Soft Computing-Based Models for Estimating Undrained Bearing Capacity Factor of Open Caisson in Heterogeneous Clay
Open caissons are commonly used in the construction of various underground structures, such as launch and reception shafts for tunnel-boring machines, storage or attenuation tanks, and cofferdams. During the sinking phase, the cutting edge of a caisson wall with a cutting face encounters soil and is...
Uložené v:
| Vydané v: | Geotechnical and geological engineering Ročník 42; číslo 6; s. 5335 - 5361 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.08.2024
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0960-3182, 1573-1529 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Open caissons are commonly used in the construction of various underground structures, such as launch and reception shafts for tunnel-boring machines, storage or attenuation tanks, and cofferdams. During the sinking phase, the cutting edge of a caisson wall with a cutting face encounters soil and is subjected to loading to facilitate and control the sinking process. In this regard, the bearing capacity factor (
N
) of the cutting face of a circular open caisson in heterogeneous clay is evaluated via finite element limit analysis, which accounts for the increase in the undrained shear strength with depth. The parameters considered in this study cover practical aspects, including the excavation geometry, soil strength profile, and caisson geometry. This investigation also explored the impacts of the cutting face angle (
β
), roughness (
α
), ratio of the internal embedment depth to the embedment width (
H
/
B
), ratio of the internal radius to the embedment width (
R
/
B
), and strength gradient ratio (
ρB
/
s
u
0
). In particular, when the
H
/
B
>
R
/
B
ratio, the
N
value tends to stabilize. Crucially, when
H
/
B
> 4, an increasing trend in
R
/
B
leads to a rise in
N
until
R
/
B
exceeds 10, i.e., large diameter caissons, stabilizing the
N
value. Furthermore, the results reveal the significant dependency of the cutting face roughness and strength gradient ratio of clay on
N
. The artificial neural network model, which is a soft computing-based model, is also developed to present the undrained bearing capacity forecasting equation. Compared with conventional regression, including the multiple linear regression model and the multiple nonlinear regression model, it has excellent performance, as measured by eight indices. In addition, ANOVA and Z-tests can support the research hypothesis and reject the null hypothesis. |
|---|---|
| AbstractList | Open caissons are commonly used in the construction of various underground structures, such as launch and reception shafts for tunnel-boring machines, storage or attenuation tanks, and cofferdams. During the sinking phase, the cutting edge of a caisson wall with a cutting face encounters soil and is subjected to loading to facilitate and control the sinking process. In this regard, the bearing capacity factor (
N
) of the cutting face of a circular open caisson in heterogeneous clay is evaluated via finite element limit analysis, which accounts for the increase in the undrained shear strength with depth. The parameters considered in this study cover practical aspects, including the excavation geometry, soil strength profile, and caisson geometry. This investigation also explored the impacts of the cutting face angle (
β
), roughness (
α
), ratio of the internal embedment depth to the embedment width (
H
/
B
), ratio of the internal radius to the embedment width (
R
/
B
), and strength gradient ratio (
ρB
/
s
u
0
). In particular, when the
H
/
B
>
R
/
B
ratio, the
N
value tends to stabilize. Crucially, when
H
/
B
> 4, an increasing trend in
R
/
B
leads to a rise in
N
until
R
/
B
exceeds 10, i.e., large diameter caissons, stabilizing the
N
value. Furthermore, the results reveal the significant dependency of the cutting face roughness and strength gradient ratio of clay on
N
. The artificial neural network model, which is a soft computing-based model, is also developed to present the undrained bearing capacity forecasting equation. Compared with conventional regression, including the multiple linear regression model and the multiple nonlinear regression model, it has excellent performance, as measured by eight indices. In addition, ANOVA and Z-tests can support the research hypothesis and reject the null hypothesis. Open caissons are commonly used in the construction of various underground structures, such as launch and reception shafts for tunnel-boring machines, storage or attenuation tanks, and cofferdams. During the sinking phase, the cutting edge of a caisson wall with a cutting face encounters soil and is subjected to loading to facilitate and control the sinking process. In this regard, the bearing capacity factor (N) of the cutting face of a circular open caisson in heterogeneous clay is evaluated via finite element limit analysis, which accounts for the increase in the undrained shear strength with depth. The parameters considered in this study cover practical aspects, including the excavation geometry, soil strength profile, and caisson geometry. This investigation also explored the impacts of the cutting face angle (β), roughness (α), ratio of the internal embedment depth to the embedment width (H/B), ratio of the internal radius to the embedment width (R/B), and strength gradient ratio (ρB/su0). In particular, when the H/B > R/B ratio, the N value tends to stabilize. Crucially, when H/B > 4, an increasing trend in R/B leads to a rise in N until R/B exceeds 10, i.e., large diameter caissons, stabilizing the N value. Furthermore, the results reveal the significant dependency of the cutting face roughness and strength gradient ratio of clay on N. The artificial neural network model, which is a soft computing-based model, is also developed to present the undrained bearing capacity forecasting equation. Compared with conventional regression, including the multiple linear regression model and the multiple nonlinear regression model, it has excellent performance, as measured by eight indices. In addition, ANOVA and Z-tests can support the research hypothesis and reject the null hypothesis. |
| Author | Rattanadecho, Phadungsak Keawsawasvong, Suraparb Chavda, Jitesh T. Suppakul, Rungroad Jitchaijaroen, Wittaya |
| Author_xml | – sequence: 1 givenname: Rungroad surname: Suppakul fullname: Suppakul, Rungroad organization: Research Unit in Sciences and Innovative Technologies for Civil Engineering Infrastructures, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University – sequence: 2 givenname: Jitesh T. orcidid: 0000-0003-0396-5759 surname: Chavda fullname: Chavda, Jitesh T. organization: Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology – sequence: 3 givenname: Wittaya surname: Jitchaijaroen fullname: Jitchaijaroen, Wittaya organization: Research Unit in Sciences and Innovative Technologies for Civil Engineering Infrastructures, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University – sequence: 4 givenname: Suraparb orcidid: 0000-0002-1760-9838 surname: Keawsawasvong fullname: Keawsawasvong, Suraparb email: ksurapar@engr.tu.ac.th organization: Research Unit in Sciences and Innovative Technologies for Civil Engineering Infrastructures, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering, Thammasat University – sequence: 5 givenname: Phadungsak orcidid: 0000-0002-9766-617X surname: Rattanadecho fullname: Rattanadecho, Phadungsak organization: Department of Mechanical Engineering, Center of Excellence in Electromagnetic Energy Utilization in Engineering (C.E.E.E.), Faculty of Engineering, Thammasat School of Engineering, Thammasat University |
| BookMark | eNp9kE1LAzEQhoNUsFX_gKeA59VJ0uzH0S5-geLBeg7pZiIr22RNsof-e1MrCB48DIGZ953J-yzIzHmHhFwwuGIA1XVkUEFZAF_mquqm4EdkzmQlCiZ5MyNzaEooBKv5CVnE-AEAvAQ2J-HV20Rbvx2n1Lv3YqUjGvrsDQ6RWh_obUz9Vu9n9M2ZoHuX5yvUYd9p9ai7Pu3one5SFntLX0Z0ud_H6B3tHX3AhMG_o0M_RdoOendGjq0eIp7_vKdkfXe7bh-Kp5f7x_bmqdBiyVOx4TUYYyTTdWOsLDsNgNLIDaC2ldSsFIKZpuqkNdhZI9AClIzVoDk2RpySy8PaMfjPCWNSH34KLl9UAmrJZCnlMqvqg6oLPsaAVuU8Oa53KWcdFAO1B6wOgFUGrL4BK56t_I91DBlV2P1vEgdTHPcEMfz-6h_XF775kRI |
| CitedBy_id | crossref_primary_10_1016_j_ige_2025_04_001 crossref_primary_10_1007_s10706_025_03155_6 crossref_primary_10_1016_j_rineng_2025_104323 crossref_primary_10_1007_s10706_024_02846_w |
| Cites_doi | 10.1007/s40808-022-01595-0 10.1007/s12205-018-2636-4 10.1016/j.enggeo.2008.02.003 10.1016/j.iswa.2024.200329 10.1007/s10706-023-02643-x 10.1680/jgeen.19.00266 10.1038/s41598-021-03097-y 10.1016/j.rineng.2023.101280 10.1002/nag.3714 10.1080/17486025.2020.1778194 10.1007/978-981-19-6774-0_16 10.1016/j.undsp.2019.04.001 10.1002/nag.1610130304 10.1186/s40703-021-00158-z 10.1007/s40808-023-01802-6 10.1061/(ASCE)0733-9410(1987)113:5(424) 10.1007/s10706-023-02556-9 10.1016/j.compgeo.2023.105912 10.1061/(asce)0733-950x(2006)132:3(143) 10.1007/s12517-014-1331-0 10.1680/jphmg.18.00052 10.4028/www.scientific.net/AMR.250-253.1794 10.1016/j.jrmge.2022.12.034 10.1038/s41598-023-46064-5 10.1680/jgeen.20.00218 10.1016/j.tust.2020.103592 10.12989/cac.2024.33.1.055 10.3390/buildings12091425 10.1007/s00521-022-07893-z 10.1007/s10706-023-02397-6 10.1007/s11440-022-01736-w 10.1007/s10706-023-02731-y 10.1007/s10064-023-03537-1 10.1007/s40808-023-01906-z 10.1038/s41598-020-66904-y 10.1080/19386362.2022.2080962 10.22214/ijraset.2022.43662 10.1007/s40891-023-00437-y 10.1002/nag.1610120105 10.1007/s40515-023-00342-x 10.1080/17445302.2023.2225952 10.1061/(asce)gm.1943-5622.0000619 10.1007/s00521-023-08278-6 10.1680/jgeot.21.00089 10.1016/j.jrmge.2022.05.016 10.1680/jphmg.20.00050 10.1007/s40515-023-00313-2 10.1007/s41939-023-00191-8 10.1007/s11831-023-10024-z 10.1016/j.oceaneng.2022.113587 10.1680/jgeot.20.P.210 10.1061/(asce)gt.1943-5606.0002683 10.1007/s40515-023-00357-4 10.1007/978-981-99-5716-3_26 10.1007/978-3-319-97112-4_162 10.30919/es923 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION 7TN 7UA 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.1007/s10706-024-02789-2 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1529 |
| EndPage | 5361 |
| ExternalDocumentID | 10_1007_s10706_024_02789_2 |
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29H 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67M 67Z 6NX 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LK5 LLZTM M4Y M7R M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P0- P19 PCBAR PF0 PT4 PT5 PTHSS QOK QOS R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7Y Z7Z Z85 Z86 ZMTXR ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TN 7UA C1K DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-a342t-b280ddd51a89df56ca00e5d5b0eaf75a16331d97c5fdecfd3ef0061180a2e9d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001214893400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-3182 |
| IngestDate | Fri Nov 14 03:52:27 EST 2025 Tue Nov 18 22:11:23 EST 2025 Sat Nov 29 02:56:36 EST 2025 Fri Feb 21 02:39:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | ANN FELA Cutting edge Cutting angle Heterogenous clay Open caisson |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-b280ddd51a89df56ca00e5d5b0eaf75a16331d97c5fdecfd3ef0061180a2e9d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1760-9838 0000-0002-9766-617X 0000-0003-0396-5759 |
| PQID | 3085156554 |
| PQPubID | 2043601 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_3085156554 crossref_citationtrail_10_1007_s10706_024_02789_2 crossref_primary_10_1007_s10706_024_02789_2 springer_journals_10_1007_s10706_024_02789_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20240800 2024-08-00 20240801 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 8 year: 2024 text: 20240800 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Dordrecht |
| PublicationSubtitle | An International Journal |
| PublicationTitle | Geotechnical and geological engineering |
| PublicationTitleAbbrev | Geotech Geol Eng |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | Chavda, Jitchaijaroen, Keawsawasvong, Rattanadecho (CR8) 2023; 66 Mohammadi, FatemiAghda, Talkhablou, Cheshomi (CR34) 2022; 17 Matsuda, Maeda, Miyake, Miyamoto, Sumida, Tsurugasaki (CR33) 2016; 16 O’Dwyer, McCabe, Sheil (CR39) 2020; 5 Khatti, Samadi, Grover (CR27) 2023 Sloan (CR52) 1989; 13 CR35 Nonveiller (CR38) 1987; 113 Daniel, Khatti, Grover (CR11) 2024; 33 Dong, Guo, Wang (CR12) 2023; 269 Tran, Tran, Lai, Keawsawasvong (CR58) 2023; 66 Chavda, Dodagoudar (CR7) 2022; 16 Van Nguyen, Keawsawasvong, Nguyen, Lai (CR37) 2023; 35 Sang-To, Hoang-Le, Khatir, Mirjalili, Wahab, Cuong-Le (CR46) 2021; 11 Jitchaijaroen, Wipulanusat, Keawsawasvong, Chavda, Ramjan, Sunkpho (CR18) 2023; 19 Yoonirundorn, Senjuntichai, Keawsawasvong, Ngamkhanong, Wijeyewickrema (CR61) 2023; 66 CR48 Tripathi, Lai, Singh, Pathak, Srivastava, Keawsawasvong, Chauhan (CR59) 2023; 41 Aljanabi, AL-Azzawi (CR1) 2021; 12 Sadik (CR45) 2023 Bui, Nguyen, Choi, Nguyen-Thoi, Zhou, Dou (CR4) 2020; 10 Khatti, Grover (CR20) 2022; 13 CR42 CR41 Bahmed, Khatti, Grover (CR3) 2024; 83 CR40 Venkatesan, Anitha (CR60) 2006; 91 Huynh, Nguyen, Nguyen (CR14) 2023; 18 Khatti, Grover (CR22) 2023; 66 To, Minh, Huynh, Khatir, Wahab, Cuong-Le (CR56) 2024 Khatti, Grover (CR23) 2023; 15 Khatti, Grover (CR24) 2023; 298 Sheil, Templeman (CR49) 2021; 73 Jitchaijaroen, Keawsawasvong, Kumar (CR16) 2023; 66 Sloan (CR51) 1988; 12 Lai, Shiau, Keawsawasvong, Seehavong, Cabangon (CR31) 2022; 12 Lai, Jitchaijaroen, Keawsawasvong, Chavda, Sae-Long, Limkatanyu (CR29) 2023; 9 Templeman, Phillips, Sheil (CR53) 2023; 176 Lai, Nguyen, Shiau, Keawsawasvong, Bui, Tran (CR30) 2024; 42 Cheng, Bai, Sheil, Li, Wang (CR10) 2020; 106 Thottoth, Khatri, Kolathayar, Keawsawasvong, Lai (CR54) 2024 Khatti, Grover (CR21) 2023 Lai, Shiau, Promwichai, Limkatanyu, Banyong, Keawsawasvong (CR32) 2023; 9 Hosseini, Khatti, Taiwo, Fissha, Grover, Ikeda, Pushkarna, Berhanu, Ali (CR13) 2023; 13 Tiryaki (CR55) 2008; 99 Chakrabarti, Chakrabarti, Krishna (CR5) 2006; 132 Jitchaijaroen, Keawsawasvong, Wipulanusat, Kumar, Jamsawang, Sunkpho (CR17) 2024; 21 Khatti, Grover, Kim, Mawuntu, Park (CR26) 2024; 165 Kumar, Chauhan, Kumar (CR28) 2024; 10 Chavda, Mishra, Dodagoudar (CR9) 2020; 20 Torabi-Kaveh, Naseri, Saneie, Sarshari (CR57) 2015; 8 Khatti, Grover (CR19) 2022; 10 Chavda, Dodagoudar (CR6) 2022; 22 Nguyen, Nguyen, Ngamkhanong, Keawsawasvong, Lai (CR36) 2023; 35 Khatti, Grover (CR25) 2024; 7 Royston, Sheil, Byrne (CR44) 2022; 72 Bagińska, Srokosz (CR2) 2019; 23 Royston, Sheil, Byrne (CR43) 2022; 175 Sheil (CR47) 2021; 147 Yan, Guo, Liu (CR15) 2011; 250 Shiau, Lai, Keawsawasvong (CR50) 2023; 15 J Khatti (2789_CR22) 2023; 66 SW Sloan (2789_CR52) 1989; 13 W Jitchaijaroen (2789_CR17) 2024; 21 VQ Lai (2789_CR30) 2024; 42 XN Bui (2789_CR4) 2020; 10 T Matsuda (2789_CR33) 2016; 16 J Shiau (2789_CR50) 2023; 15 2789_CR35 R Royston (2789_CR43) 2022; 175 L Sadik (2789_CR45) 2023 B Tiryaki (2789_CR55) 2008; 99 M Bagińska (2789_CR2) 2019; 23 JT Chavda (2789_CR9) 2020; 20 T Sang-To (2789_CR46) 2021; 11 J Khatti (2789_CR27) 2023 P Venkatesan (2789_CR60) 2006; 91 IT Bahmed (2789_CR3) 2024; 83 JO Templeman (2789_CR53) 2023; 176 C Van Nguyen (2789_CR37) 2023; 35 VQ Lai (2789_CR31) 2022; 12 W Jitchaijaroen (2789_CR18) 2023; 19 JT Chavda (2789_CR8) 2023; 66 JT Chavda (2789_CR6) 2022; 22 J Khatti (2789_CR26) 2024; 165 DK Nguyen (2789_CR36) 2023; 35 DT Tran (2789_CR58) 2023; 66 VQ Lai (2789_CR29) 2023; 9 E Nonveiller (2789_CR38) 1987; 113 S Hosseini (2789_CR13) 2023; 13 R Royston (2789_CR44) 2022; 72 TS To (2789_CR56) 2024 WC Cheng (2789_CR10) 2020; 106 J Khatti (2789_CR23) 2023; 15 BB Sheil (2789_CR47) 2021; 147 J Khatti (2789_CR19) 2022; 10 J Khatti (2789_CR21) 2023 C Daniel (2789_CR11) 2024; 33 X Dong (2789_CR12) 2023; 269 K Yoonirundorn (2789_CR61) 2023; 66 TQ Huynh (2789_CR14) 2023; 18 JT Chavda (2789_CR7) 2022; 16 M Mohammadi (2789_CR34) 2022; 17 W Jitchaijaroen (2789_CR16) 2023; 66 M Torabi-Kaveh (2789_CR57) 2015; 8 A Kumar (2789_CR28) 2024; 10 S Tripathi (2789_CR59) 2023; 41 B Sheil (2789_CR49) 2021; 73 KR Aljanabi (2789_CR1) 2021; 12 SR Thottoth (2789_CR54) 2024 KG O’Dwyer (2789_CR39) 2020; 5 J Khatti (2789_CR24) 2023; 298 FY Yan (2789_CR15) 2011; 250 J Khatti (2789_CR20) 2022; 13 2789_CR48 SW Sloan (2789_CR51) 1988; 12 SK Chakrabarti (2789_CR5) 2006; 132 2789_CR41 VQ Lai (2789_CR32) 2023; 9 2789_CR40 J Khatti (2789_CR25) 2024; 7 2789_CR42 |
| References_xml | – volume: 9 start-page: 2993 issue: 2 year: 2023 end-page: 3008 ident: CR32 article-title: Modelling soil stability in wide tunnels using FELA and multivariate adaptive regression splines analysis publication-title: Model Earth Syst Environ doi: 10.1007/s40808-022-01595-0 – volume: 23 start-page: 130 issue: 1 year: 2019 end-page: 137 ident: CR2 article-title: The optimal ANN model for predicting bearing capacity of shallow foundations trained on scarce data publication-title: KSCE J Civ Eng doi: 10.1007/s12205-018-2636-4 – volume: 99 start-page: 51 issue: 1–2 year: 2008 end-page: 60 ident: CR55 article-title: Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.02.003 – volume: 21 year: 2024 ident: CR17 article-title: Machine learning approaches for stability prediction of rectangular tunnels in natural clays based on MLP and RBF neural networks publication-title: Intell Syst Appl doi: 10.1016/j.iswa.2024.200329 – year: 2023 ident: CR27 article-title: Estimation of settlement of pile group in clay using soft computing techniques publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02643-x – volume: 175 start-page: 323 issue: 3 year: 2022 end-page: 339 ident: CR43 article-title: Monitoring the construction of a large-diameter caisson in sand publication-title: Proc Inst Civ Eng Geotech Eng doi: 10.1680/jgeen.19.00266 – volume: 11 start-page: 23809 issue: 1 year: 2021 ident: CR46 article-title: Forecasting of excavation problems for high-rise building in Vietnam using planet optimization algorithm publication-title: Sci Rep doi: 10.1038/s41598-021-03097-y – volume: 19 year: 2023 ident: CR18 article-title: Stability evaluation of elliptical tunnels in natural clays by integrating FELA and ANN publication-title: Results Eng doi: 10.1016/j.rineng.2023.101280 – year: 2024 ident: CR56 article-title: A nonlinear optimization method for calibration of large-scale deep cement mixing in very soft clay deep excavation publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.3714 – ident: CR35 – volume: 91 start-page: 1195 issue: 9 year: 2006 end-page: 1199 ident: CR60 article-title: Application of a radial basis function neural network for diagnosis of diabetes mellitus publication-title: Curr Sci – volume: 17 start-page: 442 issue: 2 year: 2022 end-page: 454 ident: CR34 article-title: Prediction of the shear strength parameters from easily-available soil properties by means of multivariate regression and artificial neural network methods publication-title: Geomech Geoeng doi: 10.1080/17486025.2020.1778194 – volume: 298 start-page: 171 year: 2023 end-page: 185 ident: CR24 article-title: Relationship between index properties and CBR of soil and prediction of CBR publication-title: Lect Notes Civ Eng doi: 10.1007/978-981-19-6774-0_16 – volume: 5 start-page: 199 issue: 3 year: 2020 end-page: 209 ident: CR39 article-title: Interpretation of pipe-jacking and lubrication records for drives in silty soil publication-title: Undergr 1Space doi: 10.1016/j.undsp.2019.04.001 – ident: CR42 – volume: 13 start-page: 263 issue: 3 year: 1989 end-page: 282 ident: CR52 article-title: Upper bound limit analysis using finite elements and linear programming publication-title: Int J Numer Anal Meth Geomech doi: 10.1002/nag.1610130304 – volume: 12 start-page: 1 issue: 1 year: 2021 end-page: 8 ident: CR1 article-title: Neural network application in forecasting maximum wall deflection in homogenous clay publication-title: Int J Geo-Eng doi: 10.1186/s40703-021-00158-z – volume: 10 start-page: 651 issue: 1 year: 2024 end-page: 670 ident: CR28 article-title: Integration of AFELA and machine learning for analysis of shallow foundation over horseshoe tunnel in rock mass publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01802-6 – volume: 13 start-page: 1074 year: 2022 end-page: 1085 ident: CR20 article-title: A study of relationship among correlation coefficient, performance, and overfitting using regression analysis publication-title: Int J Sci Eng Res – volume: 113 start-page: 424 issue: 5 year: 1987 end-page: 439 ident: CR38 article-title: Open caissons for deep foundations publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1987)113:5(424) – volume: 42 start-page: 767 year: 2024 end-page: 781 ident: CR30 article-title: Coupling FEA with XGBoost model for estimating uplift resistance of circular anchor in NGI-ADP soils publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02556-9 – volume: 165 year: 2024 ident: CR26 article-title: Prediction of ultimate bearing capacity of shallow foundations on cohesionless soil using hybrid LSTM and RVM approaches: an extended investigation of multicollinearity publication-title: Comput Geotech doi: 10.1016/j.compgeo.2023.105912 – volume: 132 start-page: 143 issue: 3 year: 2006 end-page: 156 ident: CR5 article-title: Design, construction, and installation of a floating caisson used as a bridge pier publication-title: J Waterw Port Coast Ocean Eng doi: 10.1061/(asce)0733-950x(2006)132:3(143) – volume: 8 start-page: 2889 issue: 5 year: 2015 end-page: 2897 ident: CR57 article-title: Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones publication-title: Arab J Geosci doi: 10.1007/s12517-014-1331-0 – volume: 20 start-page: 281 issue: 5 year: 2020 end-page: 294 ident: CR9 article-title: Experimental evaluation of ultimate bearing capacity of the cutting edge of an open caisson publication-title: Int J Phys Model Geotech doi: 10.1680/jphmg.18.00052 – volume: 250 start-page: 1794 year: 2011 end-page: 1797 ident: CR15 article-title: The bearing capacity analyses of soil beneath the blade of circular caisson publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.250-253.1794 – volume: 15 start-page: 3010 issue: 11 year: 2023 end-page: 3038 ident: CR23 article-title: Prediction of compaction parameters for fine-grained soil: critical comparison of the deep learning and standalone models publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.12.034 – volume: 13 start-page: 18582 issue: 1 year: 2023 ident: CR13 article-title: Assessment of the ground vibration during blasting in mining projects using different computational approaches publication-title: Sci Rep doi: 10.1038/s41598-023-46064-5 – volume: 176 start-page: 58 issue: 1 year: 2023 end-page: 73 ident: CR53 article-title: Cutting shoe design for open caissons in sand: influence on vertical bearing capacity publication-title: Proc Inst Civ Eng Geotech Eng doi: 10.1680/jgeen.20.00218 – volume: 106 year: 2020 ident: CR10 article-title: Identifying characteristics of pipejacking parameters to assess geological conditions using optimisation algorithm-based support vector machines publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103592 – volume: 33 start-page: 55 issue: 1 year: 2024 end-page: 75 ident: CR11 article-title: Assessment of compressive strength of high-performance concrete using soft computing approaches publication-title: Comput Concrete doi: 10.12989/cac.2024.33.1.055 – volume: 12 start-page: 1425 issue: 9 year: 2022 ident: CR31 article-title: Undrained stability of unsupported rectangular excavations: anisotropy and non-homogeneity in 3D publication-title: Buildings doi: 10.3390/buildings12091425 – volume: 35 start-page: 3955 issue: 5 year: 2023 end-page: 3976 ident: CR37 article-title: Machine learning regression approach for analysis of bearing capacity of conical foundations in heterogenous and anisotropic clays publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07893-z – volume: 41 start-page: 2281 year: 2023 end-page: 2298 ident: CR59 article-title: Influence of the presence of an interbedded weak clay layer on ultimate bearing capacity of sandy soil using AFELA and MARS publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02397-6 – volume: 18 start-page: 2755 issue: 5 year: 2023 end-page: 2775 ident: CR14 article-title: Base resistance of super-large and long piles in soft soil: performance of artificial neural network model and field implications publication-title: Acta Geotech doi: 10.1007/s11440-022-01736-w – year: 2024 ident: CR54 article-title: Optimizing seismic earth pressure estimates for battered retaining walls using numerical methods and ANN publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02731-y – volume: 83 start-page: 46 issue: 1 year: 2024 ident: CR3 article-title: Hybrid soft computing models for predicting unconfined compressive strength of lime stabilized soil using strength property of virgin cohesive soil publication-title: Bull Eng Geol Env doi: 10.1007/s10064-023-03537-1 – volume: 66 start-page: 1 year: 2023 end-page: 18 ident: CR58 article-title: Advanced FELA-ANN framework for developing 3D failure envelopes for strip foundations on anisotropic clays publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01906-z – volume: 10 start-page: 9939 issue: 1 year: 2020 ident: CR4 article-title: Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm publication-title: Sci Rep doi: 10.1038/s41598-020-66904-y – volume: 16 start-page: 951 issue: 8 year: 2022 end-page: 961 ident: CR7 article-title: Finite element evaluation of bearing capacity factors for cutting face of open caissons publication-title: Int J Geotech Eng doi: 10.1080/19386362.2022.2080962 – volume: 10 start-page: 4931 issue: 5 year: 2022 end-page: 4961 ident: CR19 article-title: Determination of suitable hyperparameters of artificial neural network for the best prediction of geotechnical properties of soil publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2022.43662 – volume: 9 start-page: 18 issue: 2 year: 2023 ident: CR29 article-title: Application of ANN and FELA for predicting bearing capacity of shell foundations on sand publication-title: Int J Geosynth Ground Eng doi: 10.1007/s40891-023-00437-y – volume: 12 start-page: 61 issue: 1 year: 1988 end-page: 77 ident: CR51 article-title: Lower bound limit analysis using finite elements and linear programming publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.1610120105 – ident: CR40 – year: 2023 ident: CR45 article-title: Developing prediction equations for soil resilient modulus using evolutionary machine learning publication-title: Transp Infrastruct Geotechnol doi: 10.1007/s40515-023-00342-x – volume: 66 start-page: 1 year: 2023 end-page: 9 ident: CR8 article-title: FELA evaluation of undrained bearing capacity of cutting edge of circular open caisson publication-title: Ships Offshore Struct doi: 10.1080/17445302.2023.2225952 – volume: 16 start-page: C4016003 issue: 5 year: 2016 ident: CR33 article-title: Instability of a Caisson-type breakwater induced by an earthquake–tsunami event publication-title: Int J Geomech doi: 10.1061/(asce)gm.1943-5622.0000619 – volume: 35 start-page: 10975 issue: 15 year: 2023 end-page: 10996 ident: CR36 article-title: Bearing capacity of ring footings in anisotropic clays: FELA and ANN publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08278-6 – volume: 73 start-page: 495 issue: 6 year: 2021 end-page: 505 ident: CR49 article-title: Bearing capacity of open caissons embedded in sand publication-title: Geotechnique doi: 10.1680/jgeot.21.00089 – ident: CR48 – volume: 15 start-page: 1052 issue: 4 year: 2023 end-page: 1064 ident: CR50 article-title: Multivariate adaptive regression splines analysis for 3D slope stability in anisotropic and heterogenous clay publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.05.016 – volume: 22 start-page: 70 issue: 2 year: 2022 end-page: 87 ident: CR6 article-title: Experimental studies on a circular open caisson publication-title: Int J Phys Model Geotechn doi: 10.1680/jphmg.20.00050 – volume: 66 start-page: 1 year: 2023 end-page: 17 ident: CR16 article-title: Required supporting lining pressure for the stability of a rectangular tunnel in sloping ground publication-title: Transp Infrastruct Geotechnol doi: 10.1007/s40515-023-00313-2 – volume: 7 start-page: 123 issue: 1 year: 2024 end-page: 163 ident: CR25 article-title: Prediction of UCS of fine-grained soil based on machine learning part 2: comparison between hybrid relevance vector machine and Gaussian process regression publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00191-8 – year: 2023 ident: CR21 article-title: A scientometrics review of soil properties prediction using soft computing approaches publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-10024-z – volume: 66 start-page: 1 year: 2023 end-page: 10 ident: CR61 article-title: Stability analysis of multiple unsupported excavations in cohesive-frictional soils using finite element limit analysis (FELA) and an artificial neural network (ANN) publication-title: Model Earth Syst Environ – volume: 269 year: 2023 ident: CR12 article-title: Inclination prediction of a giant open caisson during the sinking process using various machine learning algorithms publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113587 – ident: CR41 – volume: 72 start-page: 632 issue: 7 year: 2022 end-page: 641 ident: CR44 article-title: Undrained bearing capacity of the cutting face for an open caisson publication-title: Geotechnique doi: 10.1680/jgeot.20.P.210 – volume: 147 start-page: 4021140 issue: 12 year: 2021 ident: CR47 article-title: Hybrid framework for forecasting circular excavation collapse: combining physics-based and data-driven modeling publication-title: J Geotechn Geoenviron Eng doi: 10.1061/(asce)gt.1943-5606.0002683 – volume: 66 start-page: 1 year: 2023 end-page: 34 ident: CR22 article-title: Estimation of intact rock uniaxial compressive strength using advanced machine learning publication-title: Transp Infrastruct Geotechnol doi: 10.1007/s40515-023-00357-4 – volume: 66 start-page: 1 year: 2023 ident: 2789_CR61 publication-title: Model Earth Syst Environ – volume: 7 start-page: 123 issue: 1 year: 2024 ident: 2789_CR25 publication-title: Multiscale Multidiscip Model Exp Des doi: 10.1007/s41939-023-00191-8 – volume: 132 start-page: 143 issue: 3 year: 2006 ident: 2789_CR5 publication-title: J Waterw Port Coast Ocean Eng doi: 10.1061/(asce)0733-950x(2006)132:3(143) – volume: 113 start-page: 424 issue: 5 year: 1987 ident: 2789_CR38 publication-title: J Geotech Eng doi: 10.1061/(ASCE)0733-9410(1987)113:5(424) – volume: 15 start-page: 1052 issue: 4 year: 2023 ident: 2789_CR50 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.05.016 – volume: 13 start-page: 263 issue: 3 year: 1989 ident: 2789_CR52 publication-title: Int J Numer Anal Meth Geomech doi: 10.1002/nag.1610130304 – volume: 73 start-page: 495 issue: 6 year: 2021 ident: 2789_CR49 publication-title: Geotechnique doi: 10.1680/jgeot.21.00089 – year: 2023 ident: 2789_CR27 publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02643-x – volume: 35 start-page: 3955 issue: 5 year: 2023 ident: 2789_CR37 publication-title: Neural Comput Appl doi: 10.1007/s00521-022-07893-z – ident: 2789_CR35 doi: 10.1007/978-981-99-5716-3_26 – volume: 176 start-page: 58 issue: 1 year: 2023 ident: 2789_CR53 publication-title: Proc Inst Civ Eng Geotech Eng doi: 10.1680/jgeen.20.00218 – year: 2024 ident: 2789_CR54 publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02731-y – volume: 16 start-page: 951 issue: 8 year: 2022 ident: 2789_CR7 publication-title: Int J Geotech Eng doi: 10.1080/19386362.2022.2080962 – volume: 250 start-page: 1794 year: 2011 ident: 2789_CR15 publication-title: Adv Mater Res doi: 10.4028/www.scientific.net/AMR.250-253.1794 – volume: 21 year: 2024 ident: 2789_CR17 publication-title: Intell Syst Appl doi: 10.1016/j.iswa.2024.200329 – year: 2024 ident: 2789_CR56 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.3714 – year: 2023 ident: 2789_CR21 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-023-10024-z – volume: 9 start-page: 18 issue: 2 year: 2023 ident: 2789_CR29 publication-title: Int J Geosynth Ground Eng doi: 10.1007/s40891-023-00437-y – ident: 2789_CR48 doi: 10.1007/978-3-319-97112-4_162 – volume: 8 start-page: 2889 issue: 5 year: 2015 ident: 2789_CR57 publication-title: Arab J Geosci doi: 10.1007/s12517-014-1331-0 – volume: 13 start-page: 18582 issue: 1 year: 2023 ident: 2789_CR13 publication-title: Sci Rep doi: 10.1038/s41598-023-46064-5 – volume: 66 start-page: 1 year: 2023 ident: 2789_CR8 publication-title: Ships Offshore Struct doi: 10.1080/17445302.2023.2225952 – volume: 91 start-page: 1195 issue: 9 year: 2006 ident: 2789_CR60 publication-title: Curr Sci – volume: 106 year: 2020 ident: 2789_CR10 publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2020.103592 – ident: 2789_CR42 – volume: 41 start-page: 2281 year: 2023 ident: 2789_CR59 publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02397-6 – volume: 298 start-page: 171 year: 2023 ident: 2789_CR24 publication-title: Lect Notes Civ Eng doi: 10.1007/978-981-19-6774-0_16 – year: 2023 ident: 2789_CR45 publication-title: Transp Infrastruct Geotechnol doi: 10.1007/s40515-023-00342-x – volume: 23 start-page: 130 issue: 1 year: 2019 ident: 2789_CR2 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-018-2636-4 – volume: 12 start-page: 61 issue: 1 year: 1988 ident: 2789_CR51 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.1610120105 – volume: 66 start-page: 1 year: 2023 ident: 2789_CR16 publication-title: Transp Infrastruct Geotechnol doi: 10.1007/s40515-023-00313-2 – volume: 13 start-page: 1074 year: 2022 ident: 2789_CR20 publication-title: Int J Sci Eng Res – volume: 99 start-page: 51 issue: 1–2 year: 2008 ident: 2789_CR55 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.02.003 – volume: 35 start-page: 10975 issue: 15 year: 2023 ident: 2789_CR36 publication-title: Neural Comput Appl doi: 10.1007/s00521-023-08278-6 – volume: 19 year: 2023 ident: 2789_CR18 publication-title: Results Eng doi: 10.1016/j.rineng.2023.101280 – volume: 66 start-page: 1 year: 2023 ident: 2789_CR22 publication-title: Transp Infrastruct Geotechnol doi: 10.1007/s40515-023-00357-4 – volume: 10 start-page: 651 issue: 1 year: 2024 ident: 2789_CR28 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01802-6 – volume: 42 start-page: 767 year: 2024 ident: 2789_CR30 publication-title: Geotech Geol Eng doi: 10.1007/s10706-023-02556-9 – volume: 83 start-page: 46 issue: 1 year: 2024 ident: 2789_CR3 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-023-03537-1 – volume: 20 start-page: 281 issue: 5 year: 2020 ident: 2789_CR9 publication-title: Int J Phys Model Geotech doi: 10.1680/jphmg.18.00052 – volume: 5 start-page: 199 issue: 3 year: 2020 ident: 2789_CR39 publication-title: Undergr 1Space doi: 10.1016/j.undsp.2019.04.001 – volume: 175 start-page: 323 issue: 3 year: 2022 ident: 2789_CR43 publication-title: Proc Inst Civ Eng Geotech Eng doi: 10.1680/jgeen.19.00266 – volume: 11 start-page: 23809 issue: 1 year: 2021 ident: 2789_CR46 publication-title: Sci Rep doi: 10.1038/s41598-021-03097-y – volume: 10 start-page: 9939 issue: 1 year: 2020 ident: 2789_CR4 publication-title: Sci Rep doi: 10.1038/s41598-020-66904-y – volume: 18 start-page: 2755 issue: 5 year: 2023 ident: 2789_CR14 publication-title: Acta Geotech doi: 10.1007/s11440-022-01736-w – volume: 16 start-page: C4016003 issue: 5 year: 2016 ident: 2789_CR33 publication-title: Int J Geomech doi: 10.1061/(asce)gm.1943-5622.0000619 – volume: 15 start-page: 3010 issue: 11 year: 2023 ident: 2789_CR23 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2022.12.034 – volume: 165 year: 2024 ident: 2789_CR26 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2023.105912 – ident: 2789_CR40 – volume: 22 start-page: 70 issue: 2 year: 2022 ident: 2789_CR6 publication-title: Int J Phys Model Geotechn doi: 10.1680/jphmg.20.00050 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 2789_CR1 publication-title: Int J Geo-Eng doi: 10.1186/s40703-021-00158-z – volume: 12 start-page: 1425 issue: 9 year: 2022 ident: 2789_CR31 publication-title: Buildings doi: 10.3390/buildings12091425 – ident: 2789_CR41 doi: 10.30919/es923 – volume: 269 year: 2023 ident: 2789_CR12 publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2022.113587 – volume: 9 start-page: 2993 issue: 2 year: 2023 ident: 2789_CR32 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-022-01595-0 – volume: 10 start-page: 4931 issue: 5 year: 2022 ident: 2789_CR19 publication-title: Int J Res Appl Sci Eng Technol doi: 10.22214/ijraset.2022.43662 – volume: 72 start-page: 632 issue: 7 year: 2022 ident: 2789_CR44 publication-title: Geotechnique doi: 10.1680/jgeot.20.P.210 – volume: 147 start-page: 4021140 issue: 12 year: 2021 ident: 2789_CR47 publication-title: J Geotechn Geoenviron Eng doi: 10.1061/(asce)gt.1943-5606.0002683 – volume: 66 start-page: 1 year: 2023 ident: 2789_CR58 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-023-01906-z – volume: 33 start-page: 55 issue: 1 year: 2024 ident: 2789_CR11 publication-title: Comput Concrete doi: 10.12989/cac.2024.33.1.055 – volume: 17 start-page: 442 issue: 2 year: 2022 ident: 2789_CR34 publication-title: Geomech Geoeng doi: 10.1080/17486025.2020.1778194 |
| SSID | ssj0002601 |
| Score | 2.3694084 |
| Snippet | Open caissons are commonly used in the construction of various underground structures, such as launch and reception shafts for tunnel-boring machines, storage... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5335 |
| SubjectTerms | Artificial neural networks Bearing capacity Boring machines Caissons Civil Engineering Clay Cofferdams Earth and Environmental Science Earth Sciences Excavation Finite element method Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hypotheses Limit analysis Neural networks Null hypothesis Regression models Roughness Shear strength Sinking Soft computing Soil bearing capacity Soil investigations Soil strength Tanks Technical Note Terrestrial Pollution Tunnel construction Underground construction Underground structures Variance analysis Waste Management/Waste Technology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADb0ShIA9sEJGXm2RCtGrVAVUVL7FFjh8IqUqgaZH499ylLgUkurDaiRPpO999ts_3AZwZgYtk43FHhjxzQqNwzsWxcJRQyCaMMWGV7f54Ew0G8dNTMrQbbqVNq5z7xMpRq0LSHvllQNwA2QcPr17fHFKNotNVK6GxCnWqVBbWoN7uDoa3X76YCmZV1fZa1T1h316bsZfnIlpN-yGdY1Kuz8_QtOCbv45Iq8jT2_rvP2_DpuWc7HpmJDuwovNd2PhWiXAPxnfojtlM4gEbnDYGN8VIKG1UMuS1rIuugMht_sweckW6EtjfxmlCLR2MuBLpPOtV6j2sMIwSVbAdYS1y9pKzPqXdFGitupiWrDMSH_tw3-ved_qOlWNwRBD6EyfzY1cpxT0RJ8rwlhSuq7nimauFibhAZhd4KokkN0pLowJtiCB5sSt8najgAGp5ketDYJ6QgZa4lMtwfelFOomMQqNphV6W4Cd0A7w5EKm0pcpJMWOULoosE3gpgpdW4KV-A86_3nmdFepY-nRzjlhqJ22ZLuBqwMUc80X336MdLR_tGNb9yswobbAJtcl4qk9gTb5PXsrxqTXZT8UM8sQ priority: 102 providerName: ProQuest |
| Title | Soft Computing-Based Models for Estimating Undrained Bearing Capacity Factor of Open Caisson in Heterogeneous Clay |
| URI | https://link.springer.com/article/10.1007/s10706-024-02789-2 https://www.proquest.com/docview/3085156554 |
| Volume | 42 |
| WOSCitedRecordID | wos001214893400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1573-1529 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002601 issn: 0960-3182 databaseCode: PCBAR dateStart: 19970301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-1529 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002601 issn: 0960-3182 databaseCode: M7S dateStart: 19970301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-1529 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0002601 issn: 0960-3182 databaseCode: BENPR dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-1529 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002601 issn: 0960-3182 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB609aAH32J9sQdvGshrm-TYlpYepBSr4i1s9iGFkkjTCv57Z9KkraKCHveRzTI7s_MNOw-AayPQSDYOt6TPE8s3CmUuDIWlhEI0YYzxC2_3p7tgMAifn6NhGRSWV97u1ZNkcVOvBbsFZP26Pr07km_OJtRR3YUkjvejp-X9S0myigx7zSI22C1DZb5f47M6WmHML8-ihbbp7f1vn_uwW6JL1lqwwwFs6PQQdtZyDh7BdIQXL1sUc8AOq41qTDEqiTbJGSJY1kWhJxibvrDHVFEFCRxvo0BQTwd1q0TgznpFnR6WGUYuKdiPB5ilbJyyPjnYZMiXOpvnrDMR78fw0Os-dPpWWXjBEp7vzqzEDW2lFHdEGCnDm1LYtuaKJ7YWJuACMZznqCiQ3CgtjfK0ISjkhLZwdaS8E6ilWapPgTlCelqi0ZagJekEOgqMQvZo-k4S4S90A5yK_LEsk5JTbYxJvEqnTOSMkZxxQc7YbcDN8pvXRUqOX2dfVKcal-KZxx4BTYSy3G_AbXWKq-GfVzv72_Rz2HYLRiCHwQuozaZzfQlb8m02zqdXUG93B8P7K_I3HWFr2Gm3qIXM_AGAd-uZ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH8BJEEPCqhxFWEOcsLGdtrZtgdjZGWzhHVDwkK4TabzYUg2LW4XDX-U_6PvzbasksCNA9eZdpp2fu-93-u8D4APTqGT7CIR6EQUQeIMylyWqcAog2zCOZf4aPezYToaZefn-fES_GlzYSisstWJXlGbStM_8k8xcQNkHyL5cvkzoK5RdLrattCYw-LIXv9Gl63-fPgN93eX8_7BuDcImq4CgYoTPgsKnoXGGBGpLDdOdLUKQyuMKEKrXCoUEpQ4MnmqhTNWOxNbR3Y-ykLFbW5iXHYZniSk_H2k4MmN4qfqXL60X9cnJfMmR6fJ1EvJdecJHZpSYNH_dnBBbm-dx3oz13_xyD7QOjxv-DT7OheADViy5SY8-6fK4kuYnqCpYfP2FTgQ7KPhNoyawE1qhpydHaCaI-Je_mCnpaGeGTi_j69CIz1kExpdFdb3nYlY5RgF4eA4QrYq2UXJBhRSVKEk2uqqZr2Jun4F44d459ewUlalfQMsUjq2Gt3UAn3nKLV56gwKRDeJihwfYTsQtfsudVOGnbqBTOSigDRhRSJWpMeK5B3Yu7nncl6E5N6rt1qAyEYh1XKBjg58bCG2mL57tbf3r7YDa4Px96EcHo6O3sFT7hFO4ZFbsDKbXtn3sKp_zS7q6baXFQbygaH3FwW3UBI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60iuiDt1jPffBNg7m2SR5ttVQsRfDAt7DZQ4SSSA_Bf-_MNj0UFcTXvRJ2Zne-YWfmAzgxAp1k43FHhjxzQqPwzMWxcJRQiCaMMaGNdn9sR51O_PSU3M5k8dto9_GT5Cingao05YPzV2XOZxLfIvKE_ZDeIClOZx4WQiINIn_97nFyF1PBLFttr2bzhP0ybeb7NT6bpine_PJEai1Pc-3__7wOqyXqZBcjNdmAOZ1vwspMLcIt6N3hhcxGJA_Y4NTRvClGVGndPkNky67wMiB4mz-zh1wRswT21_GgUEsDba5EQM-alr-HFYZRqAq2o2CLnL3krEWBNwXqqy6GfdboivdtuG9e3TdaTknI4Igg9AdO5seuUop7Ik6U4TUpXFdzxTNXCxNxgdgu8FQSSW6UlkYF2hBE8mJX-DpRwQ5U8iLXu8A8IQMt0ZnL0MP0Ip1ERqHa1EIvS_ATugreWBSpLIuVE2dGN52WWabtTHE7U7udqV-F08mc11Gpjl9HH4wlnJbHtp8GBEAR4vKwCmdjiU67f15t72_Dj2Hp9rKZtq87N_uw7FudoJjCA6gMekN9CIvybfDS7x1Zbf4AvNjzRA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Computing-Based+Models+for+Estimating+Undrained+Bearing+Capacity+Factor+of+Open+Caisson+in+Heterogeneous+Clay&rft.jtitle=Geotechnical+and+geological+engineering&rft.au=Suppakul%2C+Rungroad&rft.au=Chavda%2C+Jitesh+T.&rft.au=Jitchaijaroen%2C+Wittaya&rft.au=Keawsawasvong%2C+Suraparb&rft.date=2024-08-01&rft.pub=Springer+International+Publishing&rft.issn=0960-3182&rft.eissn=1573-1529&rft.volume=42&rft.issue=6&rft.spage=5335&rft.epage=5361&rft_id=info:doi/10.1007%2Fs10706-024-02789-2&rft.externalDocID=10_1007_s10706_024_02789_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3182&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3182&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3182&client=summon |