Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following

The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carrie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of chemical theory and computation Ročník 17; číslo 8; s. 4929
Hlavní autoři: Ásgeirsson, Vilhjálmur, Birgisson, Benedikt Orri, Bjornsson, Ragnar, Becker, Ute, Neese, Frank, Riplinger, Christoph, Jónsson, Hannes
Médium: Journal Article
Jazyk:angličtina
Vydáno: 10.08.2021
ISSN:1549-9626, 1549-9626
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.
AbstractList The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.
Author Bjornsson, Ragnar
Ásgeirsson, Vilhjálmur
Riplinger, Christoph
Birgisson, Benedikt Orri
Becker, Ute
Jónsson, Hannes
Neese, Frank
Author_xml – sequence: 1
  givenname: Vilhjálmur
  surname: Ásgeirsson
  fullname: Ásgeirsson, Vilhjálmur
– sequence: 2
  givenname: Benedikt Orri
  surname: Birgisson
  fullname: Birgisson, Benedikt Orri
– sequence: 3
  givenname: Ragnar
  surname: Bjornsson
  fullname: Bjornsson, Ragnar
– sequence: 4
  givenname: Ute
  surname: Becker
  fullname: Becker, Ute
– sequence: 5
  givenname: Frank
  surname: Neese
  fullname: Neese, Frank
– sequence: 6
  givenname: Christoph
  surname: Riplinger
  fullname: Riplinger, Christoph
– sequence: 7
  givenname: Hannes
  surname: Jónsson
  fullname: Jónsson, Hannes
BookMark eNpNkDtPwzAUhS1UJNrCzuiRJcWPOJARqhSQWpCAirHy4zp15doldqj490SCgek8dPQNZ4JGIQZA6JKSGSWMXkudZjud9YxqQsqKnaAxFWVd1BWrRv_8GZqktCOE85LxMcrPvWnB4MbLlJ3G9zIYvIK8jQbb2OFV9KB7Lzv8ClJnF0PC6-RCi5sAXftdfIBrt3kgvB26oU54HvfKhaE4urzFjWshfIHOA2sRvY_HYXSOTq30CS7-dIrWi-Z9_lgsXx6e5nfLQvKS5sJWUkiumVKlUpxbA2ArY27obS2s4QJKoWxdgqWVMsMHhIAVRtSVHQJjik3R1S_30MXPHlLe7F3S4L0MEPu0YUJwNtxAa_YD4-lkSQ
CitedBy_id crossref_primary_10_1021_acs_joc_5c00695
crossref_primary_10_1016_j_jphotochem_2024_115502
crossref_primary_10_1002_ejic_202300641
crossref_primary_10_1021_acs_joc_4c02546
crossref_primary_10_1016_j_molstruc_2025_144000
crossref_primary_10_1016_j_ijhydene_2025_02_465
crossref_primary_10_1021_jasms_2c00224
crossref_primary_10_1103_dj5c_d24m
crossref_primary_10_1021_acs_jpca_4c08718
crossref_primary_10_1016_j_est_2025_117859
crossref_primary_10_1002_anie_202509661
crossref_primary_10_1002_cptc_202500033
crossref_primary_10_1016_j_polymdegradstab_2025_111543
crossref_primary_10_1093_mnras_staf1191
crossref_primary_10_3390_cryst13050803
crossref_primary_10_1002_ejic_202200247
crossref_primary_10_1016_j_jms_2023_111790
crossref_primary_10_1021_acs_inorgchem_5c02766
crossref_primary_10_1002_anie_202414172
crossref_primary_10_1021_acs_chemmater_5c00212
crossref_primary_10_1021_acs_jpcc_5c00326
crossref_primary_10_1002_aenm_202302039
crossref_primary_10_1007_s11172_024_4370_z
crossref_primary_10_1089_ast_2023_0046
crossref_primary_10_1007_s00894_024_06013_z
crossref_primary_10_1039_D2PY00999D
crossref_primary_10_1002_ange_202407822
crossref_primary_10_1039_D2QI02047E
crossref_primary_10_1002_wcms_70019
crossref_primary_10_1021_jacs_2c09978
crossref_primary_10_1002_jcc_70083
crossref_primary_10_3389_fbioe_2021_806415
crossref_primary_10_1002_adma_202301876
crossref_primary_10_1039_D5CP02665B
crossref_primary_10_1038_s44160_025_00838_z
crossref_primary_10_1016_j_seppur_2025_134535
crossref_primary_10_1002_anie_202510186
crossref_primary_10_1002_jcc_27125
crossref_primary_10_1002_cphc_202400881
crossref_primary_10_3390_molecules28020747
crossref_primary_10_1039_D5TA02035B
crossref_primary_10_1002_anie_202500393
crossref_primary_10_1002_jcc_26958
crossref_primary_10_1002_anie_202510744
crossref_primary_10_1002_slct_202202669
crossref_primary_10_1002_slct_202502605
crossref_primary_10_1002_cphc_202400401
crossref_primary_10_3847_1538_4357_acd192
crossref_primary_10_1002_cphc_202300370
crossref_primary_10_1016_j_jpowsour_2025_237080
crossref_primary_10_1093_chemle_upaf154
crossref_primary_10_1016_j_diamond_2025_112192
crossref_primary_10_1016_j_apenergy_2025_125925
crossref_primary_10_1002_ange_202510186
crossref_primary_10_1021_acscatal_4c06833
crossref_primary_10_1002_ange_202510744
crossref_primary_10_1002_ange_202500393
crossref_primary_10_1002_chem_202400585
crossref_primary_10_1557_s43578_024_01408_3
crossref_primary_10_3390_ijms252312798
crossref_primary_10_1002_anie_202412982
crossref_primary_10_1021_acs_jpclett_5c00408
crossref_primary_10_3390_ijms24032906
crossref_primary_10_1002_anie_202423516
crossref_primary_10_1002_cplu_202400613
crossref_primary_10_1016_j_mcat_2024_114596
crossref_primary_10_1039_D2SC05377B
crossref_primary_10_3390_ijms25094804
crossref_primary_10_3847_1538_4357_ad5bd8
crossref_primary_10_1016_j_matlet_2025_138605
crossref_primary_10_1016_j_ijrmhm_2024_106852
crossref_primary_10_1002_chem_202102539
crossref_primary_10_1002_anie_202407822
crossref_primary_10_1248_cpb_c25_00260
crossref_primary_10_1021_jacs_3c04281
crossref_primary_10_1038_s41598_025_04365_x
crossref_primary_10_1039_D3RA08810C
crossref_primary_10_3390_catal12111408
crossref_primary_10_3390_molecules28124806
crossref_primary_10_3390_M1451
crossref_primary_10_1002_anie_202419943
crossref_primary_10_1039_D4MH01425A
crossref_primary_10_1002_anie_202417889
crossref_primary_10_1002_chem_202302721
crossref_primary_10_1016_j_mtcomm_2023_105933
crossref_primary_10_1002_chem_202301752
crossref_primary_10_1039_D2DT02229J
crossref_primary_10_1039_D5CP01307K
crossref_primary_10_1038_s42004_022_00716_1
crossref_primary_10_3390_molecules28227652
crossref_primary_10_1002_ange_202509661
crossref_primary_10_1039_D5MH01527H
crossref_primary_10_1021_acs_jcim_4c02267
crossref_primary_10_1002_ange_202419943
crossref_primary_10_4155_bio_2022_0193
crossref_primary_10_1002_ange_202417889
crossref_primary_10_1016_j_est_2025_117035
crossref_primary_10_1002_qua_27017
crossref_primary_10_1021_acs_orglett_5c02610
crossref_primary_10_1021_jacs_2c11265
crossref_primary_10_1002_ajoc_202500475
crossref_primary_10_1021_acsaem_4c02634
crossref_primary_10_1134_S0023158423050075
crossref_primary_10_1002_jcc_27169
crossref_primary_10_1016_j_est_2025_117719
crossref_primary_10_1021_acs_jpclett_5c01082
crossref_primary_10_1002_ange_202412982
crossref_primary_10_1002_ange_202423516
crossref_primary_10_3390_ijms23052430
crossref_primary_10_1039_D4MH00811A
crossref_primary_10_1002_jcc_27030
crossref_primary_10_1016_j_chembiol_2024_03_012
crossref_primary_10_3390_molecules27041184
crossref_primary_10_1002_jcc_26865
crossref_primary_10_1515_pac_2025_0532
crossref_primary_10_1002_chem_202404348
crossref_primary_10_1088_1402_4896_ad77f9
crossref_primary_10_1016_j_jmst_2024_11_046
crossref_primary_10_1021_acs_jpcc_5c02119
crossref_primary_10_1016_j_jhazmat_2024_136817
crossref_primary_10_3762_bjoc_20_263
crossref_primary_10_1016_j_jpowsour_2025_238102
crossref_primary_10_3390_ijms25052528
crossref_primary_10_1039_D5SE00728C
crossref_primary_10_1038_s41557_022_01057_1
crossref_primary_10_1002_ange_202402885
crossref_primary_10_1007_s11030_022_10594_3
crossref_primary_10_1038_s41467_025_58418_w
crossref_primary_10_1039_D3SC02681G
crossref_primary_10_1016_j_jssc_2024_125032
crossref_primary_10_1002_jcc_26891
crossref_primary_10_1016_j_surfin_2025_107044
crossref_primary_10_1007_s11244_021_01511_3
crossref_primary_10_1021_acs_jctc_5c01015
crossref_primary_10_1002_cctc_202401692
crossref_primary_10_1002_sia_7415
crossref_primary_10_1002_chem_202501305
crossref_primary_10_1021_acs_jpcc_5c00161
crossref_primary_10_1007_s11172_023_3992_x
crossref_primary_10_1039_D5RA03698D
crossref_primary_10_1016_j_molliq_2025_128488
crossref_primary_10_1002_jcc_27178
crossref_primary_10_1016_j_molstruc_2025_142115
crossref_primary_10_1021_jacs_4c00817
crossref_primary_10_3390_ijms26020483
crossref_primary_10_1016_j_jcat_2024_115903
crossref_primary_10_1002_ange_202414172
crossref_primary_10_1021_jasms_3c00012
crossref_primary_10_1002_wcms_1606
crossref_primary_10_1002_anie_202503930
crossref_primary_10_1016_j_dyepig_2023_111749
crossref_primary_10_1016_j_apsusc_2023_159081
crossref_primary_10_1021_acs_jctc_5c00866
crossref_primary_10_1021_jacs_4c13353
crossref_primary_10_1002_chem_202202206
crossref_primary_10_1126_science_adj5331
crossref_primary_10_1002_ange_202503930
crossref_primary_10_1021_jacs_5c03945
crossref_primary_10_1051_0004_6361_202347023
crossref_primary_10_1139_cjc_2024_0124
crossref_primary_10_1021_acs_inorgchem_5c02133
crossref_primary_10_1021_acs_jpcc_5c00499
crossref_primary_10_1016_j_vacuum_2024_113414
crossref_primary_10_1016_j_flatc_2023_100506
crossref_primary_10_1021_acs_organomet_5c00140
crossref_primary_10_1016_j_heliyon_2024_e27193
crossref_primary_10_1016_j_fuel_2023_130393
crossref_primary_10_1016_j_mtchem_2025_102663
crossref_primary_10_1021_acsanm_5c01656
crossref_primary_10_1039_D4NR05370B
crossref_primary_10_1016_j_commatsci_2024_113568
crossref_primary_10_1016_j_apcatb_2024_124526
crossref_primary_10_1016_j_ijhydene_2025_01_189
crossref_primary_10_1016_j_jcat_2025_116008
crossref_primary_10_1126_science_adf8042
crossref_primary_10_3390_inorganics11100384
crossref_primary_10_1002_chem_202403522
crossref_primary_10_1016_j_fuel_2023_129270
crossref_primary_10_1021_acs_inorgchem_5c01619
crossref_primary_10_1103_PhysRevResearch_6_043112
crossref_primary_10_3390_M1299
crossref_primary_10_1016_j_electacta_2025_146605
crossref_primary_10_1021_jacs_5c00774
crossref_primary_10_1021_acs_jpclett_5c01207
crossref_primary_10_1002_chem_202404170
crossref_primary_10_1002_slct_202301410
crossref_primary_10_1002_ange_202310610
crossref_primary_10_1051_0004_6361_202555360
crossref_primary_10_1002_anie_202402885
crossref_primary_10_1002_cphc_202400573
crossref_primary_10_3390_molecules30112271
crossref_primary_10_1016_j_jpcs_2024_112174
crossref_primary_10_1126_science_ado7049
crossref_primary_10_1002_anie_202310610
crossref_primary_10_1051_0004_6361_202243202
crossref_primary_10_1002_hlca_202500049
crossref_primary_10_1016_j_jmps_2023_105503
crossref_primary_10_1002_chem_202401249
crossref_primary_10_1016_j_polymdegradstab_2024_111163
crossref_primary_10_3390_reactions6010008
crossref_primary_10_1063_5_0186903
crossref_primary_10_1021_acs_jctc_4c01624
crossref_primary_10_1002_anie_202502097
crossref_primary_10_1021_acs_joc_5c01207
crossref_primary_10_1103_PhysRevC_105_054302
crossref_primary_10_1038_s41467_024_54453_1
crossref_primary_10_3390_pharmaceutics15071802
crossref_primary_10_1039_D4RA03222E
crossref_primary_10_1002_chem_202501441
crossref_primary_10_1016_j_apsusc_2025_163577
crossref_primary_10_1002_aenm_202401153
crossref_primary_10_3390_antibiotics13121167
crossref_primary_10_3847_1538_4357_ad0547
crossref_primary_10_1016_j_jpowsour_2024_235638
crossref_primary_10_1002_cctc_202300010
crossref_primary_10_1002_ange_202502097
crossref_primary_10_1021_acs_joc_4c03070
crossref_primary_10_1002_chem_202400024
crossref_primary_10_1088_1361_648X_acfcfb
crossref_primary_10_1002_chem_202403893
ContentType Journal Article
DBID 7X8
DOI 10.1021/acs.jctc.1c00462
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
GroupedDBID 4.4
53G
55A
5GY
5VS
7X8
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ID FETCH-LOGICAL-a341t-f6a5a3c2bb4bb33fdeef6dd71895fd35e45bf94ef16bd02100ef5d596f02122b2
IEDL.DBID 7X8
ISICitedReferencesCount 301
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685205900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9626
IngestDate Thu Jul 10 16:53:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a341t-f6a5a3c2bb4bb33fdeef6dd71895fd35e45bf94ef16bd02100ef5d596f02122b2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2553242319
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2553242319
PublicationCentury 2000
PublicationDate 20210810
PublicationDateYYYYMMDD 2021-08-10
PublicationDate_xml – month: 08
  year: 2021
  text: 20210810
  day: 10
PublicationDecade 2020
PublicationTitle Journal of chemical theory and computation
PublicationYear 2021
SSID ssj0033423
Score 2.696949
Snippet The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of...
SourceID proquest
SourceType Aggregation Database
StartPage 4929
Title Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following
URI https://www.proquest.com/docview/2553242319
Volume 17
WOSCitedRecordID wos000685205900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrxLb6J4LW7NknT7UlUunhwFxHFvS1JJhE9tGq76993km314EXwWoZShunMN69vCDljXIP1VIgiZpigOBBRJpJ-5LTUDgGKSmVYFL5NR6P-eJzdNQW3qhmrbH1icNRQGl8j7yH0DbE_zi7e3iN_Ncp3V5sTGoukwxHK-JGudPzdReCe3S7wpQrPQsnaNiWGtZ4yVffV1KYbm7Cf-csVh_gyWP_vl22QtQZZ0su5KWySBVtskZXr9qDbNqlHU3i2QHMEzChDr1QBdBguSFOErnTYXsql93a-7lDRMFFA87AgGD2FMiq-YV4NrCg6E0ys8YGv5tLcE3vOQheADtC8yk8U2iGPg_zh-iZqji5ECgNaHTmpEsUN01pozbkDa50EwBCWJQ54YkWiXSasi6UGnzCeW5dAkknnyeKZZrtkqSgLu0eoxPQX4lQ5g6mv4ugawClh-joDzkHKfXLaKnSCqvCdClXYclpNflR68AeZQ7LK_KRJIKo9Ih2HP649JstmVr9UHyfBJr4AeSjDlA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nudged+Elastic+Band+Method+for+Molecular+Reactions+Using+Energy-Weighted+Springs+Combined+with+Eigenvector+Following&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=%C3%81sgeirsson%2C+Vilhj%C3%A1lmur&rft.au=Birgisson%2C+Benedikt+Orri&rft.au=Bjornsson%2C+Ragnar&rft.au=Becker%2C+Ute&rft.date=2021-08-10&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=17&rft.issue=8&rft.spage=4929&rft_id=info:doi/10.1021%2Facs.jctc.1c00462&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon