Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder

Deep neural networks perform very well in learning high-level representations in support of multivariate geochemical anomaly recognition. Geochemical exploration data typically contain a proportion of large variations and missing values, which motivated us to construct a network architecture optimiz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences Jg. 54; H. 3; S. 623 - 644
Hauptverfasser: Xiong, Yihui, Zuo, Renguang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Schlagworte:
ISSN:1874-8961, 1874-8953
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Deep neural networks perform very well in learning high-level representations in support of multivariate geochemical anomaly recognition. Geochemical exploration data typically contain a proportion of large variations and missing values, which motivated us to construct a network architecture optimized to deal with these data. Our approach adopted a stacked convolutional denoising autoencoder (SCDAE) to extract robust features and decreased the level of sensitivity to partially corrupted data, that is, input data that are partially missing. SCDAE parameters, which include the network depth, number of convolution layers, number of convolution kernels, and convolution kernel size, were optimized using trial-and-error experiments. The optimal SCDAE architecture was then used to recognize multivariate geochemical anomalies related to mineralization in a case study in southwestern Fujian Province, based on the differences in the reconstruction errors between sample populations. The spatial distribution of high reconstruction errors in the anomaly map was closely related to most known Fe deposits, indicating the effectiveness of the SCDAE at recognizing geochemical anomalies related to Fe mineralization. A comparative study between the SCDAE and a stacked convolutional autoencoder (SCAE) with different corruption levels showed that the SCDAE exhibited reduced sensitivity to stochastic disturbances with different corruption proportions, and had an enhanced ability to recognize geochemical anomalies varying in a reasonable range. The robustness of the SCDAE makes it applicable to a wide variety of geochemical exploration scenarios, particularly in areas with incomplete or missing data.
AbstractList Deep neural networks perform very well in learning high-level representations in support of multivariate geochemical anomaly recognition. Geochemical exploration data typically contain a proportion of large variations and missing values, which motivated us to construct a network architecture optimized to deal with these data. Our approach adopted a stacked convolutional denoising autoencoder (SCDAE) to extract robust features and decreased the level of sensitivity to partially corrupted data, that is, input data that are partially missing. SCDAE parameters, which include the network depth, number of convolution layers, number of convolution kernels, and convolution kernel size, were optimized using trial-and-error experiments. The optimal SCDAE architecture was then used to recognize multivariate geochemical anomalies related to mineralization in a case study in southwestern Fujian Province, based on the differences in the reconstruction errors between sample populations. The spatial distribution of high reconstruction errors in the anomaly map was closely related to most known Fe deposits, indicating the effectiveness of the SCDAE at recognizing geochemical anomalies related to Fe mineralization. A comparative study between the SCDAE and a stacked convolutional autoencoder (SCAE) with different corruption levels showed that the SCDAE exhibited reduced sensitivity to stochastic disturbances with different corruption proportions, and had an enhanced ability to recognize geochemical anomalies varying in a reasonable range. The robustness of the SCDAE makes it applicable to a wide variety of geochemical exploration scenarios, particularly in areas with incomplete or missing data.
Author Zuo, Renguang
Xiong, Yihui
Author_xml – sequence: 1
  givenname: Yihui
  surname: Xiong
  fullname: Xiong, Yihui
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
– sequence: 2
  givenname: Renguang
  surname: Zuo
  fullname: Zuo, Renguang
  email: zrguang@cug.edu.cn
  organization: State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
BookMark eNp9kMtKAzEUhoMoeH0BVwHXo0nmmmWpbRUEwcs6ZDIndXSatElGbJ_etCMKLro6B873HX7-U3RorAGELim5poSUN57GkSWE0YRwnubJ5gCd0KrMkorn6eHvXtBjdOr9OyEFTXN6glZPtu59wFOQoXeAJ1_BSRVaa7C2Ds_AqjdYtEp2eGTsQnZr_ATKzk27Y159a-ZY4ucg1Qc0eGzNp-367S0at2BsuyNGfbBglG3AnaMjLTsPFz_zDL1OJy_ju-ThcXY_Hj0kMs1YSBjPoCll2WSKpaUkdZ2nFBgvtVZNzaFWlWak5CALqgnUvNKNzoiURNWs4JCeoavh79LZVQ8-iHfbuxjLC1ZkBS9jWSRS1UApZ713oIVqg9zmjz20naBEbAsWQ8EiOmJXsNhElf1Tl65dSLfeL6WD5CNs5uD-Uu2xvgFd7pOb
CitedBy_id crossref_primary_10_1016_j_cageo_2023_105392
crossref_primary_10_1016_j_oregeorev_2022_104693
crossref_primary_10_1016_j_oregeorev_2022_105024
crossref_primary_10_1016_j_cageo_2023_105490
crossref_primary_10_1007_s11053_023_10200_9
crossref_primary_10_1016_j_cageo_2022_105153
crossref_primary_10_1016_j_cageo_2024_105657
crossref_primary_10_1016_j_cageo_2024_105679
crossref_primary_10_1016_j_cageo_2025_105913
crossref_primary_10_1016_j_mineng_2025_109741
crossref_primary_10_1109_TNNLS_2024_3472456
crossref_primary_10_1007_s11053_022_10050_x
crossref_primary_10_1007_s11053_021_09871_z
crossref_primary_10_1007_s11053_022_10143_7
crossref_primary_10_1016_j_apgeochem_2023_105722
crossref_primary_10_1111_1755_6724_14992
crossref_primary_10_1007_s11053_024_10334_4
crossref_primary_10_1016_j_apgeochem_2024_106137
crossref_primary_10_1016_j_apgeochem_2023_105621
crossref_primary_10_1016_j_chemer_2023_125959
crossref_primary_10_1007_s11004_021_09979_1
crossref_primary_10_1007_s11004_024_10158_1
crossref_primary_10_1002_int_22586
crossref_primary_10_1016_j_oregeorev_2024_106204
crossref_primary_10_1007_s11004_022_10024_y
crossref_primary_10_1007_s11053_022_10088_x
crossref_primary_10_1016_j_cageo_2023_105341
crossref_primary_10_1016_j_oregeorev_2024_106049
crossref_primary_10_3390_min12111361
crossref_primary_10_1007_s11053_024_10317_5
crossref_primary_10_1007_s11004_023_10067_9
crossref_primary_10_1016_j_earscirev_2025_105209
crossref_primary_10_1109_TNSE_2023_3273543
crossref_primary_10_1016_j_gexplo_2024_107451
crossref_primary_10_1007_s11053_022_10080_5
crossref_primary_10_1007_s11004_025_10218_0
crossref_primary_10_1016_j_gexplo_2023_107274
crossref_primary_10_3390_cancers14153687
crossref_primary_10_1007_s11004_022_10032_y
crossref_primary_10_1016_j_oregeorev_2021_104316
crossref_primary_10_1016_j_apgeochem_2022_105450
crossref_primary_10_1016_j_oregeorev_2022_104955
crossref_primary_10_1038_s41598_025_11953_4
crossref_primary_10_3390_rs13234860
Cites_doi 10.1007/s11004-007-9100-1
10.1016/j.earscirev.2019.02.023
10.1016/j.apgeochem.2020.104710
10.11720/wtyht.2017.5.01
10.1007/s11053-019-09471-y
10.3390/app8122493
10.1002/9780470987605
10.28991/cej-2019-03091447
10.28991/cej-2019-03091310
10.1002/2017GL075710
10.1126/sciadv.1700578
10.1038/s41586-018-0438-y
10.1016/j.gexplo.2012.07.007
10.3390/min9050270
10.1016/j.earscirev.2019.103076
10.1002/2018GL077004
10.1007/s00521-019-04341-3
10.1016/j.scitotenv.2019.02.263
10.1016/S0375-6742(97)00029-0
10.1016/j.dsp.2006.11.009
10.1016/j.csda.2009.11.023
10.1016/j.cageo.2019.01.016
10.3799/dqkx.2012.130
10.1029/2018JD028759
10.1016/j.cageo.2020.104484
10.1126/science.1127647
10.1007/s11430-015-5178-3
10.3390/rs11020196
10.3390/rs10020307
10.1016/j.oregeorev.2018.10.006
10.1016/j.gexplo.2017.05.008
10.1109/TGRS.2016.2543748
10.28991/esj-2018-01146
10.1016/j.cageo.2015.10.006
10.3969/j.issn.1000-8527.2012.03.002
10.1007/s11053-020-09742-z
10.1016/j.petrol.2019.02.037
10.1016/j.mechatronics.2010.09.004
10.1016/j.gexplo.2011.05.007
10.1016/j.patrec.2005.10.010
10.1016/j.apgeochem.2020.104679
10.1007/s10346-019-01274-9
10.1016/j.cageo.2017.10.005
10.1007/s11053-017-9357-0
10.1007/s11004-019-09794-9
10.1016/j.cageo.2019.05.011
10.1016/j.gexplo.2019.106431
10.1007/s10064-015-0759-0
10.1038/nature14539
10.1109/TPAMI.2015.2439281
10.1029/2018GL080704
10.1007/978-3-642-21735-7_7
10.1109/BigData.2013.6691791
10.1109/CVPR.2015.7299173
10.1145/2689746.2689747
10.1109/ICCV.2009.5459271
10.1145/3065386
10.1145/3097983.3098052
10.1109/CVPR.2015.7298594
10.1145/1390156.1390294
ContentType Journal Article
Copyright International Association for Mathematical Geosciences 2021
International Association for Mathematical Geosciences 2021.
Copyright_xml – notice: International Association for Mathematical Geosciences 2021
– notice: International Association for Mathematical Geosciences 2021.
DBID AAYXX
CITATION
7SC
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
DOI 10.1007/s11004-021-09935-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
Computer Science
EISSN 1874-8953
EndPage 644
ExternalDocumentID 10_1007_s11004_021_09935_z
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42002297; 41772344
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67M
67Z
6NX
78A
7XC
88I
8FE
8FG
8FH
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ATCPS
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
L6V
L8X
LK5
LLZTM
M0N
M2P
M4Y
M7R
M7S
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OAM
P2P
P62
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8R
Z8S
Z8T
Z8W
Z8Z
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
JQ2
KL.
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-a342t-294ed7a7d4c237a0bb531e297ffcdb9ebc8f2079ea61f0eb98fdf40aa0cb269e3
IEDL.DBID RSV
ISICitedReferencesCount 65
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621700200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1874-8961
IngestDate Thu Sep 25 00:56:13 EDT 2025
Sat Nov 29 02:45:21 EST 2025
Tue Nov 18 22:14:39 EST 2025
Fri Feb 21 02:47:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Geochemical anomalies
Stacked convolutional denoising autoencoders
Geochemical exploration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a342t-294ed7a7d4c237a0bb531e297ffcdb9ebc8f2079ea61f0eb98fdf40aa0cb269e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2646970210
PQPubID 54390
PageCount 22
ParticipantIDs proquest_journals_2646970210
crossref_citationtrail_10_1007_s11004_021_09935_z
crossref_primary_10_1007_s11004_021_09935_z
springer_journals_10_1007_s11004_021_09935_z
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationTitle Mathematical geosciences
PublicationTitleAbbrev Math Geosci
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Huang, Zhang, Zhou, Wang, Huang, Zhu (CR19) 2020; 17
Jalili, Ghasemi, Pifloush (CR20) 2018; 2
Xiong, Zuo (CR52) 2018; 111
Li, Chen, Xiang (CR26) 2020; 32
Zhang, Zuo, Xiong (CR56) 2016; 59
Zuo, Xiong, Wang, Carranza (CR64) 2019; 192
Dagdelenler, Nefeslioglu, Gokceoglu (CR7) 2016; 75
CR37
DeVries, Viégas, Wattenberg, Meade (CR8) 2018; 560
Zhang, Wang, Li, Han (CR57) 2018; 8
Xiong, Zuo (CR53) 2020; 140
CR31
CR30
Scher (CR38) 2018; 45
Zhang, Xiao, Carranza, Yang, Zhao (CR58) 2019; 130
Carranza (CR3) 2011; 110
Moeini, Torab (CR32) 2017; 180
Perol, Gharbi, Denolle (CR34) 2018; 4
Wang, Zuo (CR46) 2020; 119
Xiong, Zuo (CR50) 2016; 86
Dong, Loy, He, Tang (CR9) 2015; 38
Ghorbanzadeh, Blaschke, Gholamnia, Meena, Tiede, Aryal (CR13) 2019; 11
Jiang, Xu, Wei (CR21) 2018; 45
CR43
CR41
CR40
Chen, Guan, Feng, Yue, Wang, Zhang (CR5) 2019; 9
Palarea-Albaladejo, Martín-Fernández, Gómez-García (CR33) 2007; 39
Canchumuni, Emerick, Pacheco (CR2) 2019; 177
Xiong, Zuo, Carranza (CR51) 2018; 102
Piotrowski, Napiorkowski, Piotrowska (CR35) 2020; 201
Liu, Sun, Durlofsky (CR28) 2019; 51
Wang, Fang, Hong (CR45) 2019; 666
Latifovic, Pouliot, Campbell (CR23) 2018; 10
Vincent, Larochelle, Lajoie, Bengio, Manzagol (CR44) 2010; 11
CR16
CR14
Zhao, Du (CR59) 2016; 54
Cheng (CR6) 2012; 122
Xie, Mu, Ren (CR48) 1997; 60
Xi, Li (CR49) 2017; 41
Elkamhawy, Zhou, Wang (CR10) 2019; 5
Chen, Guan, Xiong, Liang, Wang, Xu (CR4) 2019; 125
LeCun, Bengio, Hinton (CR24) 2015; 521
Shen, Li, Yuan, Zhang (CR39) 2018; 123
Reimann, Filzmoser, Garrett, Dutter (CR36) 2008
Wang, Zhou, Xiao (CR47) 2020; 120
Zuo, Xiong (CR63) 2020; 209
Hinton, Salakhutdinov (CR17) 2006; 313
Zhang, Li, Zhang, Wang (CR54) 2012; 26
Zhang, Wu, Di, Wang, Yao, Zhang, Lv, Yuan, Shi (CR55) 2012; 37
Akhtar, Akhtar, Tarannum (CR1) 2019; 5
Li, Shen, Yuan, Zhang, Zhang (CR25) 2017; 44
Fawcett (CR11) 2006; 27
Luo, Xiong, Zuo (CR29) 2020; 122
Zhao, Tan, Xu, Yuan, Bi, Zheng, Li, Sun (CR60) 1983; 7
Übeyli (CR42) 2007; 17
CR22
Ge, Han, Zhou, Chen (CR12) 1981; 3
Li, Zuo, Xiong, Peng (CR27) 2021; 30
CR61
Hron, Templ, Filzmoser (CR18) 2010; 54
Zuo, Xiong (CR62) 2018; 27
Han, Ge (CR15) 1983; 7
S Li (9935_CR26) 2020; 32
9935_CR22
9935_CR61
ED Übeyli (9935_CR42) 2007; 17
E Elkamhawy (9935_CR10) 2019; 5
J Palarea-Albaladejo (9935_CR33) 2007; 39
D Zhang (9935_CR55) 2012; 37
PM DeVries (9935_CR8) 2018; 560
Z Luo (9935_CR29) 2020; 122
EJM Carranza (9935_CR3) 2011; 110
K Hron (9935_CR18) 2010; 54
Y Xiong (9935_CR53) 2020; 140
S Scher (9935_CR38) 2018; 45
J Wang (9935_CR46) 2020; 119
C Zhang (9935_CR54) 2012; 26
Y LeCun (9935_CR24) 2015; 521
T Li (9935_CR27) 2021; 30
9935_CR30
9935_CR31
F Huang (9935_CR19) 2020; 17
Q Cheng (9935_CR6) 2012; 122
AP Piotrowski (9935_CR35) 2020; 201
T Perol (9935_CR34) 2018; 4
MN Akhtar (9935_CR1) 2019; 5
R Zuo (9935_CR64) 2019; 192
F Han (9935_CR15) 1983; 7
Y Zhao (9935_CR60) 1983; 7
Y Wang (9935_CR45) 2019; 666
M Jalili (9935_CR20) 2018; 2
L Chen (9935_CR5) 2019; 9
9935_CR37
Y Xiong (9935_CR51) 2018; 102
9935_CR40
9935_CR41
P Vincent (9935_CR44) 2010; 11
9935_CR43
W Zhao (9935_CR59) 2016; 54
SW Canchumuni (9935_CR2) 2019; 177
R Latifovic (9935_CR23) 2018; 10
Y Liu (9935_CR28) 2019; 51
H Shen (9935_CR39) 2018; 123
G Dagdelenler (9935_CR7) 2016; 75
T Li (9935_CR25) 2017; 44
Y Xiong (9935_CR52) 2018; 111
Y Xiong (9935_CR50) 2016; 86
Z Zhang (9935_CR56) 2016; 59
T Fawcett (9935_CR11) 2006; 27
X Xie (9935_CR48) 1997; 60
GE Hinton (9935_CR17) 2006; 313
C Ge (9935_CR12) 1981; 3
C Reimann (9935_CR36) 2008
9935_CR14
H Moeini (9935_CR32) 2017; 180
S Zhang (9935_CR58) 2019; 130
O Ghorbanzadeh (9935_CR13) 2019; 11
R Zuo (9935_CR62) 2018; 27
R Zuo (9935_CR63) 2020; 209
L Chen (9935_CR4) 2019; 125
J Wang (9935_CR47) 2020; 120
X Xi (9935_CR49) 2017; 41
Y Zhang (9935_CR57) 2018; 8
C Dong (9935_CR9) 2015; 38
9935_CR16
G Jiang (9935_CR21) 2018; 45
References_xml – volume: 39
  start-page: 625
  year: 2007
  end-page: 645
  ident: CR33
  article-title: A parametric approach for dealing with compositional rounded zeros
  publication-title: Math Geol
  doi: 10.1007/s11004-007-9100-1
– volume: 192
  start-page: 1
  year: 2019
  end-page: 14
  ident: CR64
  article-title: Deep learning and its application in geochemical mapping
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2019.02.023
– ident: CR22
– volume: 122
  start-page: 104710
  year: 2020
  ident: CR29
  article-title: Recognition of geochemical anomalies using a deep variational autoencoder network
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2020.104710
– volume: 41
  start-page: 779
  issue: 5
  year: 2017
  end-page: 793
  ident: CR49
  article-title: Summary of modern exploration geochemistry scientific system: commentary on exploration achievements obtained in the period of 12th Five-Year Plan
  publication-title: Geophys Geochem Exp
  doi: 10.11720/wtyht.2017.5.01
– ident: CR16
– volume: 119
  start-page: 104668
  year: 2020
  ident: CR46
  article-title: Assessing geochemical anomalies using geographically weighted lasso
  publication-title: Appl Geochem
  doi: 10.1007/s11053-019-09471-y
– volume: 8
  start-page: 2493
  year: 2018
  ident: CR57
  article-title: Automated classification analysis of geological structures based on images data and deep learning model
  publication-title: Appl Sci
  doi: 10.3390/app8122493
– year: 2008
  ident: CR36
  publication-title: Statistical data analysis explained: applied environmental statistics with R
  doi: 10.1002/9780470987605
– volume: 5
  start-page: 2762
  year: 2019
  end-page: 2772
  ident: CR10
  article-title: Mineralogy, micro-fabric and the behavior of the completely decomposed granite soils
  publication-title: Civil Eng J
  doi: 10.28991/cej-2019-03091447
– volume: 5
  start-page: 1041
  year: 2019
  end-page: 1051
  ident: CR1
  article-title: Physiochemical characterization and dematerialization of coal class F flyash residues from thermal power plant
  publication-title: Civil Eng J
  doi: 10.28991/cej-2019-03091310
– volume: 44
  start-page: 11
  year: 2017
  end-page: 985
  ident: CR25
  article-title: Estimating ground-level PM2. 5 by fusing satellite and station observations: a geo-intelligent deep learning approach
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL075710
– volume: 4
  start-page: e1700578
  year: 2018
  ident: CR34
  article-title: Convolutional neural network for earthquake detection and location
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700578
– ident: CR61
– volume: 560
  start-page: 632
  year: 2018
  ident: CR8
  article-title: Deep learning of aftershock patterns following large earthquakes
  publication-title: Nature
  doi: 10.1038/s41586-018-0438-y
– volume: 122
  start-page: 55
  year: 2012
  end-page: 70
  ident: CR6
  article-title: Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2012.07.007
– volume: 9
  start-page: 270
  year: 2019
  ident: CR5
  article-title: A multi-convolutional autoencoder approach to multivariate geochemical anomaly recognition
  publication-title: Minerals
  doi: 10.3390/min9050270
– volume: 201
  start-page: 103076
  year: 2020
  ident: CR35
  article-title: Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2019.103076
– volume: 45
  start-page: 3706
  year: 2018
  end-page: 3716
  ident: CR21
  article-title: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models
  publication-title: Geophys Res Lett
  doi: 10.1002/2018GL077004
– volume: 32
  start-page: 2037
  year: 2020
  end-page: 2053
  ident: CR26
  article-title: Applications of deep convolutional neural networks in prospecting prediction based on two-dimensional geological big data
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04341-3
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: CR45
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 60
  start-page: 99
  year: 1997
  end-page: 113
  ident: CR48
  article-title: Geochemical mapping in China
  publication-title: J Geochem Exp
  doi: 10.1016/S0375-6742(97)00029-0
– volume: 17
  start-page: 675
  year: 2007
  end-page: 684
  ident: CR42
  article-title: ECG beats classification using multiclass support vector machines with error correcting output codes
  publication-title: Dig Signal Process
  doi: 10.1016/j.dsp.2006.11.009
– volume: 54
  start-page: 3095
  year: 2010
  end-page: 3107
  ident: CR18
  article-title: Imputation of missing values for compositional data using classical and robust methods
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.11.023
– volume: 125
  start-page: 43
  year: 2019
  end-page: 54
  ident: CR4
  article-title: A spatially constrained multi-autoencoder approach for multivariate geochemical anomaly recognition
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.01.016
– volume: 37
  start-page: 1217
  year: 2012
  end-page: 1231
  ident: CR55
  article-title: Geochronology of diagenesis and mineralization of the Luoyang iron deposit in Zhangping city, Fujian province and its geological significance
  publication-title: Earth Sci J China Univ Geosci
  doi: 10.3799/dqkx.2012.130
– volume: 123
  start-page: 13
  year: 2018
  end-page: 875
  ident: CR39
  article-title: Estimating regional ground-level PM2. 5 directly from satellite top-of-atmosphere reflectance using deep belief networks
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2018JD028759
– volume: 140
  start-page: 104484
  year: 2020
  ident: CR53
  article-title: Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104484
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: CR17
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 59
  start-page: 556
  year: 2016
  end-page: 572
  ident: CR56
  article-title: A comparative study of fuzzy weights of evidence and random forests for mapping mineral prospectivity for skarn-type Fe deposits in the southwestern Fujian metallogenic belt, China
  publication-title: Sci China Earth Sci
  doi: 10.1007/s11430-015-5178-3
– ident: CR43
– volume: 11
  start-page: 196
  year: 2019
  ident: CR13
  article-title: Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection
  publication-title: Remote Sens
  doi: 10.3390/rs11020196
– volume: 10
  start-page: 307
  year: 2018
  ident: CR23
  article-title: Assessment of convolution neural networks for surficial geology mapping in the South Rae geological region, Northwest Territories
  publication-title: Canada Remote Sens
  doi: 10.3390/rs10020307
– volume: 102
  start-page: 811
  year: 2018
  end-page: 817
  ident: CR51
  article-title: Mapping mineral prospectivity through big data analytics and a deep learning algorithm
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 180
  start-page: 15
  year: 2017
  end-page: 23
  ident: CR32
  article-title: Comparing compositional multivariate outliers with autoencoder networks in anomaly detection at hamich exploration area, east of Iran
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2017.05.008
– volume: 7
  start-page: 1
  year: 1983
  end-page: 141
  ident: CR60
  article-title: The calcic-skarn iron ore deposit of Makeng type in southwestern Fujian
  publication-title: Bull Inst Min Dep Chinese Acad Geol Sci
– ident: CR14
– volume: 3
  start-page: 47
  year: 1981
  end-page: 69
  ident: CR12
  article-title: Geological characteristics of the Makeng iron deposit of marine volcano-sedimentary origin
  publication-title: Acta Geosci Sinica
– ident: CR37
– volume: 54
  start-page: 4544
  year: 2016
  end-page: 4554
  ident: CR59
  article-title: Spectral–spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2543748
– volume: 7
  start-page: 1
  year: 1983
  end-page: 118
  ident: CR15
  article-title: Geological and geochemical features of submarine volcanic hydrothermal-sedimentary mineralization of Makeng iron deposit, Fujian province
  publication-title: Bull Inst Min Dep Chin Acad Geol Sci
– volume: 2
  start-page: 219
  year: 2018
  end-page: 227
  ident: CR20
  article-title: Stiffness and strength of granular soils improved by biological treatment bacteria microbial cements
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2018-01146
– ident: CR30
– volume: 86
  start-page: 75
  year: 2016
  end-page: 82
  ident: CR50
  article-title: Recognition of geochemical anomalies using a deep autoencoder network
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.10.006
– volume: 26
  start-page: 434
  year: 2012
  end-page: 444
  ident: CR54
  article-title: LA-ICP-MS zircon U-Pb ages and Hf isotopic compositions of dayang granite from Longyan, Fujian Province
  publication-title: Geoscience
  doi: 10.3969/j.issn.1000-8527.2012.03.002
– volume: 30
  start-page: 27
  year: 2021
  end-page: 38
  ident: CR27
  article-title: Random-drop data augmentation of deep convolutional neural network for mineral prospectivity mapping
  publication-title: Natl Resour Res
  doi: 10.1007/s11053-020-09742-z
– ident: CR40
– volume: 177
  start-page: 941
  year: 2019
  end-page: 958
  ident: CR2
  article-title: History matching geological facies models based on ensemble smoother and deep generative models
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.02.037
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: CR44
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
  doi: 10.1016/j.mechatronics.2010.09.004
– volume: 110
  start-page: 167
  year: 2011
  end-page: 185
  ident: CR3
  article-title: Analysis and mapping of geochemical anomalies using logratio-transformed stream sediment data with censored values
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2011.05.007
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: CR11
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 120
  start-page: 104679
  year: 2020
  ident: CR47
  article-title: Identification of multi-element geochemical anomalies using unsupervised machine learning algorithms: a case study from Ag–Pb–Zn deposits in north-western Zhejiang
  publication-title: China Appl Geochem
  doi: 10.1016/j.apgeochem.2020.104679
– volume: 17
  start-page: 217
  year: 2020
  end-page: 229
  ident: CR19
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– ident: CR31
– volume: 111
  start-page: 18
  year: 2018
  end-page: 25
  ident: CR52
  article-title: GIS-based rare events logistic regression for mineral prospectivity mapping
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.10.005
– volume: 27
  start-page: 5
  year: 2018
  end-page: 13
  ident: CR62
  article-title: Big data analytics of identifying geochemical anomalies supported by machine learning methods
  publication-title: Natl Resour Res
  doi: 10.1007/s11053-017-9357-0
– volume: 51
  start-page: 725
  year: 2019
  end-page: 766
  ident: CR28
  article-title: A deep-learning-based geological parameterization for history matching complex models
  publication-title: Math Geosci
  doi: 10.1007/s11004-019-09794-9
– volume: 130
  start-page: 43
  year: 2019
  end-page: 56
  ident: CR58
  article-title: Integration of auto-encoder network with density-based spatial clustering for geochemical anomaly detection for mineral exploration
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.05.011
– volume: 209
  start-page: 106431
  year: 2020
  ident: CR63
  article-title: Geodata science and geochemical mapping
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2019.106431
– volume: 75
  start-page: 575
  year: 2016
  end-page: 590
  ident: CR7
  article-title: Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey)
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0759-0
– volume: 521
  start-page: 436
  year: 2015
  ident: CR24
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 38
  start-page: 295
  year: 2015
  end-page: 307
  ident: CR9
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2439281
– ident: CR41
– volume: 45
  start-page: 12
  year: 2018
  end-page: 616
  ident: CR38
  article-title: Toward data-driven weather and climate forecasting: approximating a simple general circulation model with deep learning
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL080704
– volume: 119
  start-page: 104668
  year: 2020
  ident: 9935_CR46
  publication-title: Appl Geochem
  doi: 10.1007/s11053-019-09471-y
– volume: 32
  start-page: 2037
  year: 2020
  ident: 9935_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04341-3
– volume: 122
  start-page: 104710
  year: 2020
  ident: 9935_CR29
  publication-title: Appl Geochem
  doi: 10.1016/j.apgeochem.2020.104710
– volume: 4
  start-page: e1700578
  year: 2018
  ident: 9935_CR34
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1700578
– volume: 45
  start-page: 12
  year: 2018
  ident: 9935_CR38
  publication-title: Geophys Res Lett
  doi: 10.1029/2018GL080704
– volume: 17
  start-page: 675
  year: 2007
  ident: 9935_CR42
  publication-title: Dig Signal Process
  doi: 10.1016/j.dsp.2006.11.009
– volume: 130
  start-page: 43
  year: 2019
  ident: 9935_CR58
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.05.011
– volume: 17
  start-page: 217
  year: 2020
  ident: 9935_CR19
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– volume: 521
  start-page: 436
  year: 2015
  ident: 9935_CR24
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 51
  start-page: 725
  year: 2019
  ident: 9935_CR28
  publication-title: Math Geosci
  doi: 10.1007/s11004-019-09794-9
– volume: 11
  start-page: 196
  year: 2019
  ident: 9935_CR13
  publication-title: Remote Sens
  doi: 10.3390/rs11020196
– volume: 313
  start-page: 504
  year: 2006
  ident: 9935_CR17
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 9935_CR31
  doi: 10.1007/978-3-642-21735-7_7
– volume: 60
  start-page: 99
  year: 1997
  ident: 9935_CR48
  publication-title: J Geochem Exp
  doi: 10.1016/S0375-6742(97)00029-0
– ident: 9935_CR30
  doi: 10.1109/BigData.2013.6691791
– ident: 9935_CR16
  doi: 10.1109/CVPR.2015.7299173
– volume: 123
  start-page: 13
  year: 2018
  ident: 9935_CR39
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2018JD028759
– volume: 54
  start-page: 4544
  year: 2016
  ident: 9935_CR59
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2016.2543748
– volume: 7
  start-page: 1
  year: 1983
  ident: 9935_CR60
  publication-title: Bull Inst Min Dep Chinese Acad Geol Sci
– volume: 111
  start-page: 18
  year: 2018
  ident: 9935_CR52
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2017.10.005
– volume: 41
  start-page: 779
  issue: 5
  year: 2017
  ident: 9935_CR49
  publication-title: Geophys Geochem Exp
  doi: 10.11720/wtyht.2017.5.01
– volume: 560
  start-page: 632
  year: 2018
  ident: 9935_CR8
  publication-title: Nature
  doi: 10.1038/s41586-018-0438-y
– volume: 177
  start-page: 941
  year: 2019
  ident: 9935_CR2
  publication-title: J Petrol Sci Eng
  doi: 10.1016/j.petrol.2019.02.037
– volume: 44
  start-page: 11
  year: 2017
  ident: 9935_CR25
  publication-title: Geophys Res Lett
  doi: 10.1002/2017GL075710
– ident: 9935_CR37
  doi: 10.1145/2689746.2689747
– volume: 5
  start-page: 2762
  year: 2019
  ident: 9935_CR10
  publication-title: Civil Eng J
  doi: 10.28991/cej-2019-03091447
– volume: 2
  start-page: 219
  year: 2018
  ident: 9935_CR20
  publication-title: Emerg Sci J
  doi: 10.28991/esj-2018-01146
– volume: 9
  start-page: 270
  year: 2019
  ident: 9935_CR5
  publication-title: Minerals
  doi: 10.3390/min9050270
– volume: 10
  start-page: 307
  year: 2018
  ident: 9935_CR23
  publication-title: Canada Remote Sens
  doi: 10.3390/rs10020307
– volume: 666
  start-page: 975
  year: 2019
  ident: 9935_CR45
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 59
  start-page: 556
  year: 2016
  ident: 9935_CR56
  publication-title: Sci China Earth Sci
  doi: 10.1007/s11430-015-5178-3
– volume: 8
  start-page: 2493
  year: 2018
  ident: 9935_CR57
  publication-title: Appl Sci
  doi: 10.3390/app8122493
– volume: 75
  start-page: 575
  year: 2016
  ident: 9935_CR7
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0759-0
– volume-title: Statistical data analysis explained: applied environmental statistics with R
  year: 2008
  ident: 9935_CR36
  doi: 10.1002/9780470987605
– volume: 120
  start-page: 104679
  year: 2020
  ident: 9935_CR47
  publication-title: China Appl Geochem
  doi: 10.1016/j.apgeochem.2020.104679
– volume: 86
  start-page: 75
  year: 2016
  ident: 9935_CR50
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2015.10.006
– ident: 9935_CR40
– ident: 9935_CR14
  doi: 10.1109/ICCV.2009.5459271
– ident: 9935_CR22
  doi: 10.1145/3065386
– volume: 201
  start-page: 103076
  year: 2020
  ident: 9935_CR35
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2019.103076
– volume: 38
  start-page: 295
  year: 2015
  ident: 9935_CR9
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2439281
– volume: 30
  start-page: 27
  year: 2021
  ident: 9935_CR27
  publication-title: Natl Resour Res
  doi: 10.1007/s11053-020-09742-z
– volume: 110
  start-page: 167
  year: 2011
  ident: 9935_CR3
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2011.05.007
– volume: 27
  start-page: 861
  year: 2006
  ident: 9935_CR11
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 54
  start-page: 3095
  year: 2010
  ident: 9935_CR18
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.11.023
– volume: 140
  start-page: 104484
  year: 2020
  ident: 9935_CR53
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2020.104484
– volume: 209
  start-page: 106431
  year: 2020
  ident: 9935_CR63
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2019.106431
– ident: 9935_CR61
  doi: 10.1145/3097983.3098052
– volume: 3
  start-page: 47
  year: 1981
  ident: 9935_CR12
  publication-title: Acta Geosci Sinica
– volume: 39
  start-page: 625
  year: 2007
  ident: 9935_CR33
  publication-title: Math Geol
  doi: 10.1007/s11004-007-9100-1
– ident: 9935_CR41
  doi: 10.1109/CVPR.2015.7298594
– volume: 37
  start-page: 1217
  year: 2012
  ident: 9935_CR55
  publication-title: Earth Sci J China Univ Geosci
  doi: 10.3799/dqkx.2012.130
– volume: 11
  start-page: 3371
  year: 2010
  ident: 9935_CR44
  publication-title: J Mach Learn Res
  doi: 10.1016/j.mechatronics.2010.09.004
– volume: 192
  start-page: 1
  year: 2019
  ident: 9935_CR64
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2019.02.023
– volume: 7
  start-page: 1
  year: 1983
  ident: 9935_CR15
  publication-title: Bull Inst Min Dep Chin Acad Geol Sci
– volume: 5
  start-page: 1041
  year: 2019
  ident: 9935_CR1
  publication-title: Civil Eng J
  doi: 10.28991/cej-2019-03091310
– ident: 9935_CR43
  doi: 10.1145/1390156.1390294
– volume: 125
  start-page: 43
  year: 2019
  ident: 9935_CR4
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2019.01.016
– volume: 180
  start-page: 15
  year: 2017
  ident: 9935_CR32
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2017.05.008
– volume: 102
  start-page: 811
  year: 2018
  ident: 9935_CR51
  publication-title: Ore Geol Rev
  doi: 10.1016/j.oregeorev.2018.10.006
– volume: 45
  start-page: 3706
  year: 2018
  ident: 9935_CR21
  publication-title: Geophys Res Lett
  doi: 10.1002/2018GL077004
– volume: 26
  start-page: 434
  year: 2012
  ident: 9935_CR54
  publication-title: Geoscience
  doi: 10.3969/j.issn.1000-8527.2012.03.002
– volume: 122
  start-page: 55
  year: 2012
  ident: 9935_CR6
  publication-title: J Geochem Exp
  doi: 10.1016/j.gexplo.2012.07.007
– volume: 27
  start-page: 5
  year: 2018
  ident: 9935_CR62
  publication-title: Natl Resour Res
  doi: 10.1007/s11053-017-9357-0
SSID ssj0061351
Score 2.537636
Snippet Deep neural networks perform very well in learning high-level representations in support of multivariate geochemical anomaly recognition. Geochemical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 623
SubjectTerms Anomalies
Artificial neural networks
Chemistry and Earth Sciences
Comparative analysis
Comparative studies
Computer architecture
Computer Science
Convolution
Corruption
Earth and Environmental Science
Earth Sciences
Errors
Exploration
Feature extraction
Geochemistry
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Iron
Kernels
Machine learning
Mineralization
Missing data
Multivariate analysis
Neural networks
Noise reduction
Physics
Reconstruction
Robustness
Sensitivity
Spatial distribution
Special Issue
Statistics for Engineering
Title Robust Feature Extraction for Geochemical Anomaly Recognition Using a Stacked Convolutional Denoising Autoencoder
URI https://link.springer.com/article/10.1007/s11004-021-09935-z
https://www.proquest.com/docview/2646970210
Volume 54
WOSCitedRecordID wos000621700200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1874-8953
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061351
  issn: 1874-8961
  databaseCode: RSV
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4VClIv3ZaCuuUhH3prLSWON7GPq-V1QKhaaMUt8lNCggSSLAJ-PbbXYQWiSHCL5LEVeTwzn-WZ-QB-MsWkUmyEpRQCU2IlZkYmeGQzolNqmLGhUPioOD5mZ2f8TywKa_ts9_5JMnjqRbFbGpImiLv-uqA6wvdL8NGFO-YJG6Yn_3r_m3vOOX_NYgXFjOdpLJV5eY2n4WiBMZ89i4Zosz94339-gc8RXaLx_Dh8hQ-mWoNBz9yAoiGvwepBIPS9c18hBVS13-B6WstZ2yEPCmeNQXu3XTOvekAO2CI3Q8XmAmhc1Zfi4g5N--wjJxNyD5BADr06x6DRpK5u4rF2M3ZNVZ8HifGsq33zTG2adfi7v3c6OcSRkAGLjJIOE06NLkShqSJZIRIpnQUbwgtrlZbcSMUsSQpuRJ7axEjOrLY0ESJRkuTcZBuwXNWV-Q6ICMuI4TIRMqGKZiLLLNcOjXFPOKNHQ0h7vZQqdiv3pBkX5aLPst_n0u1zGfa5vB_Cr8c5V_NeHa9Kb_XqLqPdtqWDhzkv_D14CL979S6G_7_aj7eJb8In4usoQgrQFix3zcxsw4q66c7bZiec5wctCvKD
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8oSvQFEDCefPXBN2my2-3tto8XBDEeF3Kg4W3Tz4QEdmF3jwh_vW2v60WjJPi2SafNZqbt_CadmR_AB6aYVIoNsZRCYEqsxMzIBA9tRnRKDTM2FAqPi8mEXVzw01gU1vbZ7v2TZLipF8VuaUiaIC78dU51iB-ewwvqPJbvmD89-97fv7nnnPNhFisoZjxPY6nM39f43R0tMOYfz6LB2xyt_t9_rsFKRJdoNN8Ob-CZqdZhtWduQPEgr8Py50Doe---QgqoajfgdlrLWdshDwpnjUGHP7pmXvWAHLBFboaKzQXQqKqvxdU9mvbZR04m5B4ggRx6dReDRgd1dRe3tZvxyVT1ZZAYzbraN8_UptmEb0eH5wfHOBIyYJFR0mHCqdGFKDRVJCtEIqU7wYbwwlqlJTdSMUuSghuRpzYxkjOrLU2ESJQkOTfZW1iq6sq8A0SEZcRwmQiZUEUzkWWWa4fGuCec0cMBpL1dShW7lXvSjKty0WfZ67l0ei6DnsuHAXz8Nedm3qvjUent3txlPLdt6eBhzgsfBw9gvzfvYvjfq71_mvgevDo-PxmX4y-Tr1vwmviaipAOtA1LXTMzO_BS3XWXbbMb9vZPkuT1Zw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RoIgLUB5ieRQfemstEseb2McVsFCBVgjailvkp4QECWSzCPj12N6EBVSQqt4ieWxFHj--kb9vBuAbU0wqxbpYSiEwJVZiZmSEuzYhOqaGGRuEwifZYMAuLvjpCxV_YLu3T5JjTYPP0lTUuzfa7k6Eb3EgUBAXCrsLtosfP8EM9UR6H6-f_2nP4tTXn_MhF8soZjyNG9nM38d4fTVN8OabJ9Jw8_QX__-fl2ChQZ2oN14mX2DKFMuw2FZ0QM0GX4bPh6HQ74P7CtRQNVyB27NSjoY18mBxVBl0cF9XYzUEcoAXuR6qSTqAekV5La4e0FnLSnI2gZOABHKo1h0YGu2VxV2z3F2PfVOUl8GiN6pLn1RTm2oVfvcPfu0d4aZQAxYJJTUmnBqdiUxTRZJMRFK6nW0Iz6xVWnIjFbMkyrgRaWwjIzmz2tJIiEhJknKTrMF0URZmHRARlhHDZSRkRBVNRJJYrh1K474Qje52IG59lKsmi7kvpnGVT_Iv-3nO3TznYZ7zxw58f-5zM87h8aH1Vuv6vNnPw9zBxpRnPj7uwI_W1ZPm90fb-DfzHZg73e_nJz8Hx5swT7zUIrCEtmC6rkZmG2bVXX05rL6GZf4E84n-Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Feature+Extraction+for+Geochemical+Anomaly+Recognition+Using+a+Stacked+Convolutional+Denoising+Autoencoder&rft.jtitle=Mathematical+geosciences&rft.au=Xiong+Yihui&rft.au=Zuo+Renguang&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1874-8961&rft.eissn=1874-8953&rft.volume=54&rft.issue=3&rft.spage=623&rft.epage=644&rft_id=info:doi/10.1007%2Fs11004-021-09935-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-8961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-8961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-8961&client=summon