Particle finite element method implementation for large deformation analysis using Abaqus

In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geotechnica Jg. 16; H. 8; S. 2449 - 2462
Hauptverfasser: Yuan, Wei-Hai, Wang, Hao-Cheng, Zhang, Wei, Dai, Bei-Bing, Liu, Kang, Wang, Yuan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Springer Nature B.V
Schlagworte:
ISSN:1861-1125, 1861-1133
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus and integrate them into PFEM with a single Python script, which leads to a considerable reduction in coding work. By utilizing the built-in functions in Abaqus to fulfil the standard incremental FEM analysis, as well as the powerful mesh-to-mesh solution mapping technique, the proposed Abaqus-PFEM approach allows for the large deformation analysis automatically running with a single Python script and requires no intervention from the user. The accuracy of the proposed Abaqus-PFEM approach is firstly validated through a simple elastic cantilever beam bending problem. Then, the performance and robustness of the proposed Abaqus-PFEM approach are further examined by three illustrative numerical examples: penetration of rigid footing, penetration of T-bar and pipeline–soil interaction problem. The numerical results demonstrate that the proposed Abaqus-PFEM approach as a powerful and easily extensible numerical tool is capable of handling large deformation and soil–structure interaction problems in geotechnical engineering, and consequently, it offers an alternative way to tackle such problems.
AbstractList In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus. The main feature of the proposed Abaqus-PFEM approach lies in its capability to absorb the advantages of the functionality available in Abaqus and integrate them into PFEM with a single Python script, which leads to a considerable reduction in coding work. By utilizing the built-in functions in Abaqus to fulfil the standard incremental FEM analysis, as well as the powerful mesh-to-mesh solution mapping technique, the proposed Abaqus-PFEM approach allows for the large deformation analysis automatically running with a single Python script and requires no intervention from the user. The accuracy of the proposed Abaqus-PFEM approach is firstly validated through a simple elastic cantilever beam bending problem. Then, the performance and robustness of the proposed Abaqus-PFEM approach are further examined by three illustrative numerical examples: penetration of rigid footing, penetration of T-bar and pipeline–soil interaction problem. The numerical results demonstrate that the proposed Abaqus-PFEM approach as a powerful and easily extensible numerical tool is capable of handling large deformation and soil–structure interaction problems in geotechnical engineering, and consequently, it offers an alternative way to tackle such problems.
Author Yuan, Wei-Hai
Wang, Yuan
Liu, Kang
Wang, Hao-Cheng
Zhang, Wei
Dai, Bei-Bing
Author_xml – sequence: 1
  givenname: Wei-Hai
  orcidid: 0000-0002-0732-4329
  surname: Yuan
  fullname: Yuan, Wei-Hai
  organization: College of Mechanics and Materials, Hohai University
– sequence: 2
  givenname: Hao-Cheng
  surname: Wang
  fullname: Wang, Hao-Cheng
  organization: College of Mechanics and Materials, Hohai University
– sequence: 3
  givenname: Wei
  orcidid: 0000-0002-3933-0109
  surname: Zhang
  fullname: Zhang, Wei
  email: zhangwei@scau.edu.cn
  organization: College of Water Conservancy and Civil Engineering, South China Agricultural University, Institut für Geotechnik, Universität für Bodenkultur
– sequence: 4
  givenname: Bei-Bing
  surname: Dai
  fullname: Dai, Bei-Bing
  organization: School of Civil Engineering, Sun Yat-Sen University
– sequence: 5
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
  organization: School of Civil Engineering, Hefei University of Technology
– sequence: 6
  givenname: Yuan
  surname: Wang
  fullname: Wang, Yuan
  organization: College of Water Conservancy and Hydropower, Hohai University
BookMark eNp9kEtPwzAMgCM0JLbBH-AUiXPBeTRtj9PES5oEBzhwitLWHZnadEvSw_49hSKQOHCwbFn-bOtbkJnrHRJyyeCaAWQ3gTEpIQE-BmNcJvyEzFmuWMKYELOfmqdnZBHCDkAJLtWcvD0bH23VIm2ssxEpttihi7TD-N7X1Hb7qWGi7R1tek9b47dIaxzrbuoaZ9pjsIEOwbotXZXmMIRzctqYNuDFd16S17vbl_VDsnm6f1yvNokRkseEG14hFHWhRI5cQYlYYFNLJdIGEIRKoTa5KNKKAytlClWKuQSpjMiUKZVYkqtp7973hwFD1Lt-8ONHQfNUAVOQZcU4xaepyvcheGz03tvO-KNmoD8V6kmhHhXqL4Waj1D-B6rsJCJ6Y9v_UTGhYbzjtuh_v_qH-gCeJYfi
CitedBy_id crossref_primary_10_1007_s11440_023_02152_4
crossref_primary_10_1007_s11440_023_02155_1
crossref_primary_10_1007_s41939_024_00669_z
crossref_primary_10_1007_s11440_023_02114_w
crossref_primary_10_1016_j_jsg_2021_104466
crossref_primary_10_1080_10298436_2023_2301452
crossref_primary_10_1007_s00366_022_01757_9
crossref_primary_10_1016_j_compgeo_2023_105298
crossref_primary_10_1016_j_compgeo_2025_107514
crossref_primary_10_1016_j_foodchem_2025_143798
crossref_primary_10_3390_app15063169
crossref_primary_10_1155_adce_5530780
crossref_primary_10_1016_j_compgeo_2021_104484
crossref_primary_10_1016_j_compgeo_2021_104382
crossref_primary_10_1016_j_compgeo_2024_106284
crossref_primary_10_1631_jzus_A2100219
crossref_primary_10_1007_s11440_021_01217_6
crossref_primary_10_1016_j_compgeo_2024_106208
crossref_primary_10_1007_s13369_025_10518_x
crossref_primary_10_1007_s40571_025_01028_6
crossref_primary_10_1016_j_cma_2022_114724
crossref_primary_10_1155_2022_3531980
crossref_primary_10_3390_ma18153593
crossref_primary_10_3390_app15031439
crossref_primary_10_1007_s00603_024_03912_8
crossref_primary_10_1016_j_enggeo_2020_105932
crossref_primary_10_1139_cgj_2020_0677
crossref_primary_10_3390_polym17111425
crossref_primary_10_1061__ASCE_GM_1943_5622_0001953
crossref_primary_10_1007_s40571_025_01000_4
crossref_primary_10_1016_j_euromechsol_2023_105076
crossref_primary_10_1007_s40571_024_00763_6
crossref_primary_10_1002_ese3_1756
crossref_primary_10_1061_IJGNAI_GMENG_8049
crossref_primary_10_1007_s40571_024_00730_1
crossref_primary_10_1007_s00466_024_02441_z
crossref_primary_10_1002_nme_7455
crossref_primary_10_1186_s43065_025_00118_2
crossref_primary_10_1002_pc_29962
crossref_primary_10_1007_s00366_023_01792_0
crossref_primary_10_1177_00219983231166761
crossref_primary_10_3390_buildings14082559
crossref_primary_10_1016_j_jrmge_2025_04_001
crossref_primary_10_1007_s00366_022_01678_7
Cites_doi 10.1016/j.compgeo.2013.07.001
10.1002/nag.2815
10.1016/j.compgeo.2018.04.001
10.1007/s00466-013-0835-x
10.1016/S0266-352X(98)00012-3
10.1007/s42241-019-0058-5
10.1016/j.compgeo.2016.08.013
10.1016/j.enggeo.2020.105932
10.1002/nme.1470
10.1007/s11440-019-00859-x
10.1016/j.compgeo.2008.11.001
10.1002/nag.2428
10.1007/s00466-014-1088-z
10.1061/(ASCE)GM.1943-5622.0001079
10.1061/(ASCE)GM.1943-5622.0000457
10.1016/j.cma.2007.06.005
10.1061/(ASCE)EM.1943-7889.0000086
10.1002/zamm.19210010102
10.1108/EC-09-2018-0407
10.1142/S0219876204000204
10.1007/s00466-012-0768-9
10.1007/s11440-020-00933-9
10.1061/(ASCE)GM.1943-5622.0001600
10.1016/j.ijsolstr.2015.06.013
10.1016/j.compgeo.2010.09.002
10.1680/jgeot.15.LM.005
10.1016/j.geomorph.2014.02.031
10.1016/0045-7825(94)90112-0
10.1016/j.cma.2018.07.043
10.1016/j.compgeo.2013.12.001
10.1016/j.compgeo.2020.103486
10.1007/s00466-011-0617-2
10.1016/j.compgeo.2020.103856
10.1002/nag.2321
10.1007/s11440-019-00839-1
10.1016/j.compgeo.2015.01.009
10.1007/s10346-014-0484-y
10.1016/j.compgeo.2018.04.002
10.1016/j.compgeo.2020.103716
10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
10.1680/geot.1951.2.4.301
10.1007/s10346-020-01567-4
10.1007/s10346-020-01375-w
10.1002/nme.5186
10.1002/nag.688
10.1002/nme.5539
10.1007/s10346-019-01330-4
10.1016/j.compgeo.2014.12.005
10.1002/nme.1350
10.1016/j.compgeo.2018.01.018
10.1007/s10035-014-0505-5
10.1007/s11440-020-01000-z
10.1016/j.compgeo.2018.10.010
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7TN
7UA
7XB
88I
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KR7
L.G
L6V
M2P
M7S
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s11440-020-01124-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Science Database
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1861-1133
EndPage 2462
ExternalDocumentID 10_1007_s11440_020_01124_2
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2018A030310346
– fundername: National key technologies Research & Development program
  grantid: 2017YFC1502603
– fundername: Natural Science Foundation of China
  grantid: 41807223; 51908175; 52078507
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6-
KDC
KOV
L6V
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MM-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7Y
Z7Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7TN
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H96
KR7
L.G
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-a342t-2a2ce09d9638e260bee9efd4635f0e03650da8395c201b450c5e84046a376ab63
IEDL.DBID BENPR
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000604845000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1861-1125
IngestDate Wed Nov 05 14:47:14 EST 2025
Tue Nov 18 22:23:19 EST 2025
Sat Nov 29 03:34:59 EST 2025
Fri Feb 21 02:47:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Abaqus
Particle finite element method (PFEM)
Offshore geotechnical engineering
Large deformation
Python
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-2a2ce09d9638e260bee9efd4635f0e03650da8395c201b450c5e84046a376ab63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0732-4329
0000-0002-3933-0109
PQID 2560160779
PQPubID 54451
PageCount 14
ParticipantIDs proquest_journals_2560160779
crossref_primary_10_1007_s11440_020_01124_2
crossref_citationtrail_10_1007_s11440_020_01124_2
springer_journals_10_1007_s11440_020_01124_2
PublicationCentury 2000
PublicationDate 20210800
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 8
  year: 2021
  text: 20210800
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Acta geotechnica
PublicationTitleAbbrev Acta Geotech
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CasciniLCuomoSPastorMSorbinoGPiciulloLSPH run-out modelling of channelised landslides of the flow typeGeomorphology201421450251310.1016/j.geomorph.2014.02.031
ZhangXOñateETorresSAGBleyerJKrabbenhoftKA unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequencesComput Methods Appl Mech Eng201934331433838640891440.7413110.1016/j.cma.2018.07.043
MonforteLArroyoMCarbonellJMGensANumerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM)Comput Geotech20178214415610.1016/j.compgeo.2016.08.013
YuanW-HZhangWDaiB-BWangYApplication of the particle finite element method for large deformation consolidation analysisEng Comput2019363138316310.1108/EC-09-2018-0407(in press)
CarbonellJMOñateESuárezBModeling of ground excavation with the particle finite-element methodJ Eng Mech2010136445546310.1061/(ASCE)EM.1943-7889.0000086
OñateEIdelsohnSRCeliguetaMARossiRAdvances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flowsComput Methods Appl Mech Eng200819719–201777180024038111194.7446010.1016/j.cma.2007.06.005
YuanW-HLiuKZhangWDaiBWangYDynamic modeling of large deformation slope failure using smoothed particle finite element methodLandslides2020171591160310.1007/s10346-020-01375-w
SulskyDChenZSchreyerHLA particle method for history-dependent materialsComput Methods Appl Mech Eng19941181–217919612921080851.7307810.1016/0045-7825(94)90112-0
UllahSNHouLFSatchithananthanUChenZGuHA 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUSComput Geotech20189920321510.1016/j.compgeo.2018.01.018
QiuGHenkeSGrabeJApplication of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformationsComput Geotech2011381303910.1016/j.compgeo.2010.09.002
PengCBauingerCSzewcKWuWCaoHAn improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modellingJ Hydrodyn20193165466810.1007/s42241-019-0058-5
HuYRandolphMFH-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformationComput Geotech1998231–2618310.1016/S0266-352X(98)00012-3
MeyerhofGGThe ultimate bearing capacity of foudationsGeotechnique19514430133210.1680/geot.1951.2.4.301
ZhangWYuanWDaiBSmoothed particle finite-element method for large-deformation problems in geomechanicsInt J Geomech20181840401801010.1061/(ASCE)GM.1943-5622.0001079
ZhangXKrabbenhoftKPedrosoDMLyaminAVShengDda SilvaMVParticle finite element analysis of large deformation and granular flow problemsComput Geotech20135413314210.1016/j.compgeo.2013.07.001
PrandtlLHauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von SchneidenZAMM J Appl Math Mech Z Angew Math Mech192111152048.0926.0210.1002/zamm.19210010102
DongYGrabeJLarge scale parallelisation of the material point method with multiple GPUsComput Geotech201810114915810.1016/j.compgeo.2018.04.001
WuYLiNWangXCuiJChenYWuYYamamotoHExperimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China SeaEng Geol202010.1016/j.enggeo.2020.105932
Susan Hert, Seel M. dD Convex Hulls and Delaunay Triangulations. CGAL User and Reference Manual. 5.1 ed2020
SołowskiWTSloanSWEvaluation of material point method for use in geotechnicsInt J Numer Anal Methods Geomech201539768570110.1002/nag.2321
WuYYamamotoHCuiJChengHInfluence of load mode on particle crushing characteristics of silica sand at high stressesInt J Geomech20202030401919410.1061/(ASCE)GM.1943-5622.0001600
HuYRandolphMFA practical numerical approach for large deformation problems in soilInt J Numer Anal Methods Geomech19982253273500947.7406310.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
LuoYLuoBXiaoMEffect of deviator stress on the initiation of suffusionActa Geotech2020151607161710.1007/s11440-019-00859-x
LareseARossiROñateEIdelsohnSRA coupled PFEM-Eulerian approach for the solution of porous FSI problemsComput Mech201250680581929996341311.7613510.1007/s00466-012-0768-9
ZhangXKrabbenhoftKShengDParticle finite element analysis of the granular column collapse problemGranul r Matter201416460961910.1007/s10035-014-0505-5
WangSWuWZhangDKimJRExtension of a basic hypoplastic model for overconsolidated claysComput Geotech202010.1016/j.compgeo.2020.103486
XuCKongUOHNumerical modeling of object penetration in geotechnical engineering2017Pok Fu LamUniversity of Hong Kong Libraries
DávalosCCanteJHernándezJAOliverJOn the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM)Int J Solids Struct2015719912510.1016/j.ijsolstr.2015.06.013
OñateECeliguetaMAIdelsohnSRSalazarFSuárezBPossibilities of the particle finite element method for fluid-soil-structure interaction problemsComput Mech201148330731828330861398.7612010.1007/s00466-011-0617-2
SogaKAlonsoEYerroAKumarKBandaraSTrends in large-deformation analysis of landslide mass movements with particular emphasis on the material point methodGotechnique20156624827310.1680/jgeot.15.LM.005
OñateEIdelsohnSRDel PinFAubryRThe particle finite element method: an overviewInt J Comput Methods2004122673071182.7690110.1142/S0219876204000204
CarbonellJMOñateESuárezBModelling of tunnelling processes and rock cutting tool wear with the particle finite element methodComput Mech20135236076291282.7408510.1007/s00466-013-0835-x
LuoYHuangYEffect of open-framework gravel on suffusion in sandy gravel alluviumActa Geotech20201592649266410.1007/s11440-020-00933-9
NazemMCarterJPAireyDWArbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problemsComput Geotech200936454955710.1016/j.compgeo.2008.11.001
EinavIRandolphMFCombining upper bound and strain path methods for evaluating penetration resistanceInt J Numer Methods Eng20056314199120161103.7434110.1002/nme.1350
MonforteLCarbonellJMArroyoMGensAPerformance of mixed formulations for the particle finite element method in soil mechanics problemsComput Particle Mech20164116
NazemMShengDCarterJPStress integration and mesh refinement for large deformation in geomechanicsInt J Numer Methods Eng2006657100210271179.7415310.1002/nme.1470
ZhangXWangLKrabbenhoftKTintiSA case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslideLandslides2019171117112710.1007/s10346-019-01330-4
ZhangWZhongZPengCYuanWWuWGPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanicsComput Geotech202110.1016/j.compgeo.2020.103856
ShanZZhangWWangDWangLNumerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slideQuebec, Landslides,201910.1007/s10346-020-01567-4
KardaniMNazemMCarterJPAbboAJEfficiency of high-order elements in large-deformation problems of geomechanicsInt J Geomech20151560401410110.1061/(ASCE)GM.1943-5622.0000457
ABAQUS (2016) ABAQUS analysis user’s manual. Version 2016. Dassault Systemes Simulia Corp
ZhangXShengDSloanSWBleyerJLagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticityInt J Numer Methods Eng20171128963989371912610.1002/nme.5539
WangSWuWA simple hypoplastic model for overconsolidated claysActa Geotech202010.1007/s11440-020-01000-z
TianYCassidyMJRandolphMFWangDGaudinCA simple implementation of RITSS and its application in large deformation analysisComput Geotech20145616016710.1016/j.compgeo.2013.12.001
ZhangXSloanSWOñateEDynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivityInt J Numer Anal Methods Geomech201842151806182210.1002/nag.2815
DongYReseeding of particles in the material point method for soil–structure interactionsComput Geotech202012710371610.1016/j.compgeo.2020.103716
PastorMBlancTHaddadBPetroneSSanchez MorlesMDrempeticVApplication of a SPH depth-integrated model to landslide run-out analysisLandslides201411579381210.1007/s10346-014-0484-y
ShewchukJRLinMCManochaDTriangle: engineering a 2D quality mesh generator and Delaunay triangulatorApplied computational geometry: towards geometric engineering1996BerlinSpringer
MonforteLArroyoMCarbonellJMGensACoupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element MethodComput Geotech201810111412910.1016/j.compgeo.2018.04.002
MolstadTKFinite deformation analysis using the finite element method1977VancouverUniversity of British Columbia
BuiHHFukagawaRSakoKOhnoSLagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive modelInt J Numer Anal Methods Geomech20083212153715701273.7456310.1002/nag.688
RodriguezJMCarbonellJMCanteJCOliverJThe particle finite element method (PFEM) in thermo-mechanical problemsInt J Numer Methods Eng2016107973378535402641352.7442610.1002/nme.5186
YuanW-HWangBZhangWJiangQFengX-TDevelopment of an explicit smoothed particle finite element method for geotechnical applicationsComput Geotech2019106425110.1016/j.compgeo.2018.10.010
Hibbitt K. ABAQUS/Standard User’s Manual
SalazarFIrazábalJLareseAOñateENumerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow modelInt J Numer Anal Methods Geomech201640680982610.1002/nag.2428
WangDBienenBNazemMTianYZhengJPuckerTLarge deformation finite element analyses in geotechnical engineeringComput Geotech20156510411410.1016/j.compgeo.2014.12.005
ZhangXKrabbenhoftKShengDLiWNumerical simulation of a flow-like landslide using the particle finite element methodComput Mech201555116717732949981311.7614110.1007/s00466-014-1088-z
PengCWangSWuWYuH-SWangCChenJ-YLOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modelingActa Geotechnica2019141269128710.1007/s11440-019-00839-1
Silva MVD, Krabbenhoft K, Lyamin AV, Sloan SW (2011) Rigid-plastic large-deformation analysis of geotechnical penetration problems. In: Proceedings of
WT Sołowski (1124_CR39) 2015; 39
L Prandtl (1124_CR31) 1921; 1
K Soga (1124_CR38) 2015; 66
SN Ullah (1124_CR43) 2018; 99
C Dávalos (1124_CR8) 2015; 71
1124_CR37
GG Meyerhof (1124_CR20) 1951; 4
M Nazem (1124_CR26) 2009; 36
JR Shewchuk (1124_CR36) 1996
X Zhang (1124_CR57) 2018; 42
M Pastor (1124_CR30) 2014; 11
G Qiu (1124_CR32) 2011; 38
JM Carbonell (1124_CR4) 2013; 52
Y Wu (1124_CR47) 2020
E Oñate (1124_CR27) 2004; 1
Y Dong (1124_CR11) 2015; 66
C Peng (1124_CR6) 2019; 31
W-H Yuan (1124_CR52) 2020; 17
X Zhang (1124_CR56) 2017; 112
Y Tian (1124_CR42) 2014; 56
X Zhang (1124_CR53) 2013; 54
W Zhang (1124_CR58) 2018; 18
1124_CR41
L Monforte (1124_CR22) 2016; 4
C Xu (1124_CR49) 2017
Y Dong (1124_CR9) 2020; 127
JM Rodriguez (1124_CR33) 2016; 107
W Zhang (1124_CR61) 2021
D Sulsky (1124_CR40) 1994; 118
X Zhang (1124_CR55) 2015; 55
Y Luo (1124_CR18) 2020; 15
F Salazar (1124_CR34) 2016; 40
Y Hu (1124_CR14) 1998; 23
1124_CR1
W-H Yuan (1124_CR50) 2019; 36
C Peng (1124_CR7) 2019; 14
D Wang (1124_CR45) 2015; 65
W-H Yuan (1124_CR51) 2019; 106
1124_CR13
E Oñate (1124_CR29) 2011; 48
X Zhang (1124_CR54) 2014; 16
Y Luo (1124_CR19) 2020; 15
TK Molstad (1124_CR21) 1977
X Zhang (1124_CR60) 2019; 17
HH Bui (1124_CR2) 2008; 32
S Wang (1124_CR44) 2020
M Nazem (1124_CR25) 2006; 65
S Wang (1124_CR46) 2020
I Einav (1124_CR12) 2005; 63
L Monforte (1124_CR24) 2018; 101
Y Dong (1124_CR10) 2018; 101
M Kardani (1124_CR16) 2015; 15
A Larese (1124_CR17) 2012; 50
Z Shan (1124_CR35) 2019
Y Hu (1124_CR15) 1998; 22
JM Carbonell (1124_CR3) 2010; 136
Y Wu (1124_CR48) 2020; 20
L Monforte (1124_CR23) 2017; 82
L Cascini (1124_CR5) 2014; 214
E Oñate (1124_CR28) 2008; 197
X Zhang (1124_CR59) 2019; 343
References_xml – reference: OñateECeliguetaMAIdelsohnSRSalazarFSuárezBPossibilities of the particle finite element method for fluid-soil-structure interaction problemsComput Mech201148330731828330861398.7612010.1007/s00466-011-0617-2
– reference: PengCWangSWuWYuH-SWangCChenJ-YLOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modelingActa Geotechnica2019141269128710.1007/s11440-019-00839-1
– reference: MolstadTKFinite deformation analysis using the finite element method1977VancouverUniversity of British Columbia
– reference: ShewchukJRLinMCManochaDTriangle: engineering a 2D quality mesh generator and Delaunay triangulatorApplied computational geometry: towards geometric engineering1996BerlinSpringer
– reference: Susan Hert, Seel M. dD Convex Hulls and Delaunay Triangulations. CGAL User and Reference Manual. 5.1 ed2020
– reference: LuoYLuoBXiaoMEffect of deviator stress on the initiation of suffusionActa Geotech2020151607161710.1007/s11440-019-00859-x
– reference: MonforteLArroyoMCarbonellJMGensACoupled effective stress analysis of insertion problems in geotechnics with the Particle Finite Element MethodComput Geotech201810111412910.1016/j.compgeo.2018.04.002
– reference: ZhangXWangLKrabbenhoftKTintiSA case study and implication: particle finite element modelling of the 2010 Saint-Jude sensitive clay landslideLandslides2019171117112710.1007/s10346-019-01330-4
– reference: MeyerhofGGThe ultimate bearing capacity of foudationsGeotechnique19514430133210.1680/geot.1951.2.4.301
– reference: MonforteLArroyoMCarbonellJMGensANumerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM)Comput Geotech20178214415610.1016/j.compgeo.2016.08.013
– reference: WuYYamamotoHCuiJChengHInfluence of load mode on particle crushing characteristics of silica sand at high stressesInt J Geomech20202030401919410.1061/(ASCE)GM.1943-5622.0001600
– reference: YuanW-HWangBZhangWJiangQFengX-TDevelopment of an explicit smoothed particle finite element method for geotechnical applicationsComput Geotech2019106425110.1016/j.compgeo.2018.10.010
– reference: LuoYHuangYEffect of open-framework gravel on suffusion in sandy gravel alluviumActa Geotech20201592649266410.1007/s11440-020-00933-9
– reference: LareseARossiROñateEIdelsohnSRA coupled PFEM-Eulerian approach for the solution of porous FSI problemsComput Mech201250680581929996341311.7613510.1007/s00466-012-0768-9
– reference: OñateEIdelsohnSRDel PinFAubryRThe particle finite element method: an overviewInt J Comput Methods2004122673071182.7690110.1142/S0219876204000204
– reference: HuYRandolphMFH-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformationComput Geotech1998231–2618310.1016/S0266-352X(98)00012-3
– reference: RodriguezJMCarbonellJMCanteJCOliverJThe particle finite element method (PFEM) in thermo-mechanical problemsInt J Numer Methods Eng2016107973378535402641352.7442610.1002/nme.5186
– reference: WangSWuWA simple hypoplastic model for overconsolidated claysActa Geotech202010.1007/s11440-020-01000-z
– reference: WangSWuWZhangDKimJRExtension of a basic hypoplastic model for overconsolidated claysComput Geotech202010.1016/j.compgeo.2020.103486
– reference: SulskyDChenZSchreyerHLA particle method for history-dependent materialsComput Methods Appl Mech Eng19941181–217919612921080851.7307810.1016/0045-7825(94)90112-0
– reference: ZhangXKrabbenhoftKShengDLiWNumerical simulation of a flow-like landslide using the particle finite element methodComput Mech201555116717732949981311.7614110.1007/s00466-014-1088-z
– reference: ABAQUS (2016) ABAQUS analysis user’s manual. Version 2016. Dassault Systemes Simulia Corp
– reference: ZhangXShengDSloanSWBleyerJLagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticityInt J Numer Methods Eng20171128963989371912610.1002/nme.5539
– reference: Hibbitt K. ABAQUS/Standard User’s Manual
– reference: CarbonellJMOñateESuárezBModelling of tunnelling processes and rock cutting tool wear with the particle finite element methodComput Mech20135236076291282.7408510.1007/s00466-013-0835-x
– reference: QiuGHenkeSGrabeJApplication of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformationsComput Geotech2011381303910.1016/j.compgeo.2010.09.002
– reference: SołowskiWTSloanSWEvaluation of material point method for use in geotechnicsInt J Numer Anal Methods Geomech201539768570110.1002/nag.2321
– reference: DongYReseeding of particles in the material point method for soil–structure interactionsComput Geotech202012710371610.1016/j.compgeo.2020.103716
– reference: ZhangWYuanWDaiBSmoothed particle finite-element method for large-deformation problems in geomechanicsInt J Geomech20181840401801010.1061/(ASCE)GM.1943-5622.0001079
– reference: OñateEIdelsohnSRCeliguetaMARossiRAdvances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flowsComput Methods Appl Mech Eng200819719–201777180024038111194.7446010.1016/j.cma.2007.06.005
– reference: BuiHHFukagawaRSakoKOhnoSLagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive modelInt J Numer Anal Methods Geomech20083212153715701273.7456310.1002/nag.688
– reference: ZhangXOñateETorresSAGBleyerJKrabbenhoftKA unified Lagrangian formulation for solid and fluid dynamics and its possibility for modelling submarine landslides and their consequencesComput Methods Appl Mech Eng201934331433838640891440.7413110.1016/j.cma.2018.07.043
– reference: TianYCassidyMJRandolphMFWangDGaudinCA simple implementation of RITSS and its application in large deformation analysisComput Geotech20145616016710.1016/j.compgeo.2013.12.001
– reference: ZhangXSloanSWOñateEDynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivityInt J Numer Anal Methods Geomech201842151806182210.1002/nag.2815
– reference: YuanW-HLiuKZhangWDaiBWangYDynamic modeling of large deformation slope failure using smoothed particle finite element methodLandslides2020171591160310.1007/s10346-020-01375-w
– reference: EinavIRandolphMFCombining upper bound and strain path methods for evaluating penetration resistanceInt J Numer Methods Eng20056314199120161103.7434110.1002/nme.1350
– reference: HuYRandolphMFA practical numerical approach for large deformation problems in soilInt J Numer Anal Methods Geomech19982253273500947.7406310.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
– reference: ZhangXKrabbenhoftKShengDParticle finite element analysis of the granular column collapse problemGranul r Matter201416460961910.1007/s10035-014-0505-5
– reference: WuYLiNWangXCuiJChenYWuYYamamotoHExperimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China SeaEng Geol202010.1016/j.enggeo.2020.105932
– reference: PengCBauingerCSzewcKWuWCaoHAn improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modellingJ Hydrodyn20193165466810.1007/s42241-019-0058-5
– reference: WangDBienenBNazemMTianYZhengJPuckerTLarge deformation finite element analyses in geotechnical engineeringComput Geotech20156510411410.1016/j.compgeo.2014.12.005
– reference: KardaniMNazemMCarterJPAbboAJEfficiency of high-order elements in large-deformation problems of geomechanicsInt J Geomech20151560401410110.1061/(ASCE)GM.1943-5622.0000457
– reference: NazemMShengDCarterJPStress integration and mesh refinement for large deformation in geomechanicsInt J Numer Methods Eng2006657100210271179.7415310.1002/nme.1470
– reference: NazemMCarterJPAireyDWArbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problemsComput Geotech200936454955710.1016/j.compgeo.2008.11.001
– reference: YuanW-HZhangWDaiB-BWangYApplication of the particle finite element method for large deformation consolidation analysisEng Comput2019363138316310.1108/EC-09-2018-0407(in press)
– reference: ZhangXKrabbenhoftKPedrosoDMLyaminAVShengDda SilvaMVParticle finite element analysis of large deformation and granular flow problemsComput Geotech20135413314210.1016/j.compgeo.2013.07.001
– reference: UllahSNHouLFSatchithananthanUChenZGuHA 3D RITSS approach for total stress and coupled-flow large deformation problems using ABAQUSComput Geotech20189920321510.1016/j.compgeo.2018.01.018
– reference: ShanZZhangWWangDWangLNumerical investigations of retrogressive failure in sensitive clays: revisiting 1994 Sainte-Monique slideQuebec, Landslides,201910.1007/s10346-020-01567-4
– reference: XuCKongUOHNumerical modeling of object penetration in geotechnical engineering2017Pok Fu LamUniversity of Hong Kong Libraries
– reference: DávalosCCanteJHernándezJAOliverJOn the numerical modeling of granular material flows via the Particle Finite Element Method (PFEM)Int J Solids Struct2015719912510.1016/j.ijsolstr.2015.06.013
– reference: ZhangWZhongZPengCYuanWWuWGPU-accelerated smoothed particle finite element method for large deformation analysis in geomechanicsComput Geotech202110.1016/j.compgeo.2020.103856
– reference: PrandtlLHauptaufsätze: Über die Eindringungsfestigkeit (Härte) plastischer Baustoffe und die Festigkeit von SchneidenZAMM J Appl Math Mech Z Angew Math Mech192111152048.0926.0210.1002/zamm.19210010102
– reference: SogaKAlonsoEYerroAKumarKBandaraSTrends in large-deformation analysis of landslide mass movements with particular emphasis on the material point methodGotechnique20156624827310.1680/jgeot.15.LM.005
– reference: DongYWangDRandolphMA GPU parallel computing strategy for the material point methodComput Geotech201566313810.1016/j.compgeo.2015.01.009
– reference: CarbonellJMOñateESuárezBModeling of ground excavation with the particle finite-element methodJ Eng Mech2010136445546310.1061/(ASCE)EM.1943-7889.0000086
– reference: PastorMBlancTHaddadBPetroneSSanchez MorlesMDrempeticVApplication of a SPH depth-integrated model to landslide run-out analysisLandslides201411579381210.1007/s10346-014-0484-y
– reference: MonforteLCarbonellJMArroyoMGensAPerformance of mixed formulations for the particle finite element method in soil mechanics problemsComput Particle Mech20164116
– reference: DongYGrabeJLarge scale parallelisation of the material point method with multiple GPUsComput Geotech201810114915810.1016/j.compgeo.2018.04.001
– reference: Silva MVD, Krabbenhoft K, Lyamin AV, Sloan SW (2011) Rigid-plastic large-deformation analysis of geotechnical penetration problems. In: Proceedings of 13th IACMAG conference, pp 42–47
– reference: SalazarFIrazábalJLareseAOñateENumerical modelling of landslide-generated waves with the particle finite element method (PFEM) and a non-Newtonian flow modelInt J Numer Anal Methods Geomech201640680982610.1002/nag.2428
– reference: CasciniLCuomoSPastorMSorbinoGPiciulloLSPH run-out modelling of channelised landslides of the flow typeGeomorphology201421450251310.1016/j.geomorph.2014.02.031
– volume: 54
  start-page: 133
  year: 2013
  ident: 1124_CR53
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2013.07.001
– volume: 42
  start-page: 1806
  issue: 15
  year: 2018
  ident: 1124_CR57
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2815
– volume: 101
  start-page: 149
  year: 2018
  ident: 1124_CR10
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.04.001
– volume: 52
  start-page: 607
  issue: 3
  year: 2013
  ident: 1124_CR4
  publication-title: Comput Mech
  doi: 10.1007/s00466-013-0835-x
– volume: 23
  start-page: 61
  issue: 1–2
  year: 1998
  ident: 1124_CR14
  publication-title: Comput Geotech
  doi: 10.1016/S0266-352X(98)00012-3
– volume: 31
  start-page: 654
  year: 2019
  ident: 1124_CR6
  publication-title: J Hydrodyn
  doi: 10.1007/s42241-019-0058-5
– volume: 82
  start-page: 144
  year: 2017
  ident: 1124_CR23
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2016.08.013
– year: 2020
  ident: 1124_CR47
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2020.105932
– volume: 65
  start-page: 1002
  issue: 7
  year: 2006
  ident: 1124_CR25
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1470
– ident: 1124_CR37
– volume: 15
  start-page: 1607
  year: 2020
  ident: 1124_CR19
  publication-title: Acta Geotech
  doi: 10.1007/s11440-019-00859-x
– volume: 36
  start-page: 549
  issue: 4
  year: 2009
  ident: 1124_CR26
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2008.11.001
– volume: 40
  start-page: 809
  issue: 6
  year: 2016
  ident: 1124_CR34
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2428
– volume: 55
  start-page: 167
  issue: 1
  year: 2015
  ident: 1124_CR55
  publication-title: Comput Mech
  doi: 10.1007/s00466-014-1088-z
– volume: 18
  start-page: 04018010
  issue: 4
  year: 2018
  ident: 1124_CR58
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001079
– volume: 15
  start-page: 04014101
  issue: 6
  year: 2015
  ident: 1124_CR16
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0000457
– volume: 197
  start-page: 1777
  issue: 19–20
  year: 2008
  ident: 1124_CR28
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2007.06.005
– volume: 136
  start-page: 455
  issue: 4
  year: 2010
  ident: 1124_CR3
  publication-title: J Eng Mech
  doi: 10.1061/(ASCE)EM.1943-7889.0000086
– volume: 1
  start-page: 15
  issue: 1
  year: 1921
  ident: 1124_CR31
  publication-title: ZAMM J Appl Math Mech Z Angew Math Mech
  doi: 10.1002/zamm.19210010102
– volume: 36
  start-page: 3138
  year: 2019
  ident: 1124_CR50
  publication-title: Eng Comput
  doi: 10.1108/EC-09-2018-0407
– volume: 1
  start-page: 267
  issue: 2
  year: 2004
  ident: 1124_CR27
  publication-title: Int J Comput Methods
  doi: 10.1142/S0219876204000204
– volume: 50
  start-page: 805
  issue: 6
  year: 2012
  ident: 1124_CR17
  publication-title: Comput Mech
  doi: 10.1007/s00466-012-0768-9
– volume: 15
  start-page: 2649
  issue: 9
  year: 2020
  ident: 1124_CR18
  publication-title: Acta Geotech
  doi: 10.1007/s11440-020-00933-9
– volume: 20
  start-page: 04019194
  issue: 3
  year: 2020
  ident: 1124_CR48
  publication-title: Int J Geomech
  doi: 10.1061/(ASCE)GM.1943-5622.0001600
– volume: 71
  start-page: 99
  year: 2015
  ident: 1124_CR8
  publication-title: Int J Solids Struct
  doi: 10.1016/j.ijsolstr.2015.06.013
– volume-title: Finite deformation analysis using the finite element method
  year: 1977
  ident: 1124_CR21
– ident: 1124_CR13
– volume: 38
  start-page: 30
  issue: 1
  year: 2011
  ident: 1124_CR32
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2010.09.002
– volume: 66
  start-page: 248
  year: 2015
  ident: 1124_CR38
  publication-title: Gotechnique
  doi: 10.1680/jgeot.15.LM.005
– volume-title: Numerical modeling of object penetration in geotechnical engineering
  year: 2017
  ident: 1124_CR49
– volume: 214
  start-page: 502
  year: 2014
  ident: 1124_CR5
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2014.02.031
– volume-title: Applied computational geometry: towards geometric engineering
  year: 1996
  ident: 1124_CR36
– volume: 118
  start-page: 179
  issue: 1–2
  year: 1994
  ident: 1124_CR40
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(94)90112-0
– volume: 343
  start-page: 314
  year: 2019
  ident: 1124_CR59
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2018.07.043
– volume: 56
  start-page: 160
  year: 2014
  ident: 1124_CR42
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2013.12.001
– year: 2020
  ident: 1124_CR46
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103486
– volume: 48
  start-page: 307
  issue: 3
  year: 2011
  ident: 1124_CR29
  publication-title: Comput Mech
  doi: 10.1007/s00466-011-0617-2
– year: 2021
  ident: 1124_CR61
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103856
– volume: 39
  start-page: 685
  issue: 7
  year: 2015
  ident: 1124_CR39
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2321
– volume: 14
  start-page: 1269
  year: 2019
  ident: 1124_CR7
  publication-title: Acta Geotechnica
  doi: 10.1007/s11440-019-00839-1
– volume: 66
  start-page: 31
  year: 2015
  ident: 1124_CR11
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2015.01.009
– volume: 4
  start-page: 1
  year: 2016
  ident: 1124_CR22
  publication-title: Comput Particle Mech
– ident: 1124_CR41
– ident: 1124_CR1
– volume: 11
  start-page: 793
  issue: 5
  year: 2014
  ident: 1124_CR30
  publication-title: Landslides
  doi: 10.1007/s10346-014-0484-y
– volume: 101
  start-page: 114
  year: 2018
  ident: 1124_CR24
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.04.002
– volume: 127
  start-page: 103716
  year: 2020
  ident: 1124_CR9
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2020.103716
– volume: 22
  start-page: 327
  issue: 5
  year: 1998
  ident: 1124_CR15
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X
– volume: 4
  start-page: 301
  issue: 4
  year: 1951
  ident: 1124_CR20
  publication-title: Geotechnique
  doi: 10.1680/geot.1951.2.4.301
– year: 2019
  ident: 1124_CR35
  publication-title: Quebec, Landslides,
  doi: 10.1007/s10346-020-01567-4
– volume: 17
  start-page: 1591
  year: 2020
  ident: 1124_CR52
  publication-title: Landslides
  doi: 10.1007/s10346-020-01375-w
– volume: 107
  start-page: 733
  issue: 9
  year: 2016
  ident: 1124_CR33
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5186
– volume: 32
  start-page: 1537
  issue: 12
  year: 2008
  ident: 1124_CR2
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.688
– volume: 112
  start-page: 963
  issue: 8
  year: 2017
  ident: 1124_CR56
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5539
– volume: 17
  start-page: 1117
  year: 2019
  ident: 1124_CR60
  publication-title: Landslides
  doi: 10.1007/s10346-019-01330-4
– volume: 65
  start-page: 104
  year: 2015
  ident: 1124_CR45
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2014.12.005
– volume: 63
  start-page: 1991
  issue: 14
  year: 2005
  ident: 1124_CR12
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1350
– volume: 99
  start-page: 203
  year: 2018
  ident: 1124_CR43
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.01.018
– volume: 16
  start-page: 609
  issue: 4
  year: 2014
  ident: 1124_CR54
  publication-title: Granul r Matter
  doi: 10.1007/s10035-014-0505-5
– year: 2020
  ident: 1124_CR44
  publication-title: Acta Geotech
  doi: 10.1007/s11440-020-01000-z
– volume: 106
  start-page: 42
  year: 2019
  ident: 1124_CR51
  publication-title: Comput Geotech
  doi: 10.1016/j.compgeo.2018.10.010
SSID ssj0063246
Score 2.4859326
Snippet In this study, a simple PFEM approach for analyzing large deformation problems in geotechnical practice is implemented in the commercial FEM package Abaqus....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2449
SubjectTerms Analysis
Cantilever beams
Civil engineering
Complex Fluids and Microfluidics
Deformation
Deformation analysis
Engineering
Finite element analysis
Finite element method
Foundations
Geoengineering
Geotechnical engineering
Geotechnical Engineering & Applied Earth Sciences
Hydraulics
Mathematical analysis
Mechanics
Penetration
Programming languages
Research Paper
Robustness (mathematics)
Soft and Granular Matter
Software packages
Software upgrading
Soil
Soil Science & Conservation
Soil-structure interaction
Solid Mechanics
Submarine pipelines
Variables
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA8yPejBtzidkoM3DbRp0sdxiMPTGL6Yp5K2X2QwN103_36_pOmqooKem6ble_4-vhchZ4BRsvYgYpksciaiLGcmW8N8X4FWQscQZHbZRNTvx8NhMnBNYWVd7V6nJK2lbprdbB7ShDsok1wwNLyr6O5io443tw-1_TXzx21PURz6-EkuXavM93d8dkcNxvySFrXeprf1v__cJpsOXdJuJQ47ZAUmu2Tjw8zBPfI4cMJC9cjgTQpVATmtdknT0XNdUW5YRhHT0rGpFqcFLBsdqXKjTKgpm3-i3Uy9Lsp9ct-7uru8Zm6_AlOB4HPGFc-RV4XRQcC4JgNIQBcCMQiyD12b9AqFAErmiBIyIb1cAsaDIlRolVQWBgekNZlO4JDQIDDITNoko9BhlEjNhfbCWGgMyGJoE78mc5q74eNmB8Y4bcYmG7KlSLbUki3lbXK-fOelGr3x6-lOzb3UqWGZ2ngz9KIoaZOLmlvN459vO_rb8WOyzk2tiy0M7JDWfLaAE7KWv81H5ezUiuc72izcpA
  priority: 102
  providerName: Springer Nature
Title Particle finite element method implementation for large deformation analysis using Abaqus
URI https://link.springer.com/article/10.1007/s11440-020-01124-2
https://www.proquest.com/docview/2560160779
Volume 16
WOSCitedRecordID wos000604845000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1861-1133
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063246
  issn: 1861-1125
  databaseCode: RSV
  dateStart: 20060501
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RlgEG3ohCqTywgUXqOI9OqKBWLFRVC6hMkZPYqFLpu_x-fI7TAhJdWLwkcaJ85_N3vhfAldRWsnJkQGMvTSgP4oSit4bWakIqwVUo3dg0mwja7bDfr3fsgdvchlXmOtEo6nSc4Bn5rTEdfCcI6neTKcWuUehdtS00ClDCSmW8CKX7ZrvTzXUx1iI3-UWhX9OvZ55Nm8mS54xfE80nLeOMU_Zza1rzzV8uUrPztPb_-80HsGc5J2lkQnIIW3J0BLvfKhEew1vHihBRA2ShRGZh5STrME0GH3mcOQJJNNMlQ4whJ6lcpT8SYQucEAymfyeNWEyX8xN4aTWfHx6p7bpAhcvZgjLBEo1giitTamsnlrIuVco1M9Gg6g3Pc1KhaZWXaO4Qc89JPKmtRO4LratE7LunUByNR_IMiOsiX_OM65ErP6h7inHl-CFX2kwLZRlq-Q-PEluSHDtjDKN1MWUEKdIgRQakiJXhevXMJCvIsfHuSo5MZBfnPFrDUoabHNv15b9nO9882wXsMIx4MeGBFSguZkt5CdvJ52Iwn1WtaFah8MQ6OAY9PXZ7r19REOtB
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xScCBHVFWH-AEFqnjLD0gVAFVEVD1ABKcgpPYqBK0hRYQP8U3MuMkFJDojQPnJJYTv5l5k9kAtjV6ycbRAY-9NOEyiBNO0RpeLittlDShdmM7bCJoNMLr60pzBN6LWhhKqyx0olXUaSehf-T71nXwnSCoHHYfOU2NouhqMUIjg8WZfntFl613cHqM57sjRO3k8qjO86kCXLlS9LlQIsEdpoQ8jWw-1rqiTSrR8uKmUaF7TqqQNngJ2sZYek7iafSCpK9QFlXsu7juKIxL9IRIri5Es9D81PncVjOFfhlfVnh5kU5WqmejqOSsoUQJycV3Qzhgtz8CstbO1Wb_2xeag5mcUbNqJgLzMKLbCzD9pc_iItw0cwFhpkUcm-ksaZ5l87NZ66HIoieYMuTx7J4y5FmqP4s7mcrbtzAqFbhj1Vg9PveW4OpP3m0Zxtqdtl4B5rrERj0bWJXGDyqeEdI4figNOqGhLkG5OOAoyRuu09yP-2jQKppAESEoIguKSJRg9_OZbtZuZOjd6wUSolz19KIBDEqwV2BpcPn31VaHr7YFk_XLi_Po_LRxtgZTgnJ7bCLkOoz1n571BkwkL_1W72nTCgWD27_G2AcKlUJI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB60iujBt1ife9CTLk03m0cPIsVaLJVSUKGe4ibZlUKt9qHiX_PXObtJWhXsrQfPSZZs9ptX5psZgCOJUbKypEdDJ44o98KI6mwNLRaFVIIrX9qhGTbhNRp-q1VqzsBnVgujaZWZTjSKOn6O9D_yggkdXMvzSgWV0iKaler5S4_qCVI605qN00ggUpcf7xi-Dc5qFTzrY8aql7cXVzSdMECFzdmQMsEifNtYo1CiZx9KWZIq5miFcQOo3B0rFuhCOBHayZA7VuRIjIi4K1AuRejauO4szHkc_QRDG7zJrIDugm4qm3y3iBtnTlqwk5TtmYyqDtxQuhin7KdRHHu6v5KzxuZVV_7z11qF5dTTJuVENNZgRnbXYelb_8UNuG-mgkNUW_veRCZkepLM1Sbtp4xdr-FL0L8nHc2cJ7EcFX0SkbZ1IbqE4JGUQ9F7HWzC3VT2tgW57nNXbgOxbe2lOibhypXrlRzFuLJcnysMTn2Zh2J22EGUNmLX80A6wbiFtAZIgAAJDEACloeT0TMvSRuSiXfvZagIUpU0CMaQyMNphqvx5b9X25m82iEsILSC61qjvguLTFN-DD9yD3LD_qvch_nobdge9A-MfBB4mDbEvgAri0sY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+finite+element+method+implementation+for+large+deformation+analysis+using+Abaqus&rft.jtitle=Acta+geotechnica&rft.au=Yuan%2C+Wei-Hai&rft.au=Wang%2C+Hao-Cheng&rft.au=Zhang%2C+Wei&rft.au=Dai%2C+Bei-Bing&rft.date=2021-08-01&rft.issn=1861-1125&rft.eissn=1861-1133&rft.volume=16&rft.issue=8&rft.spage=2449&rft.epage=2462&rft_id=info:doi/10.1007%2Fs11440-020-01124-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11440_020_01124_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-1125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-1125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-1125&client=summon