
NIM Gould (10101_CR30) 2010; 2
DS Oliver (10101_CR26) 2011; 15
O Volkov (10101_CR5) 2016; 20
Y Chen (10101_CR14) 2010; 13
10101_CR10
J Nocedal (10101_CR1) 1999
M Rojas (10101_CR34) 2008; 34
10101_CR36
References_xml – reference: OliverDSOn conditional simulation to inaccurate dataMath. Geol.19962881181710.1007/BF02066348
– reference: GaoGVinkJCChenCel KhamraYTarrahiMDistributed gauss-Newton optimization method for history matching problems with multiple best matchesComput. Geosci.2017215–61325134210.1007/s10596-017-9657-9
– reference: RojasMSantosSASorensenDCAlgorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularizationACM Trans. Math. Softw.200834212810.1145/1326548.1326553
– reference: ZhaoHLiGReynoldsACYaoJLarge-scale history matching with quadratic interpolation modelsComput. Geosci.20121711713810.1007/s10596-012-9320-4
– reference: ChenYOliverDSEnsemble-based closed-loop optimization applied to Brugge fieldSPE Reserv. Eval. Eng.2010131567110.2118/118926-PA
– reference: Wild, S.M.: Derivative Free Optimization Algorithms for Computationally Expensive Functions. Ph.D Thesis, Cornell University (2009)
– reference: NocedalJWrightSJNumerical Optimization1999New York CitySpringer10.1007/b98874
– reference: HookeRJeevesTADirect search solution of numerical and Statical problemsJ. Assoc. Comput. Mach.1961821222910.1145/321062.321069
– reference: ChenYOliverDSZhangDEfficient ensemble-based closed-loop production optimizationSPE J.200914463464510.2118/112873-PA
– reference: Chen, C., et al.: Assisted History Matching Using Three Derivative-Free Optimization Algorithms. Paper SPE-154112-MS presented at the SPE Europec/EAGE Annual Conference held in Copenhagen, Denmark, 4–7 June (2012)
– reference: ChenCGaoGLiRCaoRChenTVinkJCGelderblomPGlobal-search distributed-gauss-Newton optimization method and its integration with the randomized-maximum-likelihood method for uncertainty quantification of reservoir performanceSPE J.20182351496151710.2118/182639-PA
– reference: PowellMJDLeast Frobenius norm updating of quadratic models that satisfy interpolation conditionsMath. Program.2004100118321510.1007/s10107-003-0490-7
– reference: GuoEnhancing the Performance of the Distributed Gauss-Newton Optimization Method by Reducing the Effect of Numerical Noise and Truncation Error with Support-Vector-RegressionSPE J.20182362428244310.2118/187430-PA
– reference: Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse theory for petroleum reservoir characterization and history matching. Cambridge University Press. (2008). https://doi.org/10.1017/CBO9780511535642
– reference: GouldNIMRobinsonDThorneHSOn solving trust-region and other regularized subproblems in optimizationMath. Program. Comput.201021215710.1007/s12532-010-0011-7
– reference: OliverDSChenYRecent Progress on reservoir history matching: a reviewComput. Geosci.201115118521110.1007/s10596-010-9194-2
– reference: ErwayJBGillPEGriffinJDIterative methods for finding a trust-region stepSIAM J. Optim.20092021110113110.1137/070708494
– reference: GaoGVinkJCChenCAlpakFOduKA parallelized and hybrid data-integration algorithm for history matching of geologically complex reservoirsSPE J.20162162155217410.2118/175039-PA
– reference: Ding, Y., Lushi, E., Li, Q.: Investigation of Quasi-Newton methods for Unconstrained Optimization. (http://people.math.sfu.ca/~elushi/project_833.pdf), Simon Fraser University, Canada (2004)
– reference: GouldNIMLucidiSRomaMTointPLSolving the trust-region subproblem using the Lanczos methodSIAM J. Optim.19999250452510.1137/S1052623497322735
– reference: VolkovOVoskovDEffect of time stepping strategy on adjoint-based production optimizationComput. Geosci.201620370772210.1007/s10596-015-9528-1
– reference: NelderJAMeadRA simplex method for function minimizationComput. J.1965730831310.1093/comjnl/7.4.308
– reference: LiRReynoldsACOliverDSHistory matching of three-phase flow production dataSPE J.20038432834010.2118/87336-PA
– reference: Gao, G., et al.: A gauss-Newton trust region solver for large scale history matching problems. SPE J. 22(6), (2017). https://doi.org/10.2118/182602-PA
– reference: JansenJDAdjoint-based optimization of multi-phase flow through porous media—a reviewComput. Fluids2011461405110.1016/j.compfluid.2010.09.039
– reference: Rafiee, J., Reynolds, A.C.: A Two-Level MCMC Based on the Distributed Gauss-Newton Method for Uncertainty Quantification. The 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September (2018)
– reference: Sarma, P., Durlofsky, L., Aziz, K.: Implementation of Adjoint Solution for Optimal Control of Smart Wells. Paper SPE 92864 presented at the SPE Reservoir Simulation Symposium held in the Woodlands, Texas, USA, 31 Jan.-2 Feb. (2005)
– reference: GuoIntegration of Support Vector Regression with Distributed Gauss-Newton Optimization Method and Its Applications to the Uncertainty Assessment of Unconventional AssetsSPE Reserv. Eval. Eng.20182141007102610.2118/191373-PA
– reference: GaoPerformance Enhancement of Gauss-Newton Trust Region Solver for Distributed Gauss-Newton Optimization methodsComput. Geosci.202024283785210.1007/s10596-019-09830-x
– reference: MoreJJSorensenDCComputing a trust region stepSIAM J. Sci. Stat. Comput.19834355357210.1137/0904038
– reference: Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM. (2005). https://doi.org/10.1137/1.9780898717921
– reference: AudetCDennisJEJrMesh adaptive direct search algorithms for constrained optimizationSIAM J. Opt.20061718821710.1137/040603371
– reference: Chen, C., et al.: EUR Assessment of Unconventional Assets Using Parallelized History Matching Workflow Together with RML Method. Paper URTeC-2429986 presented at the Unconventional Resources Technology Conference held in San Antonio, Texas, USA, 1–3 August (2016)
– reference: GaoGaussian Mixture Model Fitting Method for Uncertainty Quantification by Conditioning to Production DataComput. Geosci.202024266368110.1007/s10596-019-9823-3
– reference: DoSTReynoldsACTheoretical connections between optimization algorithms based on an approximation gradientComput. Geosci.201317695997310.1007/s10596-013-9368-9
– reference: FonsecaRRChenBJansenJDReynoldsACA stochastic simplex approximate gradient (StoSAG) for optimization under uncertaintyInt. J. Numer. Methods Eng.20171091756177610.1002/nme.5342
– volume: 24
  start-page: 837
  issue: 2
  year: 2020
  ident: 10101_CR24
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-019-09830-x
– ident: 10101_CR4
  doi: 10.2118/92864-MS
– ident: 10101_CR36
– volume: 14
  start-page: 634
  issue: 4
  year: 2009
  ident: 10101_CR13
  publication-title: SPE J.
  doi: 10.2118/112873-PA
– volume: 109
  start-page: 1756
  year: 2017
  ident: 10101_CR16
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.5342
– volume: 23
  start-page: 2428
  issue: 6
  year: 2018
  ident: 10101_CR21
  publication-title: SPE J.
  doi: 10.2118/187430-PA
– volume-title: Numerical Optimization
  year: 1999
  ident: 10101_CR1
  doi: 10.1007/b98874
– volume: 28
  start-page: 811
  year: 1996
  ident: 10101_CR19
  publication-title: Math. Geol.
  doi: 10.1007/BF02066348
– volume: 20
  start-page: 707
  issue: 3
  year: 2016
  ident: 10101_CR5
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-015-9528-1
– volume: 21
  start-page: 2155
  issue: 6
  year: 2016
  ident: 10101_CR9
  publication-title: SPE J.
  doi: 10.2118/175039-PA
– volume: 13
  start-page: 56
  issue: 1
  year: 2010
  ident: 10101_CR14
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/118926-PA
– volume: 4
  start-page: 553
  issue: 3
  year: 1983
  ident: 10101_CR31
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0904038
– ident: 10101_CR25
– volume: 100
  start-page: 183
  issue: 1
  year: 2004
  ident: 10101_CR11
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0490-7
– volume: 15
  start-page: 185
  issue: 1
  year: 2011
  ident: 10101_CR26
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-010-9194-2
– volume: 24
  start-page: 663
  issue: 2
  year: 2020
  ident: 10101_CR35
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-019-9823-3
– volume: 21
  start-page: 1325
  issue: 5–6
  year: 2017
  ident: 10101_CR17
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-017-9657-9
– volume: 21
  start-page: 1007
  issue: 4
  year: 2018
  ident: 10101_CR20
  publication-title: SPE Reserv. Eval. Eng.
  doi: 10.2118/191373-PA
– volume: 8
  start-page: 212
  year: 1961
  ident: 10101_CR8
  publication-title: J. Assoc. Comput. Mach.
  doi: 10.1145/321062.321069
– volume: 20
  start-page: 1110
  issue: 2
  year: 2009
  ident: 10101_CR32
  publication-title: SIAM J. Optim.
  doi: 10.1137/070708494
– volume: 8
  start-page: 328
  issue: 4
  year: 2003
  ident: 10101_CR3
  publication-title: SPE J.
  doi: 10.2118/87336-PA
– volume: 23
  start-page: 1496
  issue: 5
  year: 2018
  ident: 10101_CR18
  publication-title: SPE J.
  doi: 10.2118/182639-PA
– volume: 9
  start-page: 504
  issue: 2
  year: 1999
  ident: 10101_CR33
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497322735
– volume: 17
  start-page: 117
  year: 2012
  ident: 10101_CR12
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-012-9320-4
– ident: 10101_CR29
  doi: 10.15530/urtec-2016-2429986
– volume: 2
  start-page: 21
  issue: 1
  year: 2010
  ident: 10101_CR30
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-010-0011-7
– ident: 10101_CR27
  doi: 10.1017/CBO9780511535642
– ident: 10101_CR28
  doi: 10.1137/1.9780898717921
– ident: 10101_CR22
  doi: 10.3997/2214-4609.201802140
– volume: 46
  start-page: 40
  issue: 1
  year: 2011
  ident: 10101_CR2
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2010.09.039
– volume: 7
  start-page: 308
  year: 1965
  ident: 10101_CR6
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 17
  start-page: 959
  issue: 6
  year: 2013
  ident: 10101_CR15
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-013-9368-9
– volume: 17
  start-page: 188
  year: 2006
  ident: 10101_CR7
  publication-title: SIAM J. Opt.
  doi: 10.1137/040603371
– ident: 10101_CR23
  doi: 10.2118/182602-PA
– ident: 10101_CR10
– volume: 34
  start-page: 1
  issue: 2
  year: 2008
  ident: 10101_CR34
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1326548.1326553
SSID ssj0009731
Score 2.340855
Snippet The distributed Gauss-Newton (DGN) optimization method performs quite efficiently and robustly for history-matching problems with multiple best matches....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 847
SubjectTerms Aquatic reptiles
Computation
Data points
Derivatives
Earth and Environmental Science
Earth Sciences
Geotechnical Engineering & Applied Earth Sciences
History
Hydrogeology
Interpolation
Iterative methods
Matching
Mathematical Modeling and Industrial Mathematics
Methods
Objective function
Optimization
Original Paper
Sensitivity
Simulation
Soil Science & Conservation
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kKnjxLVar7MGbLjTJpskeRa2eRHzRW8i-oKCtbdqi_97ZzcZYUUHJLdmEZPYx32Zmvg_gqGMiGxxSFDfLkjJuDEVUHVDcOvOYS8Hi0DixieT6Ou31-I0vCiuqbPcqJOlW6k_FbrFLmLUpWHhQRI6L6O5SOx1v7x5rqt3EqRAGLLRhXp74UpnvnzHvjmqM-SUs6rxNd-1_77kOqx5dktNyOGzAgh5swvKlU-9924LRuaXJtQpXWpHRNC_6FBc5RH9E4UCcOQ5wasZakyGuJM--RJOUKtME4e38eS9GUxD7M5dUqYnEuceyZb4ND92L-7Mr6jUXaB6xcEIF66QyiGXEeMRliuCwLdtRbpFDO8fP0TqITcqUMoEWiWGqrY2RnCmWS0QjJtqBxmA40LtAQiOSOE9MJHDOh1oIzbS09P1aMKZ43ISgMn0mPSG51cV4ymoqZWvKDE2ZOVNmr004_rjnpaTj-LV1q-rRzE_NIgstfxCCxA5rwknVg_Xln5-297fm-7AS2lIJlyzYgsZkPNUHsCRnk34xPnRD9h0iM-gH
  priority: 102
  providerName: Springer Nature
Title Distributed quasi-Newton derivative-free optimization method for optimization problems with multiple local optima
URI https://link.springer.com/article/10.1007/s10596-021-10101-x
https://www.proquest.com/docview/2705543564
Volume 26
WOSCitedRecordID wos000706588500004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: PCBAR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH64ghd3sW7MwZsONpNJ0zmJS1UQS6kL4iUks0BBu6WV-u99M50YFPQigTkkkxDyXt77Zt7yARzWTGiDQ4riYllSLoyhiKoDiktnEQmZ8YgZRzYRN5v152fR8htuuU-rLGyiM9SqJ-0e-QmzbV_Qt9f4aX9ALWuUja56Co1ZmA8YC6ye38a0bLobOz7CgDMb8BWxL5rxpXORS7-1CV140Ml3x1SizR8BUud3rlb--8arsOwRJzmbqsgazOjuOixeO0bfjw0YXNrWuZb1SisyGKd5h6LhQ0RIFCrnu-sLTs1Qa9JD6_LmyzbJlHmaIOT9ft4T1OTEbvCSIl2ROJc5nZluwuNV4-HihnoeBpqGnI1oxmt1GUQy5CIUso6AsSqrYWrRRDXFj6d1EJk6V8oEOosNV1VtjBRc8VQiQjHhFsx1e129DYSZLI7S2IQZ2gGms0xzLW1Lf51xrkRUgaAQQiJ9k3LLlfGalO2VreASFFziBJdMKnD0dU9_2qLjz9l7hbQS_7vmSSmqChwX8i4v__60nb-ftgtLzJZLuITBPZgbDcd6Hxbk-6iTDw9g_rzRbLUPnNLieMdaOLaiFxzb90-fft_1vQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64ohd3cVxz0JMGp2k6nRxExB118KAgXmqbBQZ0to6j_il_oy9pa1HQmwfprU0Dbb68JW_5ADZrxrfBIUXRWZaUC2MoWtUeRddZBEImPGDGkU2EjUb97k5cD8F7UQtj0yoLmegEtWpLe0a-y2zbF9TtNb7f6VLLGmWjqwWFRgaLC_32gi5bund-hOu7xdjJ8c3hGc1ZBWjsc9anCa_VpRdInwtfyDqaP1VZ9WOrG6sxeidae4Gpc6WMp5PQcFXVxkjBFY8l6lvj47zDMMo5Oku4f66D-7LJb-j4Dz3ObIBZhHmRTl6qF7h0X5tAhhd9_aoIS-v2W0DW6bmT6f_2h2ZgKreoyUG2BWZhSLfmYPzUMRa_zUP3yLYGtqxeWpHuc5w2KQp2tHiJws03cH3PqelpTdooPZ_yslSSMWsTNOm_3s8JeFJiD7BJkY5JnEmQjYwX4PZPvncRRlrtll4CwkwSBnFo_ATlHNNJormWlrJAJ5wrEVTAKxY9knkTdssF8hiV7aMtUCIESuSAEr1WYPvznU7WguTX0asFOqJcHKVRCY0K7BT4Kh__PNvy77NtwMTZzdVldHneuFiBSWZLQ1xy5CqM9HvPeg3G5KDfTHvrbqMQePhr3H0A4C1OdQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RaCsu0FIqtjzqQzkVi43jbNYHhBDbpYhqtQcqIS5p4oeEBLvsZqHw1_rrOuM4jUCCG4cqt8SxFOfzPDyPD-BLx8UUHDIcnWXNpXKOo1UdcXSdVaJ0IRPhPNlEOhh0z87UcA7-1LUwlFZZy0QvqM1Y0xn5rqC2L6jbO3LXhbSIYa-_fz3hxCBFkdaaTqOCyIm9_43uW7l33MN_vS1E_9vp4XceGAZ4Hksx44XsdHWU6FiqWOkumkJt3Y5z0pPtHD0Va6PEdaUxLrJF6qRpW-e0kkbmGnWvi3HeV7CQoo9Jjt8wOW8a_qaeCzGSgoLNKg0FO6FsL_Gpv5RMhhe_e6gUG0v3UXDW67z-8v-8Wu9gKVja7KDaGu9hzo5W4M2RZzK-_wCTHrUMJrYva9jkJi8vOAp8tISZwU156_uhcze1lo1Rql6FclVWMW4zNPUf3g_EPCWjg21Wp2kybypUI_NV-Pki3_sR5kfjkV0DJlyRJnnq4gLln7BFYaXVRGVgCymNSloQ1QDIdGjOThwhl1nTVppAkyFoMg-a7K4FX_-9c121Jnl29EaNlCyIqTJrYNKCnRprzeOnZ_v0_Gyf4S3CLftxPDhZh0VBFSM-Z3ID5mfTG7sJr_Xt7KKcbvk9w-DXS8PuL8IQV0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+quasi-Newton+derivative-free+optimization+method+for+optimization+problems+with+multiple+local+optima&rft.jtitle=Computational+geosciences&rft.au=Gao%2C+Guohua&rft.au=Wang%2C+Yixuan&rft.au=Vink%2C+Jeroen+C&rft.au=Wells%2C+Terence+J&rft.date=2022-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=26&rft.issue=4&rft.spage=847&rft.epage=863&rft_id=info:doi/10.1007%2Fs10596-021-10101-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon