Binary well placement optimization using a decomposition-based multi-objective evolutionary algorithm with diversity preservation

In binary multi-objective well placement optimization, multiple conflicting objective functions must be optimized simultaneously in reservoir simulation models containing discrete decision variables. Although multi-objective algorithms have been developed or adapted to tackle this scenario, such as...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational geosciences Ročník 27; číslo 5; s. 765 - 782
Hlavní autoři: de Moraes, Matheus Bernardelli, Coelho, Guilherme Palermo, Santos, Antonio Alberto S., Schiozer, Denis José
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.10.2023
Springer Nature B.V
Témata:
ISSN:1420-0597, 1573-1499
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In binary multi-objective well placement optimization, multiple conflicting objective functions must be optimized simultaneously in reservoir simulation models containing discrete decision variables. Although multi-objective algorithms have been developed or adapted to tackle this scenario, such as the derivative-free evolutionary algorithms, these methods are known to generate a high number of duplicated strategies in discrete problems. Duplicated strategies negatively impact the optimization process since they: (i) degrade the efficiency of recombination operators in evolutionary algorithms; (ii) slow the convergence speed as they require more iterations to find a well-distributed set of strategies; and (iii) perform unnecessary re-evaluations of previously seen strategies through reservoir simulation. To perform multi-objective well placement optimization while avoiding duplicated strategies, this paper investigates the application of a newly proposed algorithm named MOEA/D-NFTS, with a modified diversity preservation mechanism that incorporates prior knowledge of the problem, on a multi-objective well placement optimization problem. The proposed methodology is evaluated on the UNISIM-II-D benchmark case, a synthetic carbonate black-oil simulation model in a well placement optimization problem using a binary strategy representation, indicating the presence or absence of a given candidate well position in the final strategy. The objective functions are the maximization of the Net Present Value, the maximization of the Cumulative Oil Production, and the minimization of Cumulative Water Production. The modified MOEA/D-NFTS performance is compared with a baseline algorithm without diversity preservation, and the evidence shows that the MOEA/D-NFTS produces statistically significant superior results, and is suitable for binary multi-objective well placement optimization.
AbstractList In binary multi-objective well placement optimization, multiple conflicting objective functions must be optimized simultaneously in reservoir simulation models containing discrete decision variables. Although multi-objective algorithms have been developed or adapted to tackle this scenario, such as the derivative-free evolutionary algorithms, these methods are known to generate a high number of duplicated strategies in discrete problems. Duplicated strategies negatively impact the optimization process since they: (i) degrade the efficiency of recombination operators in evolutionary algorithms; (ii) slow the convergence speed as they require more iterations to find a well-distributed set of strategies; and (iii) perform unnecessary re-evaluations of previously seen strategies through reservoir simulation. To perform multi-objective well placement optimization while avoiding duplicated strategies, this paper investigates the application of a newly proposed algorithm named MOEA/D-NFTS, with a modified diversity preservation mechanism that incorporates prior knowledge of the problem, on a multi-objective well placement optimization problem. The proposed methodology is evaluated on the UNISIM-II-D benchmark case, a synthetic carbonate black-oil simulation model in a well placement optimization problem using a binary strategy representation, indicating the presence or absence of a given candidate well position in the final strategy. The objective functions are the maximization of the Net Present Value, the maximization of the Cumulative Oil Production, and the minimization of Cumulative Water Production. The modified MOEA/D-NFTS performance is compared with a baseline algorithm without diversity preservation, and the evidence shows that the MOEA/D-NFTS produces statistically significant superior results, and is suitable for binary multi-objective well placement optimization.
Author Schiozer, Denis José
Santos, Antonio Alberto S.
de Moraes, Matheus Bernardelli
Coelho, Guilherme Palermo
Author_xml – sequence: 1
  givenname: Matheus Bernardelli
  orcidid: 0000-0002-9485-0334
  surname: de Moraes
  fullname: de Moraes, Matheus Bernardelli
  email: m121214@dac.unicamp.br
  organization: School of Technology (FT), University of Campinas (UNICAMP)
– sequence: 2
  givenname: Guilherme Palermo
  orcidid: 0000-0002-4641-0684
  surname: Coelho
  fullname: Coelho, Guilherme Palermo
  organization: School of Technology (FT), University of Campinas (UNICAMP)
– sequence: 3
  givenname: Antonio Alberto S.
  surname: Santos
  fullname: Santos, Antonio Alberto S.
  organization: Center for Energy and Petroleum Studies (CEPETRO), University of Campinas (UNICAMP)
– sequence: 4
  givenname: Denis José
  orcidid: 0000-0001-6702-104X
  surname: Schiozer
  fullname: Schiozer, Denis José
  organization: Center for Energy and Petroleum Studies (CEPETRO), University of Campinas (UNICAMP)
BookMark eNp9kEtLxDAUhYMoOI7-AVcB19Hcpp22SxVfILjRdUjTmzFD29QkHdGd_9zMjCC4cHPzOt-5ueeI7A9uQEJOgZ8D5-VFAF7UC8YzwSCVgvE9MoOiTMe8rvfTPs84S5rykByFsOKc16WAGfm6soPyH_Qdu46OndLY4xCpG6Pt7aeK1g10CnZYUkVb1K4fXbCbW9aogC3tpy5a5poV6mjXSHHtumnzvjFV3dJ5G197-p4qbZPAJ_qDjh4D-vXW_pgcGNUFPPlZ5-Tl9ub5-p49Pt09XF8-MiXyLLKiNKBA1VobzBem4cZUOoOygBbAZAsFBmosddtkQpmqAMMFNCIvikbzVuRiTs52vqN3bxOGKFdu8kNqKbOqKiFf1LVIqmyn0t6F4NHI0ds-DSOBy03Uche1TCnLbdSSJ6j6A2kbt8NFr2z3Pyp2aEh9hiX631_9Q30DkD2ZpA
CitedBy_id crossref_primary_10_1016_j_jobe_2025_113707
crossref_primary_10_1007_s10596_024_10331_9
crossref_primary_10_1016_j_asoc_2025_113108
crossref_primary_10_1007_s13202_024_01848_x
crossref_primary_10_1287_deca_2024_0188
Cites_doi 10.1016/j.petrol.2013.07.008
10.1109/TEVC.2007.892759
10.1287/ijoc.2.1.4
10.1109/TEVC.2004.826067
10.2118/177140-MS
10.2118/3981-PA
10.1016/j.petrol.2016.05.042
10.1007/978-3-540-31880-4_34
10.1007/978-3-540-31880-4\_24
10.1016/S0045-7825(01)00323-1
10.1109/CCIE.2010.71
10.1016/j.eswa.2022.117251
10.1016/j.cie.2020.106382
10.1007/978-0-387-36797-2
10.1016/j.cor.2019.01.002
10.1016/j.eswa.2019.07.025
10.1016/j.petrol.2015.04.038
10.1007/s10596-019-09863-2
10.1016/j.petrol.2016.11.013
10.1137/S1052623496307510
10.1109/TEVC.2020.3004027
10.1109/TMAG.2015.2483521
10.1007/978-1-4612-4380-9_16
10.1016/j.petrol.2004.02.010
10.29173/alr1860
10.1007/978-3-319-10762-2_59
10.1007/978-3-540-77467-9\_2
10.1109/CSE-EUC.2017.28
10.3997/2214-4609.201900746
10.1016/j.petrol.2022.110111
10.1007/978-3-642-41278-3_33
10.1109/TASE.2018.2873098
10.5957/JSPD.170049
10.1016/j.petrol.2020.107694
10.1109/TEVC.2016.2574621
10.1007/978-3-540-70928-2_60
10.1109/tsmc.2019.2956288
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7SC
7UA
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
JQ2
K7-
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10596-023-10235-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1573-1499
EndPage 782
ExternalDocumentID 10_1007_s10596_023_10235_0
GrantInformation_xml – fundername: Equinor Brazil
  grantid: 2017/15736-3
– fundername: Fundaçäo de Amparo á Pesquisa do Estado de Säo Paulo (FAPESP)
  grantid: 2017/15736-3
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9R
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7Y
Z81
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7UA
7XB
8AL
8FD
8FK
C1K
F1W
H8D
H96
JQ2
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a342t-57f1a1a9ccfe46fb0ff8c21751d11f26a1f19e7cdb23af851f031b3455bc0d343
IEDL.DBID K7-
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001035507000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1420-0597
IngestDate Wed Nov 05 08:21:18 EST 2025
Sat Nov 29 06:12:24 EST 2025
Tue Nov 18 22:00:58 EST 2025
Fri Feb 21 02:43:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Field development
Production optimization
Management
Model-based optimization
Evolutionary computation
Reservoir simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-57f1a1a9ccfe46fb0ff8c21751d11f26a1f19e7cdb23af851f031b3455bc0d343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9485-0334
0000-0001-6702-104X
0000-0002-4641-0684
PQID 2887146993
PQPubID 55381
PageCount 18
ParticipantIDs proquest_journals_2887146993
crossref_primary_10_1007_s10596_023_10235_0
crossref_citationtrail_10_1007_s10596_023_10235_0
springer_journals_10_1007_s10596_023_10235_0
PublicationCentury 2000
PublicationDate 20231000
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231000
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle Modeling, Simulation and Data Analysis
PublicationTitle Computational geosciences
PublicationTitleAbbrev Comput Geosci
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Santos, A., Gaspar, A., Avansi, G., et al.: Case study for field development and management - selection of production strategy based on UNISIM-II. Version 2. University of Campinas. (2022). https://www.unisim.cepetro.unicamp.br/benchmarks/en/unisim-ii/unisim-ii-d
GloverFTabu Search-Part IIORSA Journal on Computing19902143210.1287/ijoc.2.1.4
Gaspar, ATF., Barreto, CEA., Schiozer, DJ.: Assisted process for design optimization of oil exploitation strategy. Journal of Petroleum Science and Engineering 146, 473–488 (2016). https://doi.org/10.1016/j.petrol.2016.05.042
Bagherinezhad, A., Boozarjomehry, Bozorgmehry, R., Pishvaie, MR.: Multi-criterion based well placement and control in the water-flooding of naturally fractured reservoir. J. Pet. Sci. Eng. 149, 675–685 (2017). https://doi.org/10.1016/j.petrol.2016.11.013
RostamianAJamshidiSZirbesEThe development of a novel multi-objective optimization framework for non-vertical well placement based on a modified non-dominated sorting genetic algorithm-IIComput. Geosci.20192351065108510.1007/s10596-019-09863-2
Harrison, R.: Regulation of Well Spacing in Oil and Gas Production. Alberta Law Rev. (1947), 357 (1969). https://doi.org/10.29173/alr1860
ZuoXLiBHuangXOptimizing hospital emergency department layout via multiobjective tabu searchIEEE Trans. Autom. Sci. Eng.20191631137114710.1109/TASE.2018.2873098
Rostamian, A., Jamshidi, S., Kamari, M.: Non-Dominated Ranked Based Genetic Algorithm Multi-Objective Well Placement Optimization. In: 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, pp 1–5 (2019a). https://doi.org/10.3997/2214-4609.201900746
YangJYangSNiPA Vector Tabu Search Algorithm With Enhanced Searching Ability for Pareto Solutions and Its Application to Multiobjective OptimizationsIEEE Trans. Magn.20165231410.1109/TMAG.2015.2483521
Gee, SB., Qiu, X., Tan, KC.: A novel diversity maintenance scheme for evolutionary multi-objective optimization. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 8206 LNCS. p 270–277 (2013). https://doi.org/10.1007/978-3-642-41278-3_33
de Moraes, MB., Coelho, GP.: A diversity preservation method for expensive multi-objective combinatorial optimization problems using Novel-First Tabu Search and MOEA/D. Expert Syst. Appl. 202, 117, 251 (2022). https://doi.org/10.1016/j.eswa.2022.117251
JiangSYangSA Steady-State and Generational Evolutionary Algorithm for Dynamic Multiobjective OptimizationIEEE Trans. Evol. Comput.2017211658210.1109/TEVC.2016.2574621
Coello, Coello, CA.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245–1287 (2002). https://doi.org/10.1016/S0045-7825(01)00323-1, https://www.sciencedirect.com/science/article/pii/S0045782501003231
Correia, M., Hohendorff, J., Gaspar, AT., et al.: UNISIM-II-D: Benchmark Case Proposal Based on a Carbonate Reservoir. In: Day 3 Fri, November 20, 2015. (2015) SPE, https://doi.org/10.2118/177140-MS
Tian, Y., He, C., Cheng, R., et al.: A Multistage Evolutionary Algorithm for Better Diversity Preservation in Multiobjective Optimization. IEEE Trans. Syst., Man, Cybern. Syst. (November):1–15 (2019). https://doi.org/10.1109/tsmc.2019.2956288
YasariEPishvaieMRPareto-based robust optimization of water-flooding using multiple realizationsJ. Pet. Sci. Eng.2015132182710.1016/j.petrol.2015.04.038
CoelloCPulidoGLechugaMHandling multiple objectives with particle swarm optimizationIEEE Trans. Evol. Comput.20048325627910.1109/TEVC.2004.826067
Deb, K., Rao, N., UB, Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4403 LNCS, 803–817 (2007). https://doi.org/10.1007/978-3-540-70928-2_60
Wang, L., Li, Z., Daniel, C., et al.: Journal of Petroleum Science and Engineering A novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithm. J. Pet. Science and Engineering (December 2019) 196, 107, 694 (2021). https://doi.org/10.1016/j.petrol.2020.107694
SchiozerDJLigeroELSuslickSBUse of representative models in the integration of risk analysis and production strategy definitionJ. Pet. Sci. Eng.2004441–213114110.1016/j.petrol.2004.02.010
YasariEPishvaieMRKhorashehFApplication of multi-criterion robust optimization in water-flooding of oil reservoirJournal of Petroleum Science and Engineering201310911110.1016/j.petrol.2013.07.008
DasIDennisJENormal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problemsSIAM J. Optim.1998863165710.1137/S1052623496307510
Landa-BecerraRSantana-QuinteroLVCoelloCAKnowledge incorporation in multi-objective evolutionary algorithmsStud. Comput. Intell.200898234610.1007/978-3-540-77467-9\_2
Coello, Coello, CA., Lamont, GB., Veldhuizen, DAV.: Evolutionary Algorithms for Solving Multi-Objective Problems. (2007). https://doi.org/10.1007/978-0-387-36797-2
Mohammed, AM., Duffuaa, SO.: A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks. Expert Syst. Appl. 140, 112, 808 (2020). https://doi.org/10.1016/j.eswa.2019.07.025
Zhou, Y.: A Decomposition-Based Multi-Objective Tabu Search Algorithm for Tri-Objective Unconstrained Binary Quadratic Programming Problem. Proceedings - 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017 1, 101–107 (2017). https://doi.org/10.1109/CSE-EUC.2017.28
RosenwaldGWGreenDWA Method for Determining the Optimum Location of Wells in a Reservoir Using Mixed-Integer ProgrammingSoc. Pet. Eng. J.19741401445410.2118/3981-PA
Wang, L., Yao, Y., Zhang, T., et al.: A novel self-adaptive multi-fidelity surrogate-assisted multi-objective evolutionary algorithm for simulation-based production optimization. Journal of Petroleum Science and Engineering (January) 211, 110, 111 (2022). https://doi.org/10.1016/j.petrol.2022.110111
Alfieri, A., Castiglione, C., Pastore, E.: A multi-objective tabu search algorithm for product portfolio selection: A case study in the automotive industry. Comput. Ind. Eng. (February) 142:106, 382 (2020). https://doi.org/10.1016/j.cie.2020.106382
ArnoldFSõrensenKKnowledge-guided local search for the vehicle routing problemComput. & Oper. Res.2019105324610.1016/j.cor.2019.01.002
ZhangQLiHMOEA/D: A multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759
Ishibuchi,H., Tanigaki, Y., Masuda, H., et al.: Distance-Based Analysis of Crossover Operators for Many-Objective Knapsack Problems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 8672, p 600–610 (2014). https://doi.org/10.1007/978-3-319-10762-2_59
AvansiGDSchiozerDJUNISIM-I: Synthetic Model for Reservoir Development and Management ApplicationsInt. J. Model. Simul. Pet. Ind.2015912130
JaeggiDParksGKipourosTA multi-objective tabu search algorithm for constrained optimisation problemsLect. Notes Comput. Sci.2005341049050410.1007/978-3-540-31880-4_34
JiangMWangZHongHKnee Point-Based Imbalanced Transfer Learning for Dynamic Multiobjective OptimizationIEEE Transactions on Evolutionary Computation202125111712910.1109/TEVC.2020.3004027
YangZLiuCZhangSA Multi-Objective Memetic Algorithm for a Fuzzy Parallel Blocking Flow Shop Scheduling Problem of Panel Block Assembly in ShipbuildingJ. Ship Prod. Des.2019350217018110.5957/JSPD.170049
NojimaYNarukawaKKaigeSEffects of removing overlapping solutions on the performance of the NSGA-II algorithmLect. Notes Comput. Sci.2005341034135410.1007/978-3-540-31880-4\_24
Hayashi, SHD.: Value of flexibility and information in field development by modular implantation. Master’s thesis, University of Campinas, Brazil (2006)
Zhang, G., Gao, L., Shi, Y.: A genetic algorithm and tabu search for multi objective flexible job shop scheduling problems. 2010 Int. Conf. Comput., Control Ind. Eng., CCIE 2010 1, 251–254 (2010). https://doi.org/10.1109/CCIE.2010.71
DebKKalyanmoyDMulti-Objective Optimization Using Evolutionary Algorithms2001USAJohn Wiley & Sons Inc
Wilcoxon, F.: Individual Comparisons by Ranking Methods. In: Breakthroughs in Statistics. p 196–202, https://doi.org/10.1007/978-1-4612-4380-9_16
M Jiang (10235_CR19) 2021; 25
A Rostamian (10235_CR27) 2019; 23
10235_CR40
Y Nojima (10235_CR24) 2005; 3410
10235_CR8
10235_CR28
10235_CR7
J Yang (10235_CR34) 2016; 52
10235_CR6
10235_CR26
10235_CR4
10235_CR23
X Zuo (10235_CR41) 2019; 16
10235_CR22
10235_CR1
Z Yang (10235_CR35) 2019; 35
C Coello (10235_CR5) 2004; 8
E Yasari (10235_CR37) 2013; 109
GW Rosenwald (10235_CR25) 1974; 14
R Landa-Becerra (10235_CR21) 2008; 98
I Das (10235_CR9) 1998; 8
F Glover (10235_CR14) 1990; 2
10235_CR31
10235_CR30
K Deb (10235_CR10) 2001
Q Zhang (10235_CR39) 2007; 11
E Yasari (10235_CR36) 2015; 132
10235_CR17
D Jaeggi (10235_CR18) 2005; 3410
S Jiang (10235_CR20) 2017; 21
10235_CR16
DJ Schiozer (10235_CR29) 2004; 44
10235_CR38
GD Avansi (10235_CR3) 2015; 9
10235_CR15
10235_CR13
10235_CR12
F Arnold (10235_CR2) 2019; 105
10235_CR11
10235_CR33
10235_CR32
References_xml – reference: ArnoldFSõrensenKKnowledge-guided local search for the vehicle routing problemComput. & Oper. Res.2019105324610.1016/j.cor.2019.01.002
– reference: Deb, K., Rao, N., UB, Karthik, S.: Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4403 LNCS, 803–817 (2007). https://doi.org/10.1007/978-3-540-70928-2_60
– reference: Landa-BecerraRSantana-QuinteroLVCoelloCAKnowledge incorporation in multi-objective evolutionary algorithmsStud. Comput. Intell.200898234610.1007/978-3-540-77467-9\_2
– reference: RostamianAJamshidiSZirbesEThe development of a novel multi-objective optimization framework for non-vertical well placement based on a modified non-dominated sorting genetic algorithm-IIComput. Geosci.20192351065108510.1007/s10596-019-09863-2
– reference: GloverFTabu Search-Part IIORSA Journal on Computing19902143210.1287/ijoc.2.1.4
– reference: DasIDennisJENormal-boundary intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problemsSIAM J. Optim.1998863165710.1137/S1052623496307510
– reference: CoelloCPulidoGLechugaMHandling multiple objectives with particle swarm optimizationIEEE Trans. Evol. Comput.20048325627910.1109/TEVC.2004.826067
– reference: SchiozerDJLigeroELSuslickSBUse of representative models in the integration of risk analysis and production strategy definitionJ. Pet. Sci. Eng.2004441–213114110.1016/j.petrol.2004.02.010
– reference: ZuoXLiBHuangXOptimizing hospital emergency department layout via multiobjective tabu searchIEEE Trans. Autom. Sci. Eng.20191631137114710.1109/TASE.2018.2873098
– reference: Ishibuchi,H., Tanigaki, Y., Masuda, H., et al.: Distance-Based Analysis of Crossover Operators for Many-Objective Knapsack Problems. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 8672, p 600–610 (2014). https://doi.org/10.1007/978-3-319-10762-2_59
– reference: JaeggiDParksGKipourosTA multi-objective tabu search algorithm for constrained optimisation problemsLect. Notes Comput. Sci.2005341049050410.1007/978-3-540-31880-4_34
– reference: JiangSYangSA Steady-State and Generational Evolutionary Algorithm for Dynamic Multiobjective OptimizationIEEE Trans. Evol. Comput.2017211658210.1109/TEVC.2016.2574621
– reference: Tian, Y., He, C., Cheng, R., et al.: A Multistage Evolutionary Algorithm for Better Diversity Preservation in Multiobjective Optimization. IEEE Trans. Syst., Man, Cybern. Syst. (November):1–15 (2019). https://doi.org/10.1109/tsmc.2019.2956288
– reference: Gaspar, ATF., Barreto, CEA., Schiozer, DJ.: Assisted process for design optimization of oil exploitation strategy. Journal of Petroleum Science and Engineering 146, 473–488 (2016). https://doi.org/10.1016/j.petrol.2016.05.042
– reference: Rostamian, A., Jamshidi, S., Kamari, M.: Non-Dominated Ranked Based Genetic Algorithm Multi-Objective Well Placement Optimization. In: 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, pp 1–5 (2019a). https://doi.org/10.3997/2214-4609.201900746
– reference: AvansiGDSchiozerDJUNISIM-I: Synthetic Model for Reservoir Development and Management ApplicationsInt. J. Model. Simul. Pet. Ind.2015912130
– reference: YasariEPishvaieMRKhorashehFApplication of multi-criterion robust optimization in water-flooding of oil reservoirJournal of Petroleum Science and Engineering201310911110.1016/j.petrol.2013.07.008
– reference: Correia, M., Hohendorff, J., Gaspar, AT., et al.: UNISIM-II-D: Benchmark Case Proposal Based on a Carbonate Reservoir. In: Day 3 Fri, November 20, 2015. (2015) SPE, https://doi.org/10.2118/177140-MS
– reference: Bagherinezhad, A., Boozarjomehry, Bozorgmehry, R., Pishvaie, MR.: Multi-criterion based well placement and control in the water-flooding of naturally fractured reservoir. J. Pet. Sci. Eng. 149, 675–685 (2017). https://doi.org/10.1016/j.petrol.2016.11.013
– reference: de Moraes, MB., Coelho, GP.: A diversity preservation method for expensive multi-objective combinatorial optimization problems using Novel-First Tabu Search and MOEA/D. Expert Syst. Appl. 202, 117, 251 (2022). https://doi.org/10.1016/j.eswa.2022.117251
– reference: Wang, L., Yao, Y., Zhang, T., et al.: A novel self-adaptive multi-fidelity surrogate-assisted multi-objective evolutionary algorithm for simulation-based production optimization. Journal of Petroleum Science and Engineering (January) 211, 110, 111 (2022). https://doi.org/10.1016/j.petrol.2022.110111
– reference: Coello, Coello, CA., Lamont, GB., Veldhuizen, DAV.: Evolutionary Algorithms for Solving Multi-Objective Problems. (2007). https://doi.org/10.1007/978-0-387-36797-2
– reference: YasariEPishvaieMRPareto-based robust optimization of water-flooding using multiple realizationsJ. Pet. Sci. Eng.2015132182710.1016/j.petrol.2015.04.038
– reference: Zhang, G., Gao, L., Shi, Y.: A genetic algorithm and tabu search for multi objective flexible job shop scheduling problems. 2010 Int. Conf. Comput., Control Ind. Eng., CCIE 2010 1, 251–254 (2010). https://doi.org/10.1109/CCIE.2010.71
– reference: Gee, SB., Qiu, X., Tan, KC.: A novel diversity maintenance scheme for evolutionary multi-objective optimization. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol 8206 LNCS. p 270–277 (2013). https://doi.org/10.1007/978-3-642-41278-3_33
– reference: Mohammed, AM., Duffuaa, SO.: A tabu search based algorithm for the optimal design of multi-objective multi-product supply chain networks. Expert Syst. Appl. 140, 112, 808 (2020). https://doi.org/10.1016/j.eswa.2019.07.025
– reference: Zhou, Y.: A Decomposition-Based Multi-Objective Tabu Search Algorithm for Tri-Objective Unconstrained Binary Quadratic Programming Problem. Proceedings - 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017 1, 101–107 (2017). https://doi.org/10.1109/CSE-EUC.2017.28
– reference: Santos, A., Gaspar, A., Avansi, G., et al.: Case study for field development and management - selection of production strategy based on UNISIM-II. Version 2. University of Campinas. (2022). https://www.unisim.cepetro.unicamp.br/benchmarks/en/unisim-ii/unisim-ii-d
– reference: YangZLiuCZhangSA Multi-Objective Memetic Algorithm for a Fuzzy Parallel Blocking Flow Shop Scheduling Problem of Panel Block Assembly in ShipbuildingJ. Ship Prod. Des.2019350217018110.5957/JSPD.170049
– reference: Alfieri, A., Castiglione, C., Pastore, E.: A multi-objective tabu search algorithm for product portfolio selection: A case study in the automotive industry. Comput. Ind. Eng. (February) 142:106, 382 (2020). https://doi.org/10.1016/j.cie.2020.106382
– reference: Harrison, R.: Regulation of Well Spacing in Oil and Gas Production. Alberta Law Rev. (1947), 357 (1969). https://doi.org/10.29173/alr1860
– reference: NojimaYNarukawaKKaigeSEffects of removing overlapping solutions on the performance of the NSGA-II algorithmLect. Notes Comput. Sci.2005341034135410.1007/978-3-540-31880-4\_24
– reference: YangJYangSNiPA Vector Tabu Search Algorithm With Enhanced Searching Ability for Pareto Solutions and Its Application to Multiobjective OptimizationsIEEE Trans. Magn.20165231410.1109/TMAG.2015.2483521
– reference: JiangMWangZHongHKnee Point-Based Imbalanced Transfer Learning for Dynamic Multiobjective OptimizationIEEE Transactions on Evolutionary Computation202125111712910.1109/TEVC.2020.3004027
– reference: Wilcoxon, F.: Individual Comparisons by Ranking Methods. In: Breakthroughs in Statistics. p 196–202, https://doi.org/10.1007/978-1-4612-4380-9_16
– reference: ZhangQLiHMOEA/D: A multiobjective evolutionary algorithm based on decompositionIEEE Trans. Evol. Comput.200711671273110.1109/TEVC.2007.892759
– reference: Coello, Coello, CA.: Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245–1287 (2002). https://doi.org/10.1016/S0045-7825(01)00323-1, https://www.sciencedirect.com/science/article/pii/S0045782501003231
– reference: Hayashi, SHD.: Value of flexibility and information in field development by modular implantation. Master’s thesis, University of Campinas, Brazil (2006)
– reference: Wang, L., Li, Z., Daniel, C., et al.: Journal of Petroleum Science and Engineering A novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithm. J. Pet. Science and Engineering (December 2019) 196, 107, 694 (2021). https://doi.org/10.1016/j.petrol.2020.107694
– reference: RosenwaldGWGreenDWA Method for Determining the Optimum Location of Wells in a Reservoir Using Mixed-Integer ProgrammingSoc. Pet. Eng. J.19741401445410.2118/3981-PA
– reference: DebKKalyanmoyDMulti-Objective Optimization Using Evolutionary Algorithms2001USAJohn Wiley & Sons Inc
– volume: 109
  start-page: 1
  year: 2013
  ident: 10235_CR37
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/j.petrol.2013.07.008
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10235_CR39
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 2
  start-page: 4
  issue: 1
  year: 1990
  ident: 10235_CR14
  publication-title: ORSA Journal on Computing
  doi: 10.1287/ijoc.2.1.4
– volume: 8
  start-page: 256
  issue: 3
  year: 2004
  ident: 10235_CR5
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826067
– ident: 10235_CR8
  doi: 10.2118/177140-MS
– volume: 14
  start-page: 44
  issue: 01
  year: 1974
  ident: 10235_CR25
  publication-title: Soc. Pet. Eng. J.
  doi: 10.2118/3981-PA
– ident: 10235_CR12
  doi: 10.1016/j.petrol.2016.05.042
– volume: 3410
  start-page: 490
  year: 2005
  ident: 10235_CR18
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-31880-4_34
– volume: 3410
  start-page: 341
  year: 2005
  ident: 10235_CR24
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-31880-4\_24
– ident: 10235_CR6
  doi: 10.1016/S0045-7825(01)00323-1
– ident: 10235_CR38
  doi: 10.1109/CCIE.2010.71
– ident: 10235_CR23
  doi: 10.1016/j.eswa.2022.117251
– ident: 10235_CR1
  doi: 10.1016/j.cie.2020.106382
– ident: 10235_CR7
  doi: 10.1007/978-0-387-36797-2
– volume: 105
  start-page: 32
  year: 2019
  ident: 10235_CR2
  publication-title: Comput. & Oper. Res.
  doi: 10.1016/j.cor.2019.01.002
– ident: 10235_CR22
  doi: 10.1016/j.eswa.2019.07.025
– volume: 132
  start-page: 18
  year: 2015
  ident: 10235_CR36
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.04.038
– volume: 23
  start-page: 1065
  issue: 5
  year: 2019
  ident: 10235_CR27
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-019-09863-2
– ident: 10235_CR4
  doi: 10.1016/j.petrol.2016.11.013
– volume: 8
  start-page: 631
  year: 1998
  ident: 10235_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496307510
– volume: 25
  start-page: 117
  issue: 1
  year: 2021
  ident: 10235_CR19
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2020.3004027
– volume: 52
  start-page: 1
  issue: 3
  year: 2016
  ident: 10235_CR34
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2015.2483521
– ident: 10235_CR33
  doi: 10.1007/978-1-4612-4380-9_16
– ident: 10235_CR16
– volume: 44
  start-page: 131
  issue: 1–2
  year: 2004
  ident: 10235_CR29
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2004.02.010
– ident: 10235_CR15
  doi: 10.29173/alr1860
– volume: 9
  start-page: 21
  issue: 1
  year: 2015
  ident: 10235_CR3
  publication-title: Int. J. Model. Simul. Pet. Ind.
– ident: 10235_CR17
  doi: 10.1007/978-3-319-10762-2_59
– volume: 98
  start-page: 23
  year: 2008
  ident: 10235_CR21
  publication-title: Stud. Comput. Intell.
  doi: 10.1007/978-3-540-77467-9\_2
– ident: 10235_CR40
  doi: 10.1109/CSE-EUC.2017.28
– volume-title: Multi-Objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: 10235_CR10
– ident: 10235_CR26
  doi: 10.3997/2214-4609.201900746
– ident: 10235_CR32
  doi: 10.1016/j.petrol.2022.110111
– ident: 10235_CR13
  doi: 10.1007/978-3-642-41278-3_33
– volume: 16
  start-page: 1137
  issue: 3
  year: 2019
  ident: 10235_CR41
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2018.2873098
– volume: 35
  start-page: 170
  issue: 02
  year: 2019
  ident: 10235_CR35
  publication-title: J. Ship Prod. Des.
  doi: 10.5957/JSPD.170049
– ident: 10235_CR31
  doi: 10.1016/j.petrol.2020.107694
– volume: 21
  start-page: 65
  issue: 1
  year: 2017
  ident: 10235_CR20
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2574621
– ident: 10235_CR11
  doi: 10.1007/978-3-540-70928-2_60
– ident: 10235_CR28
– ident: 10235_CR30
  doi: 10.1109/tsmc.2019.2956288
SSID ssj0009731
Score 2.3669453
Snippet In binary multi-objective well placement optimization, multiple conflicting objective functions must be optimized simultaneously in reservoir simulation models...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 765
SubjectTerms Algorithms
Carbonates
Earth and Environmental Science
Earth Sciences
Evolutionary algorithms
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Mathematical Modeling and Industrial Mathematics
Maximization
Multiple objective analysis
Oil production
Operators (mathematics)
Optimization
Original Paper
Placement
Preservation
Recombination
Reservoirs
Simulation
Simulation models
Soil Science & Conservation
Statistical analysis
SummonAdditionalLinks – databaseName: SpringerLink Contemporary (1997 - Present)
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4QD4kLb8RgoBy4QaSkTdb0CIjBaUK8tFuVpMkY2gNtZRJH_jlJmlJAgATnplbkOLZjf7YBOGxhKVKMFaLaNdXmKkVScYMENVJbk2GUwX7YRNLp8G43vQpFYdMK7V6lJL2m_lDsxjxg1mGpopgh-1BfsOaOu-t4fXNft9pN_BRCQiOX5k2TUCrzPY3P5qj2Mb-kRb21aa_-b59rYCV4l_CkFId1MKdHG2Dpwk_vfdkEr6e--ha6gB30aCwXG4RjqzaGoR4TOiB8DwqYa4c2D5Au5IxdDj36EI3lY6kloZ4FwXVExaA3nvSLhyF0sV2YV4AP6KC2Veh3C9y1z2_PLlGYwYBETKMCscQQQUSqlNG0ZSQ2hiv7jGEkJ8RELUEMSXWichnFwlj3zVgtIWPKmFQ4j2m8DeZH45HeAVAmRNA0MToSgkrOpVAsxUxw57W2OGsAUh1FpkKDcjcnY5DVrZUdazPL1cyzNsMNcPT-z1PZnuPX1c3qhLNwVadZZNWsNRfWT2uA4-pE688_U9v92_I9sByVQoEwaYL5YvKs98GimhX96eTAi_AbVD_t6A
  priority: 102
  providerName: Springer Nature
Title Binary well placement optimization using a decomposition-based multi-objective evolutionary algorithm with diversity preservation
URI https://link.springer.com/article/10.1007/s10596-023-10235-0
https://www.proquest.com/docview/2887146993
Volume 27
WOSCitedRecordID wos001035507000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: PCBAR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Link Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-1499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009731
  issn: 1420-0597
  databaseCode: RSV
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xKBKXUgqIbSnygRtY2I69SU6oVEAlxGrFo0JcItuxeQh2KbtF4th_Xo_XISoSXLj4ksSy9M0r429mADa6zOiSMUulw6bahS2psYWnWnrjgsvw1rM4bCLv9Yrz87KfEm6jRKtsbGI01PXQYo58WwRtCFod3OnO_W-KU6PwdjWN0JiGWS4ERzk_zGnbdDeP8wi5FHjhW-apaCaVzqlIv0VmlsgUZf87pjbafHFBGv3O_sJ7T_wJPqaIk3yfiMgiTLnBZ5g7iBN9n5bg726syCWYxCORoYX5QjIMpuQu1WgSJMdfEk1qhwz0RPOi6ABrEhmJdGhuJpaTuMckzLipvr0MJxpf3RHM95K6IYEQpN826eBlONvfO_3xk6a5DFRnUoypyj3XXJfWeie73jDvCxt-bRSvOfeiq7nnpcttbUSmfQjpfLAcJpNKGcvqTGYrMDMYDtwqEJNzLcvcO6G1NEVhtFUlU7rASLZbqA7wBpTKpqblODvjtmrbLSOQVcCwikBWrAObz9_cT1p2vPn2WoNeldR3VLXQdWCrwb99_PpuX97e7SvMi4nIUcbXYGb88Md9gw_2cXw9eliH2d29Xv94PQpxWI9EP6x9dRHW45Nf_wB6q_yI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoILb8RCAR_gBFZtx147B4R4lVZbVhyK1FuwHbuA2t3SXYp65A_xG_E4DhFI9NYD5yQjxfnmkZlvZgAejZmzNWOeyoBDtY2vqfMmUiujC8llRB9ZXjahp1Ozu1u_X4GffS8M0ip7m5gNdTv3mCNfF0kbklYnd_r88CvFrVFYXe1XaHSwmIST7-mXbfFs63X6vo-F2Hiz82qTlq0C1FZSLKnSkVtua-9jkOPoWIzGp8Bc8ZbzKMaWR14H7VsnKhtTQBIT7l0llXKetZWsktxzcF5WRuOs_ommw5BfnfcfcimwwFzr0qRTWvVUpvsiE0xUirI_HeEQ3f5VkM1-buPq_3ZC1-BKiajJi04FrsNKmN2Ai2_zxuKTm_DjZe44JpikJJmBhvlQMk-m8qD0oBIk_-8RS9qADPtCY6Po4FuSGZd07r50noGE46KsKNTu76UTWH46IJjPJm1PciFIL-7T3bfgw5m8_21Ync1n4Q4Qp7mVtY5BWCudMc56VTNlDUbqY6NGwHsQNL4MZcfdIPvNME4agdMkzDQZOA0bwZPfzxx2I0lOvXutR0tTzNOiGaAygqc93obL_5Z293RpD-HS5s677WZ7azq5B5dFB3fK-BqsLo--hftwwR8vPy-OHmTFIfDxrHH4C1MSVe4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PTxQxFH5BFMMFQSQuoPSAJ2xoO-3OzMEYFVfJmg0HTbiNbadFDOwiu0A4-m_519nX6TiRRG4cPM_MS6bzvR_z3vfeA9juM6NLxiyVDodqF7akxhaeaumNCy7DW8_isol8NCoOD8uDOfjV9sIgrbK1idFQ1xOLOfJdEbQhaHVwp7s-0SIO9gavz35Q3CCFldZ2nUYDkaG7vgq_b9NX-3vhW78QYvD-87uPNG0YoDqTYkZV7rnmurTWO9n3hnlf2BCkK15z7kVfc89Ll9vaiEz7EJz4oAMmk0oZy-pMZkHuPbgfvLBCHRvmtBv4m8ddiFwKLDaXeWrYSW17KlJ_kRUmMkXZ306xi3RvFGejzxs8-p9PaxmWUqRN3jSqsQJzbvwYFj7ETcbXq_DzbexEJpi8JJGZhnlSMgkm9DT1phJsCjgimtQOmfeJ3kbR8dckMjHpxHxvPAZxl0mJUag-OQonMPt2SjDPTeqW_EKQdtymwZ_Alzt5_zWYH0_G7ikQk3Mty9w7obU0RWG0VSVTusAIvl-oHvAWEJVNw9pxZ8hJ1Y2ZRhBVAT9VBFHFerDz55mzZlTJrXdvtsipktmaVh1sevCyxV53-d_S1m-XtgUPA_yqT_uj4QYsigb5lPFNmJ-dX7hn8MBezo6n58-jDhH4etcw_A1_Zl6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binary+well+placement+optimization+using+a+decomposition-based+multi-objective+evolutionary+algorithm+with+diversity+preservation&rft.jtitle=Computational+geosciences&rft.au=de+Moraes%2C+Matheus+Bernardelli&rft.au=Coelho%2C+Guilherme+Palermo&rft.au=Santos%2C+Antonio+Alberto+S&rft.au=Schiozer%2C+Denis+Jos%C3%A9&rft.date=2023-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1420-0597&rft.eissn=1573-1499&rft.volume=27&rft.issue=5&rft.spage=765&rft.epage=782&rft_id=info:doi/10.1007%2Fs10596-023-10235-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-0597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-0597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-0597&client=summon