Particle finite element method implementation for large deformation analysis using Abaqus
In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus...
Gespeichert in:
| Veröffentlicht in: | Acta geotechnica Jg. 16; H. 8; S. 2449 - 2462 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2021
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1861-1125, 1861-1133 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus and integrate them into PFEM with a single Python script, which leads to a considerable reduction in coding work. By utilizing the built-in functions in Abaqus to fulfil the standard incremental FEM analysis, as well as the powerful mesh-to-mesh solution mapping technique, the proposed Abaqus-PFEM approach allows for the large deformation analysis automatically running with a single Python script and requires no intervention from the user. The accuracy of the proposed Abaqus-PFEM approach is firstly validated through a simple elastic cantilever beam bending problem. Then, the performance and robustness of the proposed Abaqus-PFEM approach are further examined by three illustrative numerical examples: penetration of rigid footing, penetration of T-bar and pipeline–soil interaction problem. The numerical results demonstrate that the proposed Abaqus-PFEM approach as a powerful and easily extensible numerical tool is capable of handling large deformation and soil–structure interaction problems in geotechnical engineering, and consequently, it offers an alternative way to tackle such problems. |
|---|---|
| AbstractList | In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus and integrate them into PFEM with a single Python script, which leads to a considerable reduction in coding work. By utilizing the built-in functions in Abaqus to fulfil the standard incremental FEM analysis, as well as the powerful mesh-to-mesh solution mapping technique, the proposed Abaqus-PFEM approach allows for the large deformation analysis automatically running with a single Python script and requires no intervention from the user. The accuracy of the proposed Abaqus-PFEM approach is firstly validated through a simple elastic cantilever beam bending problem. Then, the performance and robustness of the proposed Abaqus-PFEM approach are further examined by three illustrative numerical examples: penetration of rigid footing, penetration of T-bar and pipeline–soil interaction problem. The numerical results demonstrate that the proposed Abaqus-PFEM approach as a powerful and easily extensible numerical tool is capable of handling large deformation and soil–structure interaction problems in geotechnical engineering, and consequently, it offers an alternative way to tackle such problems. |
| Author | Yuan, Wei-Hai Wang, Yuan Liu, Kang Wang, Hao-Cheng Zhang, Wei Dai, Bei-Bing |
| Author_xml | – sequence: 1 givenname: Wei-Hai orcidid: 0000-0002-0732-4329 surname: Yuan fullname: Yuan, Wei-Hai organization: College of Mechanics and Materials, Hohai University – sequence: 2 givenname: Hao-Cheng surname: Wang fullname: Wang, Hao-Cheng organization: College of Mechanics and Materials, Hohai University – sequence: 3 givenname: Wei orcidid: 0000-0002-3933-0109 surname: Zhang fullname: Zhang, Wei email: zhangwei@scau.edu.cn organization: College of Water Conservancy and Civil Engineering, South China Agricultural University, Institut für Geotechnik, Universität für Bodenkultur – sequence: 4 givenname: Bei-Bing surname: Dai fullname: Dai, Bei-Bing organization: School of Civil Engineering, Sun Yat-Sen University – sequence: 5 givenname: Kang surname: Liu fullname: Liu, Kang organization: School of Civil Engineering, Hefei University of Technology – sequence: 6 givenname: Yuan surname: Wang fullname: Wang, Yuan organization: College of Water Conservancy and Hydropower, Hohai University |
| BookMark | eNp9kEtPwzAMgCM0JLbBH-AUiXPBeTRtj9PES5oEBzhwitLWHZnadEvSw_49hSKQOHCwbFn-bOtbkJnrHRJyyeCaAWQ3gTEpIQE-BmNcJvyEzFmuWMKYELOfmqdnZBHCDkAJLtWcvD0bH23VIm2ssxEpttihi7TD-N7X1Hb7qWGi7R1tek9b47dIaxzrbuoaZ9pjsIEOwbotXZXmMIRzctqYNuDFd16S17vbl_VDsnm6f1yvNokRkseEG14hFHWhRI5cQYlYYFNLJdIGEIRKoTa5KNKKAytlClWKuQSpjMiUKZVYkqtp7973hwFD1Lt-8ONHQfNUAVOQZcU4xaepyvcheGz03tvO-KNmoD8V6kmhHhXqL4Waj1D-B6rsJCJ6Y9v_UTGhYbzjtuh_v_qH-gCeJYfi |
| CitedBy_id | crossref_primary_10_1007_s11440_023_02152_4 crossref_primary_10_1007_s11440_023_02155_1 crossref_primary_10_1007_s41939_024_00669_z crossref_primary_10_1007_s11440_023_02114_w crossref_primary_10_1016_j_jsg_2021_104466 crossref_primary_10_1080_10298436_2023_2301452 crossref_primary_10_1007_s00366_022_01757_9 crossref_primary_10_1016_j_compgeo_2023_105298 crossref_primary_10_1016_j_compgeo_2025_107514 crossref_primary_10_1016_j_foodchem_2025_143798 crossref_primary_10_3390_app15063169 crossref_primary_10_1155_adce_5530780 crossref_primary_10_1016_j_compgeo_2021_104484 crossref_primary_10_1016_j_compgeo_2021_104382 crossref_primary_10_1016_j_compgeo_2024_106284 crossref_primary_10_1631_jzus_A2100219 crossref_primary_10_1007_s11440_021_01217_6 crossref_primary_10_1016_j_compgeo_2024_106208 crossref_primary_10_1007_s13369_025_10518_x crossref_primary_10_1007_s40571_025_01028_6 crossref_primary_10_1016_j_cma_2022_114724 crossref_primary_10_1155_2022_3531980 crossref_primary_10_3390_ma18153593 crossref_primary_10_3390_app15031439 crossref_primary_10_1007_s00603_024_03912_8 crossref_primary_10_1016_j_enggeo_2020_105932 crossref_primary_10_1139_cgj_2020_0677 crossref_primary_10_3390_polym17111425 crossref_primary_10_1061__ASCE_GM_1943_5622_0001953 crossref_primary_10_1007_s40571_025_01000_4 crossref_primary_10_1016_j_euromechsol_2023_105076 crossref_primary_10_1007_s40571_024_00763_6 crossref_primary_10_1002_ese3_1756 crossref_primary_10_1061_IJGNAI_GMENG_8049 crossref_primary_10_1007_s40571_024_00730_1 crossref_primary_10_1007_s00466_024_02441_z crossref_primary_10_1002_nme_7455 crossref_primary_10_1186_s43065_025_00118_2 crossref_primary_10_1002_pc_29962 crossref_primary_10_1007_s00366_023_01792_0 crossref_primary_10_1177_00219983231166761 crossref_primary_10_3390_buildings14082559 crossref_primary_10_1016_j_jrmge_2025_04_001 crossref_primary_10_1007_s00366_022_01678_7 |
| Cites_doi | 10.1016/j.compgeo.2013.07.001 10.1002/nag.2815 10.1016/j.compgeo.2018.04.001 10.1007/s00466-013-0835-x 10.1016/S0266-352X(98)00012-3 10.1007/s42241-019-0058-5 10.1016/j.compgeo.2016.08.013 10.1016/j.enggeo.2020.105932 10.1002/nme.1470 10.1007/s11440-019-00859-x 10.1016/j.compgeo.2008.11.001 10.1002/nag.2428 10.1007/s00466-014-1088-z 10.1061/(ASCE)GM.1943-5622.0001079 10.1061/(ASCE)GM.1943-5622.0000457 10.1016/j.cma.2007.06.005 10.1061/(ASCE)EM.1943-7889.0000086 10.1002/zamm.19210010102 10.1108/EC-09-2018-0407 10.1142/S0219876204000204 10.1007/s00466-012-0768-9 10.1007/s11440-020-00933-9 10.1061/(ASCE)GM.1943-5622.0001600 10.1016/j.ijsolstr.2015.06.013 10.1016/j.compgeo.2010.09.002 10.1680/jgeot.15.LM.005 10.1016/j.geomorph.2014.02.031 10.1016/0045-7825(94)90112-0 10.1016/j.cma.2018.07.043 10.1016/j.compgeo.2013.12.001 10.1016/j.compgeo.2020.103486 10.1007/s00466-011-0617-2 10.1016/j.compgeo.2020.103856 10.1002/nag.2321 10.1007/s11440-019-00839-1 10.1016/j.compgeo.2015.01.009 10.1007/s10346-014-0484-y 10.1016/j.compgeo.2018.04.002 10.1016/j.compgeo.2020.103716 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X 10.1680/geot.1951.2.4.301 10.1007/s10346-020-01567-4 10.1007/s10346-020-01375-w 10.1002/nme.5186 10.1002/nag.688 10.1002/nme.5539 10.1007/s10346-019-01330-4 10.1016/j.compgeo.2014.12.005 10.1002/nme.1350 10.1016/j.compgeo.2018.01.018 10.1007/s10035-014-0505-5 10.1007/s11440-020-01000-z 10.1016/j.compgeo.2018.10.010 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021. |
| DBID | AAYXX CITATION 3V. 7TN 7UA 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KR7 L.G L6V M2P M7S PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS Q9U |
| DOI | 10.1007/s11440-020-01124-2 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Oceanic Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Science Database Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1861-1133 |
| EndPage | 2462 |
| ExternalDocumentID | 10_1007_s11440_020_01124_2 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province grantid: 2018A030310346 – fundername: National key technologies Research & Development program grantid: 2017YFC1502603 – fundername: Natural Science Foundation of China grantid: 41807223; 51908175; 52078507 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV L6V LK5 LLZTM M2P M4Y M7R M7S MA- MM- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PCBAR PF0 PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7Y Z7Z ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7TN 7UA 7XB 8FD 8FK C1K F1W FR3 H96 KR7 L.G PKEHL PQEST PQUKI Q9U |
| ID | FETCH-LOGICAL-a342t-2a2ce09d9638e260bee9efd4635f0e03650da8395c201b450c5e84046a376ab63 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 70 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604845000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1861-1125 |
| IngestDate | Wed Nov 05 14:47:14 EST 2025 Tue Nov 18 22:23:19 EST 2025 Sat Nov 29 03:34:59 EST 2025 Fri Feb 21 02:47:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Abaqus Particle finite element method (PFEM) Offshore geotechnical engineering Large deformation Python |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a342t-2a2ce09d9638e260bee9efd4635f0e03650da8395c201b450c5e84046a376ab63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0732-4329 0000-0002-3933-0109 |
| PQID | 2560160779 |
| PQPubID | 54451 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2560160779 crossref_primary_10_1007_s11440_020_01124_2 crossref_citationtrail_10_1007_s11440_020_01124_2 springer_journals_10_1007_s11440_020_01124_2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210800 2021-08-00 20210801 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 8 year: 2021 text: 20210800 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
| PublicationTitle | Acta geotechnica |
| PublicationTitleAbbrev | Acta Geotech |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | CasciniLCuomoSPastorMSorbinoGPiciulloLSPH run-out modelling of channelised landslides of the flow typeGeomorphology201421450251310.1016/j.geomorph.2014.02.031 ZhangXOñateETorresSAGBleyerJKrabbenhoftKA unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequencesComput Methods Appl Mech Eng201934331433838640891440.7413110.1016/j.cma.2018.07.043 MonforteLArroyoMCarbonellJMGensANumerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM)Comput Geotech20178214415610.1016/j.compgeo.2016.08.013 YuanW-HZhangWDaiB-BWangYApplication of the particle finite element method for large deformation consolidation analysisEng Comput2019363138316310.1108/EC-09-2018-0407(in press) CarbonellJMOñateESuárezBModeling of ground excavation with the particle finite-element methodJ Eng Mech2010136445546310.1061/(ASCE)EM.1943-7889.0000086 OñateEIdelsohnSRCeliguetaMARossiRAdvances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flowsComput Methods Appl Mech Eng200819719–201777180024038111194.7446010.1016/j.cma.2007.06.005 YuanW-HLiuKZhangWDaiBWangYDynamic modeling of large deformation slope failure using smoothed particle finite element methodLandslides2020171591160310.1007/s10346-020-01375-w SulskyDChenZSchreyerHLA particle method for history-dependent materialsComput Methods Appl Mech Eng19941181–217919612921080851.7307810.1016/0045-7825(94)90112-0 UllahSNHouLFSatchithananthanUChenZGuHA 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUSComput Geotech20189920321510.1016/j.compgeo.2018.01.018 QiuGHenkeSGrabeJApplication of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformationsComput Geotech2011381303910.1016/j.compgeo.2010.09.002 PengCBauingerCSzewcKWuWCaoHAn improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modellingJ Hydrodyn20193165466810.1007/s42241-019-0058-5 HuYRandolphMFH-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformationComput Geotech1998231–2618310.1016/S0266-352X(98)00012-3 MeyerhofGGThe ultimate bearing capacity of foudationsGeotechnique19514430133210.1680/geot.1951.2.4.301 ZhangWYuanWDaiBSmoothed particle finite-element method for large-deformation problems in geomechanicsInt J Geomech20181840401801010.1061/(ASCE)GM.1943-5622.0001079 ZhangXKrabbenhoftKPedrosoDMLyaminAVShengDda SilvaMVParticle finite element analysis of large deformation and granular flow problemsComput Geotech20135413314210.1016/j.compgeo.2013.07.001 PrandtlLHauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von SchneidenZAMM J Appl Math Mech Z Angew Math Mech192111152048.0926.0210.1002/zamm.19210010102 DongYGrabeJLarge scale parallelisation of the material point method with multiple GPUsComput Geotech201810114915810.1016/j.compgeo.2018.04.001 WuYLiNWangXCuiJChenYWuYYamamotoHExperimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China SeaEng Geol202010.1016/j.enggeo.2020.105932 Susan Hert, Seel M. dD Convex Hulls and Delaunay Triangulations. CGAL User and Reference Manual. 5.1 ed2020 SołowskiWTSloanSWEvaluation of material point method for use in geotechnicsInt J Numer Anal Methods Geomech201539768570110.1002/nag.2321 WuYYamamotoHCuiJChengHInfluence of load mode on particle crushing characteristics of silica sand at high stressesInt J Geomech20202030401919410.1061/(ASCE)GM.1943-5622.0001600 HuYRandolphMFA practical numerical approach for large deformation problems in soilInt J Numer Anal Methods Geomech19982253273500947.7406310.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X LuoYLuoBXiaoMEffect of deviator stress on the initiation of suffusionActa Geotech2020151607161710.1007/s11440-019-00859-x LareseARossiROñateEIdelsohnSRA coupled PFEM-Eulerian approach for the solution of porous FSI problemsComput Mech201250680581929996341311.7613510.1007/s00466-012-0768-9 ZhangXKrabbenhoftKShengDParticle finite element analysis of the granular column collapse problemGranul r Matter201416460961910.1007/s10035-014-0505-5 WangSWuWZhangDKimJRExtension of a basic hypoplastic model for overconsolidated claysComput Geotech202010.1016/j.compgeo.2020.103486 XuCKongUOHNumerical modeling of object penetration in geotechnical engineering2017Pok Fu LamUniversity of Hong Kong Libraries DávalosCCanteJHernándezJAOliverJOn the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM)Int J Solids Struct2015719912510.1016/j.ijsolstr.2015.06.013 OñateECeliguetaMAIdelsohnSRSalazarFSuárezBPossibilities of the particle finite element method for fluid-soil-structure interaction problemsComput Mech201148330731828330861398.7612010.1007/s00466-011-0617-2 SogaKAlonsoEYerroAKumarKBandaraSTrends in large-deformation analysis of landslide mass movements with particular emphasis on the material point methodGotechnique20156624827310.1680/jgeot.15.LM.005 OñateEIdelsohnSRDel PinFAubryRThe particle finite element method: an overviewInt J Comput Methods2004122673071182.7690110.1142/S0219876204000204 CarbonellJMOñateESuárezBModelling of tunnelling processes and rock cutting tool wear with the particle finite element methodComput Mech20135236076291282.7408510.1007/s00466-013-0835-x LuoYHuangYEffect of open-framework gravel on suffusion in sandy gravel alluviumActa Geotech20201592649266410.1007/s11440-020-00933-9 NazemMCarterJPAireyDWArbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problemsComput Geotech200936454955710.1016/j.compgeo.2008.11.001 EinavIRandolphMFCombining upper bound and strain path methods for evaluating penetration resistanceInt J Numer Methods Eng20056314199120161103.7434110.1002/nme.1350 MonforteLCarbonellJMArroyoMGensAPerformance of mixed formulations for the particle finite element method in soil mechanics problemsComput Particle Mech20164116 NazemMShengDCarterJPStress integration and mesh refinement for large deformation in geomechanicsInt J Numer Methods Eng2006657100210271179.7415310.1002/nme.1470 ZhangXWangLKrabbenhoftKTintiSA case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslideLandslides2019171117112710.1007/s10346-019-01330-4 ZhangWZhongZPengCYuanWWuWGPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanicsComput Geotech202110.1016/j.compgeo.2020.103856 ShanZZhangWWangDWangLNumerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slideQuebec, Landslides,201910.1007/s10346-020-01567-4 KardaniMNazemMCarterJPAbboAJEfficiency of high-order elements in large-deformation problems of geomechanicsInt J Geomech20151560401410110.1061/(ASCE)GM.1943-5622.0000457 ABAQUS (2016) ABAQUS analysis user’s manual. Version 2016. Dassault Systemes Simulia Corp ZhangXShengDSloanSWBleyerJLagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticityInt J Numer Methods Eng20171128963989371912610.1002/nme.5539 WangSWuWA simple hypoplastic model for overconsolidated claysActa Geotech202010.1007/s11440-020-01000-z TianYCassidyMJRandolphMFWangDGaudinCA simple implementation of RITSS and its application in large deformation analysisComput Geotech20145616016710.1016/j.compgeo.2013.12.001 ZhangXSloanSWOñateEDynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivityInt J Numer Anal Methods Geomech201842151806182210.1002/nag.2815 DongYReseeding of particles in the material point method for soil–structure interactionsComput Geotech202012710371610.1016/j.compgeo.2020.103716 PastorMBlancTHaddadBPetroneSSanchez MorlesMDrempeticVApplication of a SPH depth-integrated model to landslide run-out analysisLandslides201411579381210.1007/s10346-014-0484-y ShewchukJRLinMCManochaDTriangle: engineering a 2D quality mesh generator and Delaunay triangulatorApplied computational geometry: towards geometric engineering1996BerlinSpringer MonforteLArroyoMCarbonellJMGensACoupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element MethodComput Geotech201810111412910.1016/j.compgeo.2018.04.002 MolstadTKFinite deformation analysis using the finite element method1977VancouverUniversity of British Columbia BuiHHFukagawaRSakoKOhnoSLagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive modelInt J Numer Anal Methods Geomech20083212153715701273.7456310.1002/nag.688 RodriguezJMCarbonellJMCanteJCOliverJThe particle finite element method (PFEM) in thermo-mechanical problemsInt J Numer Methods Eng2016107973378535402641352.7442610.1002/nme.5186 YuanW-HWangBZhangWJiangQFengX-TDevelopment of an explicit smoothed particle finite element method for geotechnical applicationsComput Geotech2019106425110.1016/j.compgeo.2018.10.010 Hibbitt K. ABAQUS/Standard User’s Manual SalazarFIrazábalJLareseAOñateENumerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow modelInt J Numer Anal Methods Geomech201640680982610.1002/nag.2428 WangDBienenBNazemMTianYZhengJPuckerTLarge deformation finite element analyses in geotechnical engineeringComput Geotech20156510411410.1016/j.compgeo.2014.12.005 ZhangXKrabbenhoftKShengDLiWNumerical simulation of a flow-like landslide using the particle finite element methodComput Mech201555116717732949981311.7614110.1007/s00466-014-1088-z PengCWangSWuWYuH-SWangCChenJ-YLOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modelingActa Geotechnica2019141269128710.1007/s11440-019-00839-1 Silva MVD, Krabbenhoft K, Lyamin AV, Sloan SW (2011) Rigid-plastic large-deformation analysis of geotechnical penetration problems. In: Proceedings of WT Sołowski (1124_CR39) 2015; 39 L Prandtl (1124_CR31) 1921; 1 K Soga (1124_CR38) 2015; 66 SN Ullah (1124_CR43) 2018; 99 C Dávalos (1124_CR8) 2015; 71 1124_CR37 GG Meyerhof (1124_CR20) 1951; 4 M Nazem (1124_CR26) 2009; 36 JR Shewchuk (1124_CR36) 1996 X Zhang (1124_CR57) 2018; 42 M Pastor (1124_CR30) 2014; 11 G Qiu (1124_CR32) 2011; 38 JM Carbonell (1124_CR4) 2013; 52 Y Wu (1124_CR47) 2020 E Oñate (1124_CR27) 2004; 1 Y Dong (1124_CR11) 2015; 66 C Peng (1124_CR6) 2019; 31 W-H Yuan (1124_CR52) 2020; 17 X Zhang (1124_CR56) 2017; 112 Y Tian (1124_CR42) 2014; 56 X Zhang (1124_CR53) 2013; 54 W Zhang (1124_CR58) 2018; 18 1124_CR41 L Monforte (1124_CR22) 2016; 4 C Xu (1124_CR49) 2017 Y Dong (1124_CR9) 2020; 127 JM Rodriguez (1124_CR33) 2016; 107 W Zhang (1124_CR61) 2021 D Sulsky (1124_CR40) 1994; 118 X Zhang (1124_CR55) 2015; 55 Y Luo (1124_CR18) 2020; 15 F Salazar (1124_CR34) 2016; 40 Y Hu (1124_CR14) 1998; 23 1124_CR1 W-H Yuan (1124_CR50) 2019; 36 C Peng (1124_CR7) 2019; 14 D Wang (1124_CR45) 2015; 65 W-H Yuan (1124_CR51) 2019; 106 1124_CR13 E Oñate (1124_CR29) 2011; 48 X Zhang (1124_CR54) 2014; 16 Y Luo (1124_CR19) 2020; 15 TK Molstad (1124_CR21) 1977 X Zhang (1124_CR60) 2019; 17 HH Bui (1124_CR2) 2008; 32 S Wang (1124_CR44) 2020 M Nazem (1124_CR25) 2006; 65 S Wang (1124_CR46) 2020 I Einav (1124_CR12) 2005; 63 L Monforte (1124_CR24) 2018; 101 Y Dong (1124_CR10) 2018; 101 M Kardani (1124_CR16) 2015; 15 A Larese (1124_CR17) 2012; 50 Z Shan (1124_CR35) 2019 Y Hu (1124_CR15) 1998; 22 JM Carbonell (1124_CR3) 2010; 136 Y Wu (1124_CR48) 2020; 20 L Monforte (1124_CR23) 2017; 82 L Cascini (1124_CR5) 2014; 214 E Oñate (1124_CR28) 2008; 197 X Zhang (1124_CR59) 2019; 343 |
| References_xml | – reference: OñateECeliguetaMAIdelsohnSRSalazarFSuárezBPossibilities of the particle finite element method for fluid-soil-structure interaction problemsComput Mech201148330731828330861398.7612010.1007/s00466-011-0617-2 – reference: PengCWangSWuWYuH-SWangCChenJ-YLOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modelingActa Geotechnica2019141269128710.1007/s11440-019-00839-1 – reference: MolstadTKFinite deformation analysis using the finite element method1977VancouverUniversity of British Columbia – reference: ShewchukJRLinMCManochaDTriangle: engineering a 2D quality mesh generator and Delaunay triangulatorApplied computational geometry: towards geometric engineering1996BerlinSpringer – reference: Susan Hert, Seel M. dD Convex Hulls and Delaunay Triangulations. CGAL User and Reference Manual. 5.1 ed2020 – reference: LuoYLuoBXiaoMEffect of deviator stress on the initiation of suffusionActa Geotech2020151607161710.1007/s11440-019-00859-x – reference: MonforteLArroyoMCarbonellJMGensACoupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element MethodComput Geotech201810111412910.1016/j.compgeo.2018.04.002 – reference: ZhangXWangLKrabbenhoftKTintiSA case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslideLandslides2019171117112710.1007/s10346-019-01330-4 – reference: MeyerhofGGThe ultimate bearing capacity of foudationsGeotechnique19514430133210.1680/geot.1951.2.4.301 – reference: MonforteLArroyoMCarbonellJMGensANumerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM)Comput Geotech20178214415610.1016/j.compgeo.2016.08.013 – reference: WuYYamamotoHCuiJChengHInfluence of load mode on particle crushing characteristics of silica sand at high stressesInt J Geomech20202030401919410.1061/(ASCE)GM.1943-5622.0001600 – reference: YuanW-HWangBZhangWJiangQFengX-TDevelopment of an explicit smoothed particle finite element method for geotechnical applicationsComput Geotech2019106425110.1016/j.compgeo.2018.10.010 – reference: LuoYHuangYEffect of open-framework gravel on suffusion in sandy gravel alluviumActa Geotech20201592649266410.1007/s11440-020-00933-9 – reference: LareseARossiROñateEIdelsohnSRA coupled PFEM-Eulerian approach for the solution of porous FSI problemsComput Mech201250680581929996341311.7613510.1007/s00466-012-0768-9 – reference: OñateEIdelsohnSRDel PinFAubryRThe particle finite element method: an overviewInt J Comput Methods2004122673071182.7690110.1142/S0219876204000204 – reference: HuYRandolphMFH-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformationComput Geotech1998231–2618310.1016/S0266-352X(98)00012-3 – reference: RodriguezJMCarbonellJMCanteJCOliverJThe particle finite element method (PFEM) in thermo-mechanical problemsInt J Numer Methods Eng2016107973378535402641352.7442610.1002/nme.5186 – reference: WangSWuWA simple hypoplastic model for overconsolidated claysActa Geotech202010.1007/s11440-020-01000-z – reference: WangSWuWZhangDKimJRExtension of a basic hypoplastic model for overconsolidated claysComput Geotech202010.1016/j.compgeo.2020.103486 – reference: SulskyDChenZSchreyerHLA particle method for history-dependent materialsComput Methods Appl Mech Eng19941181–217919612921080851.7307810.1016/0045-7825(94)90112-0 – reference: ZhangXKrabbenhoftKShengDLiWNumerical simulation of a flow-like landslide using the particle finite element methodComput Mech201555116717732949981311.7614110.1007/s00466-014-1088-z – reference: ABAQUS (2016) ABAQUS analysis user’s manual. Version 2016. Dassault Systemes Simulia Corp – reference: ZhangXShengDSloanSWBleyerJLagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticityInt J Numer Methods Eng20171128963989371912610.1002/nme.5539 – reference: Hibbitt K. ABAQUS/Standard User’s Manual – reference: CarbonellJMOñateESuárezBModelling of tunnelling processes and rock cutting tool wear with the particle finite element methodComput Mech20135236076291282.7408510.1007/s00466-013-0835-x – reference: QiuGHenkeSGrabeJApplication of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformationsComput Geotech2011381303910.1016/j.compgeo.2010.09.002 – reference: SołowskiWTSloanSWEvaluation of material point method for use in geotechnicsInt J Numer Anal Methods Geomech201539768570110.1002/nag.2321 – reference: DongYReseeding of particles in the material point method for soil–structure interactionsComput Geotech202012710371610.1016/j.compgeo.2020.103716 – reference: ZhangWYuanWDaiBSmoothed particle finite-element method for large-deformation problems in geomechanicsInt J Geomech20181840401801010.1061/(ASCE)GM.1943-5622.0001079 – reference: OñateEIdelsohnSRCeliguetaMARossiRAdvances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flowsComput Methods Appl Mech Eng200819719–201777180024038111194.7446010.1016/j.cma.2007.06.005 – reference: BuiHHFukagawaRSakoKOhnoSLagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive modelInt J Numer Anal Methods Geomech20083212153715701273.7456310.1002/nag.688 – reference: ZhangXOñateETorresSAGBleyerJKrabbenhoftKA unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequencesComput Methods Appl Mech Eng201934331433838640891440.7413110.1016/j.cma.2018.07.043 – reference: TianYCassidyMJRandolphMFWangDGaudinCA simple implementation of RITSS and its application in large deformation analysisComput Geotech20145616016710.1016/j.compgeo.2013.12.001 – reference: ZhangXSloanSWOñateEDynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivityInt J Numer Anal Methods Geomech201842151806182210.1002/nag.2815 – reference: YuanW-HLiuKZhangWDaiBWangYDynamic modeling of large deformation slope failure using smoothed particle finite element methodLandslides2020171591160310.1007/s10346-020-01375-w – reference: EinavIRandolphMFCombining upper bound and strain path methods for evaluating penetration resistanceInt J Numer Methods Eng20056314199120161103.7434110.1002/nme.1350 – reference: HuYRandolphMFA practical numerical approach for large deformation problems in soilInt J Numer Anal Methods Geomech19982253273500947.7406310.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X – reference: ZhangXKrabbenhoftKShengDParticle finite element analysis of the granular column collapse problemGranul r Matter201416460961910.1007/s10035-014-0505-5 – reference: WuYLiNWangXCuiJChenYWuYYamamotoHExperimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China SeaEng Geol202010.1016/j.enggeo.2020.105932 – reference: PengCBauingerCSzewcKWuWCaoHAn improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modellingJ Hydrodyn20193165466810.1007/s42241-019-0058-5 – reference: WangDBienenBNazemMTianYZhengJPuckerTLarge deformation finite element analyses in geotechnical engineeringComput Geotech20156510411410.1016/j.compgeo.2014.12.005 – reference: KardaniMNazemMCarterJPAbboAJEfficiency of high-order elements in large-deformation problems of geomechanicsInt J Geomech20151560401410110.1061/(ASCE)GM.1943-5622.0000457 – reference: NazemMShengDCarterJPStress integration and mesh refinement for large deformation in geomechanicsInt J Numer Methods Eng2006657100210271179.7415310.1002/nme.1470 – reference: NazemMCarterJPAireyDWArbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problemsComput Geotech200936454955710.1016/j.compgeo.2008.11.001 – reference: YuanW-HZhangWDaiB-BWangYApplication of the particle finite element method for large deformation consolidation analysisEng Comput2019363138316310.1108/EC-09-2018-0407(in press) – reference: ZhangXKrabbenhoftKPedrosoDMLyaminAVShengDda SilvaMVParticle finite element analysis of large deformation and granular flow problemsComput Geotech20135413314210.1016/j.compgeo.2013.07.001 – reference: UllahSNHouLFSatchithananthanUChenZGuHA 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUSComput Geotech20189920321510.1016/j.compgeo.2018.01.018 – reference: ShanZZhangWWangDWangLNumerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slideQuebec, Landslides,201910.1007/s10346-020-01567-4 – reference: XuCKongUOHNumerical modeling of object penetration in geotechnical engineering2017Pok Fu LamUniversity of Hong Kong Libraries – reference: DávalosCCanteJHernándezJAOliverJOn the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM)Int J Solids Struct2015719912510.1016/j.ijsolstr.2015.06.013 – reference: ZhangWZhongZPengCYuanWWuWGPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanicsComput Geotech202110.1016/j.compgeo.2020.103856 – reference: PrandtlLHauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von SchneidenZAMM J Appl Math Mech Z Angew Math Mech192111152048.0926.0210.1002/zamm.19210010102 – reference: SogaKAlonsoEYerroAKumarKBandaraSTrends in large-deformation analysis of landslide mass movements with particular emphasis on the material point methodGotechnique20156624827310.1680/jgeot.15.LM.005 – reference: DongYWangDRandolphMA GPU parallel computing strategy for the material point methodComput Geotech201566313810.1016/j.compgeo.2015.01.009 – reference: CarbonellJMOñateESuárezBModeling of ground excavation with the particle finite-element methodJ Eng Mech2010136445546310.1061/(ASCE)EM.1943-7889.0000086 – reference: PastorMBlancTHaddadBPetroneSSanchez MorlesMDrempeticVApplication of a SPH depth-integrated model to landslide run-out analysisLandslides201411579381210.1007/s10346-014-0484-y – reference: MonforteLCarbonellJMArroyoMGensAPerformance of mixed formulations for the particle finite element method in soil mechanics problemsComput Particle Mech20164116 – reference: DongYGrabeJLarge scale parallelisation of the material point method with multiple GPUsComput Geotech201810114915810.1016/j.compgeo.2018.04.001 – reference: Silva MVD, Krabbenhoft K, Lyamin AV, Sloan SW (2011) Rigid-plastic large-deformation analysis of geotechnical penetration problems. In: Proceedings of 13th IACMAG conference, pp 42–47 – reference: SalazarFIrazábalJLareseAOñateENumerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow modelInt J Numer Anal Methods Geomech201640680982610.1002/nag.2428 – reference: CasciniLCuomoSPastorMSorbinoGPiciulloLSPH run-out modelling of channelised landslides of the flow typeGeomorphology201421450251310.1016/j.geomorph.2014.02.031 – volume: 54 start-page: 133 year: 2013 ident: 1124_CR53 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2013.07.001 – volume: 42 start-page: 1806 issue: 15 year: 2018 ident: 1124_CR57 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2815 – volume: 101 start-page: 149 year: 2018 ident: 1124_CR10 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.04.001 – volume: 52 start-page: 607 issue: 3 year: 2013 ident: 1124_CR4 publication-title: Comput Mech doi: 10.1007/s00466-013-0835-x – volume: 23 start-page: 61 issue: 1–2 year: 1998 ident: 1124_CR14 publication-title: Comput Geotech doi: 10.1016/S0266-352X(98)00012-3 – volume: 31 start-page: 654 year: 2019 ident: 1124_CR6 publication-title: J Hydrodyn doi: 10.1007/s42241-019-0058-5 – volume: 82 start-page: 144 year: 2017 ident: 1124_CR23 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2016.08.013 – year: 2020 ident: 1124_CR47 publication-title: Eng Geol doi: 10.1016/j.enggeo.2020.105932 – volume: 65 start-page: 1002 issue: 7 year: 2006 ident: 1124_CR25 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1470 – ident: 1124_CR37 – volume: 15 start-page: 1607 year: 2020 ident: 1124_CR19 publication-title: Acta Geotech doi: 10.1007/s11440-019-00859-x – volume: 36 start-page: 549 issue: 4 year: 2009 ident: 1124_CR26 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2008.11.001 – volume: 40 start-page: 809 issue: 6 year: 2016 ident: 1124_CR34 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2428 – volume: 55 start-page: 167 issue: 1 year: 2015 ident: 1124_CR55 publication-title: Comput Mech doi: 10.1007/s00466-014-1088-z – volume: 18 start-page: 04018010 issue: 4 year: 2018 ident: 1124_CR58 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001079 – volume: 15 start-page: 04014101 issue: 6 year: 2015 ident: 1124_CR16 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0000457 – volume: 197 start-page: 1777 issue: 19–20 year: 2008 ident: 1124_CR28 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2007.06.005 – volume: 136 start-page: 455 issue: 4 year: 2010 ident: 1124_CR3 publication-title: J Eng Mech doi: 10.1061/(ASCE)EM.1943-7889.0000086 – volume: 1 start-page: 15 issue: 1 year: 1921 ident: 1124_CR31 publication-title: ZAMM J Appl Math Mech Z Angew Math Mech doi: 10.1002/zamm.19210010102 – volume: 36 start-page: 3138 year: 2019 ident: 1124_CR50 publication-title: Eng Comput doi: 10.1108/EC-09-2018-0407 – volume: 1 start-page: 267 issue: 2 year: 2004 ident: 1124_CR27 publication-title: Int J Comput Methods doi: 10.1142/S0219876204000204 – volume: 50 start-page: 805 issue: 6 year: 2012 ident: 1124_CR17 publication-title: Comput Mech doi: 10.1007/s00466-012-0768-9 – volume: 15 start-page: 2649 issue: 9 year: 2020 ident: 1124_CR18 publication-title: Acta Geotech doi: 10.1007/s11440-020-00933-9 – volume: 20 start-page: 04019194 issue: 3 year: 2020 ident: 1124_CR48 publication-title: Int J Geomech doi: 10.1061/(ASCE)GM.1943-5622.0001600 – volume: 71 start-page: 99 year: 2015 ident: 1124_CR8 publication-title: Int J Solids Struct doi: 10.1016/j.ijsolstr.2015.06.013 – volume-title: Finite deformation analysis using the finite element method year: 1977 ident: 1124_CR21 – ident: 1124_CR13 – volume: 38 start-page: 30 issue: 1 year: 2011 ident: 1124_CR32 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2010.09.002 – volume: 66 start-page: 248 year: 2015 ident: 1124_CR38 publication-title: Gotechnique doi: 10.1680/jgeot.15.LM.005 – volume-title: Numerical modeling of object penetration in geotechnical engineering year: 2017 ident: 1124_CR49 – volume: 214 start-page: 502 year: 2014 ident: 1124_CR5 publication-title: Geomorphology doi: 10.1016/j.geomorph.2014.02.031 – volume-title: Applied computational geometry: towards geometric engineering year: 1996 ident: 1124_CR36 – volume: 118 start-page: 179 issue: 1–2 year: 1994 ident: 1124_CR40 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/0045-7825(94)90112-0 – volume: 343 start-page: 314 year: 2019 ident: 1124_CR59 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2018.07.043 – volume: 56 start-page: 160 year: 2014 ident: 1124_CR42 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2013.12.001 – year: 2020 ident: 1124_CR46 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2020.103486 – volume: 48 start-page: 307 issue: 3 year: 2011 ident: 1124_CR29 publication-title: Comput Mech doi: 10.1007/s00466-011-0617-2 – year: 2021 ident: 1124_CR61 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2020.103856 – volume: 39 start-page: 685 issue: 7 year: 2015 ident: 1124_CR39 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.2321 – volume: 14 start-page: 1269 year: 2019 ident: 1124_CR7 publication-title: Acta Geotechnica doi: 10.1007/s11440-019-00839-1 – volume: 66 start-page: 31 year: 2015 ident: 1124_CR11 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2015.01.009 – volume: 4 start-page: 1 year: 2016 ident: 1124_CR22 publication-title: Comput Particle Mech – ident: 1124_CR41 – ident: 1124_CR1 – volume: 11 start-page: 793 issue: 5 year: 2014 ident: 1124_CR30 publication-title: Landslides doi: 10.1007/s10346-014-0484-y – volume: 101 start-page: 114 year: 2018 ident: 1124_CR24 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.04.002 – volume: 127 start-page: 103716 year: 2020 ident: 1124_CR9 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2020.103716 – volume: 22 start-page: 327 issue: 5 year: 1998 ident: 1124_CR15 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X – volume: 4 start-page: 301 issue: 4 year: 1951 ident: 1124_CR20 publication-title: Geotechnique doi: 10.1680/geot.1951.2.4.301 – year: 2019 ident: 1124_CR35 publication-title: Quebec, Landslides, doi: 10.1007/s10346-020-01567-4 – volume: 17 start-page: 1591 year: 2020 ident: 1124_CR52 publication-title: Landslides doi: 10.1007/s10346-020-01375-w – volume: 107 start-page: 733 issue: 9 year: 2016 ident: 1124_CR33 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5186 – volume: 32 start-page: 1537 issue: 12 year: 2008 ident: 1124_CR2 publication-title: Int J Numer Anal Methods Geomech doi: 10.1002/nag.688 – volume: 112 start-page: 963 issue: 8 year: 2017 ident: 1124_CR56 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.5539 – volume: 17 start-page: 1117 year: 2019 ident: 1124_CR60 publication-title: Landslides doi: 10.1007/s10346-019-01330-4 – volume: 65 start-page: 104 year: 2015 ident: 1124_CR45 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2014.12.005 – volume: 63 start-page: 1991 issue: 14 year: 2005 ident: 1124_CR12 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1350 – volume: 99 start-page: 203 year: 2018 ident: 1124_CR43 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.01.018 – volume: 16 start-page: 609 issue: 4 year: 2014 ident: 1124_CR54 publication-title: Granul r Matter doi: 10.1007/s10035-014-0505-5 – year: 2020 ident: 1124_CR44 publication-title: Acta Geotech doi: 10.1007/s11440-020-01000-z – volume: 106 start-page: 42 year: 2019 ident: 1124_CR51 publication-title: Comput Geotech doi: 10.1016/j.compgeo.2018.10.010 |
| SSID | ssj0063246 |
| Score | 2.4859326 |
| Snippet | In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus.... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2449 |
| SubjectTerms | Analysis Cantilever beams Civil engineering Complex Fluids and Microfluidics Deformation Deformation analysis Engineering Finite element analysis Finite element method Foundations Geoengineering Geotechnical engineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Mathematical analysis Mechanics Penetration Programming languages Research Paper Robustness (mathematics) Soft and Granular Matter Software packages Software upgrading Soil Soil Science & Conservation Soil-structure interaction Solid Mechanics Submarine pipelines Variables |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA8yPejBtzidkoM3DbRp0sdxiMPTGL6Yp5K2X2QwN103_36_pOmqooKem6ble_4-vhchZ4BRsvYgYpksciaiLGcmW8N8X4FWQscQZHbZRNTvx8NhMnBNYWVd7V6nJK2lbprdbB7ShDsok1wwNLyr6O5io443tw-1_TXzx21PURz6-EkuXavM93d8dkcNxvySFrXeprf1v__cJpsOXdJuJQ47ZAUmu2Tjw8zBPfI4cMJC9cjgTQpVATmtdknT0XNdUW5YRhHT0rGpFqcFLBsdqXKjTKgpm3-i3Uy9Lsp9ct-7uru8Zm6_AlOB4HPGFc-RV4XRQcC4JgNIQBcCMQiyD12b9AqFAErmiBIyIb1cAsaDIlRolVQWBgekNZlO4JDQIDDITNoko9BhlEjNhfbCWGgMyGJoE78mc5q74eNmB8Y4bcYmG7KlSLbUki3lbXK-fOelGr3x6-lOzb3UqWGZ2ngz9KIoaZOLmlvN459vO_rb8WOyzk2tiy0M7JDWfLaAE7KWv81H5ezUiuc72izcpA priority: 102 providerName: Springer Nature |
| Title | Particle finite element method implementation for large deformation analysis using Abaqus |
| URI | https://link.springer.com/article/10.1007/s11440-020-01124-2 https://www.proquest.com/docview/2560160779 |
| Volume | 16 |
| WOSCitedRecordID | wos000604845000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1861-1133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063246 issn: 1861-1125 databaseCode: RSV dateStart: 20060501 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RlgEG3ohCqTywgUXqOI9OqKBWLFRVC6hMkZPYqFLpu_x-fI7TAhJdWLwkcaJ85_N3vhfAldRWsnJkQGMvTSgP4oSit4bWakIqwVUo3dg0mwja7bDfr3fsgdvchlXmOtEo6nSc4Bn5rTEdfCcI6neTKcWuUehdtS00ClDCSmW8CKX7ZrvTzXUx1iI3-UWhX9OvZ55Nm8mS54xfE80nLeOMU_Zza1rzzV8uUrPztPb_-80HsGc5J2lkQnIIW3J0BLvfKhEew1vHihBRA2ShRGZh5STrME0GH3mcOQJJNNMlQ4whJ6lcpT8SYQucEAymfyeNWEyX8xN4aTWfHx6p7bpAhcvZgjLBEo1giitTamsnlrIuVco1M9Gg6g3Pc1KhaZWXaO4Qc89JPKmtRO4LratE7LunUByNR_IMiOsiX_OM65ErP6h7inHl-CFX2kwLZRlq-Q-PEluSHDtjDKN1MWUEKdIgRQakiJXhevXMJCvIsfHuSo5MZBfnPFrDUoabHNv15b9nO9882wXsMIx4MeGBFSguZkt5CdvJ52Iwn1WtaFah8MQ6OAY9PXZ7r19REOtB |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xScCBHVFWH-AEFqnjLD0gVAFVEVD1ABKcgpPYqBK0hRYQP8U3MuMkFJDojQPnJJYTv5l5k9kAtjV6ycbRAY-9NOEyiBNO0RpeLittlDShdmM7bCJoNMLr60pzBN6LWhhKqyx0olXUaSehf-T71nXwnSCoHHYfOU2NouhqMUIjg8WZfntFl613cHqM57sjRO3k8qjO86kCXLlS9LlQIsEdpoQ8jWw-1rqiTSrR8uKmUaF7TqqQNngJ2sZYek7iafSCpK9QFlXsu7juKIxL9IRIri5Es9D81PncVjOFfhlfVnh5kU5WqmejqOSsoUQJycV3Qzhgtz8CstbO1Wb_2xeag5mcUbNqJgLzMKLbCzD9pc_iItw0cwFhpkUcm-ksaZ5l87NZ66HIoieYMuTx7J4y5FmqP4s7mcrbtzAqFbhj1Vg9PveW4OpP3m0Zxtqdtl4B5rrERj0bWJXGDyqeEdI4figNOqGhLkG5OOAoyRuu09yP-2jQKppAESEoIguKSJRg9_OZbtZuZOjd6wUSolz19KIBDEqwV2BpcPn31VaHr7YFk_XLi_Po_LRxtgZTgnJ7bCLkOoz1n571BkwkL_1W72nTCgWD27_G2AcKlUJI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60iujBt1ife9CTLk03m0cPIsVaLJVSUKGe4ibZlUKt9qHiX_PXObtJWhXsrQfPSZZs9ptX5psZgCOJUbKypEdDJ44o98KI6mwNLRaFVIIrX9qhGTbhNRp-q1VqzsBnVgujaZWZTjSKOn6O9D_yggkdXMvzSgWV0iKaler5S4_qCVI605qN00ggUpcf7xi-Dc5qFTzrY8aql7cXVzSdMECFzdmQMsEifNtYo1CiZx9KWZIq5miFcQOo3B0rFuhCOBHayZA7VuRIjIi4K1AuRejauO4szHkc_QRDG7zJrIDugm4qm3y3iBtnTlqwk5TtmYyqDtxQuhin7KdRHHu6v5KzxuZVV_7z11qF5dTTJuVENNZgRnbXYelb_8UNuG-mgkNUW_veRCZkepLM1Sbtp4xdr-FL0L8nHc2cJ7EcFX0SkbZ1IbqE4JGUQ9F7HWzC3VT2tgW57nNXbgOxbe2lOibhypXrlRzFuLJcnysMTn2Zh2J22EGUNmLX80A6wbiFtAZIgAAJDEACloeT0TMvSRuSiXfvZagIUpU0CMaQyMNphqvx5b9X25m82iEsILSC61qjvguLTFN-DD9yD3LD_qvch_nobdge9A-MfBB4mDbEvgAri0sY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+finite+element+method+implementation+for+large+deformation+analysis+using+Abaqus&rft.jtitle=Acta+geotechnica&rft.au=Yuan%2C+Wei-Hai&rft.au=Wang%2C+Hao-Cheng&rft.au=Zhang%2C+Wei&rft.au=Dai%2C+Bei-Bing&rft.date=2021-08-01&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=16&rft.issue=8&rft.spage=2449&rft.epage=2462&rft_id=info:doi/10.1007%2Fs11440-020-01124-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11440_020_01124_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon |