Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following
The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carrie...
Uloženo v:
| Vydáno v: | Journal of chemical theory and computation Ročník 17; číslo 8; s. 4929 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
10.08.2021
|
| ISSN: | 1549-9626, 1549-9626 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software. |
|---|---|
| AbstractList | The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software.The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of reactions. It can make efficient use of parallel computing as the calculations of the discretization points, the so-called images, can be carried out simultaneously. In typical implementations, the images are distributed evenly along the path by connecting adjacent images with equally stiff springs. However, for systems with a high degree of flexibility, this can lead to poor resolution near the saddle point. By making the spring constants increase with energy, the resolution near the saddle point is improved. To assess the performance of this energy-weighted CI-NEB method, calculations are carried out for a benchmark set of 121 molecular reactions. The performance of the method is analyzed with respect to the input parameters. Energy-weighted springs are found to greatly improve performance and result in successful location of the saddle points in less than a thousand energy and force evaluations on average (about a hundred per image) using the same set of parameter values for all of the reactions. Even better performance is obtained by stopping the calculation before full convergence and complete the saddle point search using an eigenvector following method starting from the location of the climbing image. This combination of methods, referred to as NEB-TS, turns out to be robust and highly efficient as it reduces the average number of energy and force evaluations down to a third, to 305. An efficient and flexible implementation of these methods has been made available in the ORCA software. |
| Author | Bjornsson, Ragnar Ásgeirsson, Vilhjálmur Riplinger, Christoph Birgisson, Benedikt Orri Becker, Ute Jónsson, Hannes Neese, Frank |
| Author_xml | – sequence: 1 givenname: Vilhjálmur surname: Ásgeirsson fullname: Ásgeirsson, Vilhjálmur – sequence: 2 givenname: Benedikt Orri surname: Birgisson fullname: Birgisson, Benedikt Orri – sequence: 3 givenname: Ragnar surname: Bjornsson fullname: Bjornsson, Ragnar – sequence: 4 givenname: Ute surname: Becker fullname: Becker, Ute – sequence: 5 givenname: Frank surname: Neese fullname: Neese, Frank – sequence: 6 givenname: Christoph surname: Riplinger fullname: Riplinger, Christoph – sequence: 7 givenname: Hannes surname: Jónsson fullname: Jónsson, Hannes |
| BookMark | eNpNkDtPwzAUhS1UJNrCzuiRJcWPOJARqhSQWpCAirHy4zp15doldqj490SCgek8dPQNZ4JGIQZA6JKSGSWMXkudZjud9YxqQsqKnaAxFWVd1BWrRv_8GZqktCOE85LxMcrPvWnB4MbLlJ3G9zIYvIK8jQbb2OFV9KB7Lzv8ClJnF0PC6-RCi5sAXftdfIBrt3kgvB26oU54HvfKhaE4urzFjWshfIHOA2sRvY_HYXSOTq30CS7-dIrWi-Z9_lgsXx6e5nfLQvKS5sJWUkiumVKlUpxbA2ArY27obS2s4QJKoWxdgqWVMsMHhIAVRtSVHQJjik3R1S_30MXPHlLe7F3S4L0MEPu0YUJwNtxAa_YD4-lkSQ |
| CitedBy_id | crossref_primary_10_1021_acs_joc_5c00695 crossref_primary_10_1016_j_jphotochem_2024_115502 crossref_primary_10_1002_ejic_202300641 crossref_primary_10_1021_acs_joc_4c02546 crossref_primary_10_1016_j_molstruc_2025_144000 crossref_primary_10_1016_j_ijhydene_2025_02_465 crossref_primary_10_1021_jasms_2c00224 crossref_primary_10_1103_dj5c_d24m crossref_primary_10_1021_acs_jpca_4c08718 crossref_primary_10_1016_j_est_2025_117859 crossref_primary_10_1002_anie_202509661 crossref_primary_10_1002_cptc_202500033 crossref_primary_10_1016_j_polymdegradstab_2025_111543 crossref_primary_10_1093_mnras_staf1191 crossref_primary_10_3390_cryst13050803 crossref_primary_10_1002_ejic_202200247 crossref_primary_10_1016_j_jms_2023_111790 crossref_primary_10_1021_acs_inorgchem_5c02766 crossref_primary_10_1002_anie_202414172 crossref_primary_10_1021_acs_chemmater_5c00212 crossref_primary_10_1021_acs_jpcc_5c00326 crossref_primary_10_1002_aenm_202302039 crossref_primary_10_1007_s11172_024_4370_z crossref_primary_10_1089_ast_2023_0046 crossref_primary_10_1007_s00894_024_06013_z crossref_primary_10_1039_D2PY00999D crossref_primary_10_1002_ange_202407822 crossref_primary_10_1039_D2QI02047E crossref_primary_10_1002_wcms_70019 crossref_primary_10_1021_jacs_2c09978 crossref_primary_10_1002_jcc_70083 crossref_primary_10_3389_fbioe_2021_806415 crossref_primary_10_1002_adma_202301876 crossref_primary_10_1039_D5CP02665B crossref_primary_10_1038_s44160_025_00838_z crossref_primary_10_1016_j_seppur_2025_134535 crossref_primary_10_1002_anie_202510186 crossref_primary_10_1002_jcc_27125 crossref_primary_10_1002_cphc_202400881 crossref_primary_10_3390_molecules28020747 crossref_primary_10_1039_D5TA02035B crossref_primary_10_1002_anie_202500393 crossref_primary_10_1002_jcc_26958 crossref_primary_10_1002_anie_202510744 crossref_primary_10_1002_slct_202202669 crossref_primary_10_1002_slct_202502605 crossref_primary_10_1002_cphc_202400401 crossref_primary_10_3847_1538_4357_acd192 crossref_primary_10_1002_cphc_202300370 crossref_primary_10_1016_j_jpowsour_2025_237080 crossref_primary_10_1093_chemle_upaf154 crossref_primary_10_1016_j_diamond_2025_112192 crossref_primary_10_1016_j_apenergy_2025_125925 crossref_primary_10_1002_ange_202510186 crossref_primary_10_1021_acscatal_4c06833 crossref_primary_10_1002_ange_202510744 crossref_primary_10_1002_ange_202500393 crossref_primary_10_1002_chem_202400585 crossref_primary_10_1557_s43578_024_01408_3 crossref_primary_10_3390_ijms252312798 crossref_primary_10_1002_anie_202412982 crossref_primary_10_1021_acs_jpclett_5c00408 crossref_primary_10_3390_ijms24032906 crossref_primary_10_1002_anie_202423516 crossref_primary_10_1002_cplu_202400613 crossref_primary_10_1016_j_mcat_2024_114596 crossref_primary_10_1039_D2SC05377B crossref_primary_10_3390_ijms25094804 crossref_primary_10_3847_1538_4357_ad5bd8 crossref_primary_10_1016_j_matlet_2025_138605 crossref_primary_10_1016_j_ijrmhm_2024_106852 crossref_primary_10_1002_chem_202102539 crossref_primary_10_1002_anie_202407822 crossref_primary_10_1248_cpb_c25_00260 crossref_primary_10_1021_jacs_3c04281 crossref_primary_10_1038_s41598_025_04365_x crossref_primary_10_1039_D3RA08810C crossref_primary_10_3390_catal12111408 crossref_primary_10_3390_molecules28124806 crossref_primary_10_3390_M1451 crossref_primary_10_1002_anie_202419943 crossref_primary_10_1039_D4MH01425A crossref_primary_10_1002_anie_202417889 crossref_primary_10_1002_chem_202302721 crossref_primary_10_1016_j_mtcomm_2023_105933 crossref_primary_10_1002_chem_202301752 crossref_primary_10_1039_D2DT02229J crossref_primary_10_1039_D5CP01307K crossref_primary_10_1038_s42004_022_00716_1 crossref_primary_10_3390_molecules28227652 crossref_primary_10_1002_ange_202509661 crossref_primary_10_1039_D5MH01527H crossref_primary_10_1021_acs_jcim_4c02267 crossref_primary_10_1002_ange_202419943 crossref_primary_10_4155_bio_2022_0193 crossref_primary_10_1002_ange_202417889 crossref_primary_10_1016_j_est_2025_117035 crossref_primary_10_1002_qua_27017 crossref_primary_10_1021_acs_orglett_5c02610 crossref_primary_10_1021_jacs_2c11265 crossref_primary_10_1002_ajoc_202500475 crossref_primary_10_1021_acsaem_4c02634 crossref_primary_10_1134_S0023158423050075 crossref_primary_10_1002_jcc_27169 crossref_primary_10_1016_j_est_2025_117719 crossref_primary_10_1021_acs_jpclett_5c01082 crossref_primary_10_1002_ange_202412982 crossref_primary_10_1002_ange_202423516 crossref_primary_10_3390_ijms23052430 crossref_primary_10_1039_D4MH00811A crossref_primary_10_1002_jcc_27030 crossref_primary_10_1016_j_chembiol_2024_03_012 crossref_primary_10_3390_molecules27041184 crossref_primary_10_1002_jcc_26865 crossref_primary_10_1515_pac_2025_0532 crossref_primary_10_1002_chem_202404348 crossref_primary_10_1088_1402_4896_ad77f9 crossref_primary_10_1016_j_jmst_2024_11_046 crossref_primary_10_1021_acs_jpcc_5c02119 crossref_primary_10_1016_j_jhazmat_2024_136817 crossref_primary_10_3762_bjoc_20_263 crossref_primary_10_1016_j_jpowsour_2025_238102 crossref_primary_10_3390_ijms25052528 crossref_primary_10_1039_D5SE00728C crossref_primary_10_1038_s41557_022_01057_1 crossref_primary_10_1002_ange_202402885 crossref_primary_10_1007_s11030_022_10594_3 crossref_primary_10_1038_s41467_025_58418_w crossref_primary_10_1039_D3SC02681G crossref_primary_10_1016_j_jssc_2024_125032 crossref_primary_10_1002_jcc_26891 crossref_primary_10_1016_j_surfin_2025_107044 crossref_primary_10_1007_s11244_021_01511_3 crossref_primary_10_1021_acs_jctc_5c01015 crossref_primary_10_1002_cctc_202401692 crossref_primary_10_1002_sia_7415 crossref_primary_10_1002_chem_202501305 crossref_primary_10_1021_acs_jpcc_5c00161 crossref_primary_10_1007_s11172_023_3992_x crossref_primary_10_1039_D5RA03698D crossref_primary_10_1016_j_molliq_2025_128488 crossref_primary_10_1002_jcc_27178 crossref_primary_10_1016_j_molstruc_2025_142115 crossref_primary_10_1021_jacs_4c00817 crossref_primary_10_3390_ijms26020483 crossref_primary_10_1016_j_jcat_2024_115903 crossref_primary_10_1002_ange_202414172 crossref_primary_10_1021_jasms_3c00012 crossref_primary_10_1002_wcms_1606 crossref_primary_10_1002_anie_202503930 crossref_primary_10_1016_j_dyepig_2023_111749 crossref_primary_10_1016_j_apsusc_2023_159081 crossref_primary_10_1021_acs_jctc_5c00866 crossref_primary_10_1021_jacs_4c13353 crossref_primary_10_1002_chem_202202206 crossref_primary_10_1126_science_adj5331 crossref_primary_10_1002_ange_202503930 crossref_primary_10_1021_jacs_5c03945 crossref_primary_10_1051_0004_6361_202347023 crossref_primary_10_1139_cjc_2024_0124 crossref_primary_10_1021_acs_inorgchem_5c02133 crossref_primary_10_1021_acs_jpcc_5c00499 crossref_primary_10_1016_j_vacuum_2024_113414 crossref_primary_10_1016_j_flatc_2023_100506 crossref_primary_10_1021_acs_organomet_5c00140 crossref_primary_10_1016_j_heliyon_2024_e27193 crossref_primary_10_1016_j_fuel_2023_130393 crossref_primary_10_1016_j_mtchem_2025_102663 crossref_primary_10_1021_acsanm_5c01656 crossref_primary_10_1039_D4NR05370B crossref_primary_10_1016_j_commatsci_2024_113568 crossref_primary_10_1016_j_apcatb_2024_124526 crossref_primary_10_1016_j_ijhydene_2025_01_189 crossref_primary_10_1016_j_jcat_2025_116008 crossref_primary_10_1126_science_adf8042 crossref_primary_10_3390_inorganics11100384 crossref_primary_10_1002_chem_202403522 crossref_primary_10_1016_j_fuel_2023_129270 crossref_primary_10_1021_acs_inorgchem_5c01619 crossref_primary_10_1103_PhysRevResearch_6_043112 crossref_primary_10_3390_M1299 crossref_primary_10_1016_j_electacta_2025_146605 crossref_primary_10_1021_jacs_5c00774 crossref_primary_10_1021_acs_jpclett_5c01207 crossref_primary_10_1002_chem_202404170 crossref_primary_10_1002_slct_202301410 crossref_primary_10_1002_ange_202310610 crossref_primary_10_1051_0004_6361_202555360 crossref_primary_10_1002_anie_202402885 crossref_primary_10_1002_cphc_202400573 crossref_primary_10_3390_molecules30112271 crossref_primary_10_1016_j_jpcs_2024_112174 crossref_primary_10_1126_science_ado7049 crossref_primary_10_1002_anie_202310610 crossref_primary_10_1051_0004_6361_202243202 crossref_primary_10_1002_hlca_202500049 crossref_primary_10_1016_j_jmps_2023_105503 crossref_primary_10_1002_chem_202401249 crossref_primary_10_1016_j_polymdegradstab_2024_111163 crossref_primary_10_3390_reactions6010008 crossref_primary_10_1063_5_0186903 crossref_primary_10_1021_acs_jctc_4c01624 crossref_primary_10_1002_anie_202502097 crossref_primary_10_1021_acs_joc_5c01207 crossref_primary_10_1103_PhysRevC_105_054302 crossref_primary_10_1038_s41467_024_54453_1 crossref_primary_10_3390_pharmaceutics15071802 crossref_primary_10_1039_D4RA03222E crossref_primary_10_1002_chem_202501441 crossref_primary_10_1016_j_apsusc_2025_163577 crossref_primary_10_1002_aenm_202401153 crossref_primary_10_3390_antibiotics13121167 crossref_primary_10_3847_1538_4357_ad0547 crossref_primary_10_1016_j_jpowsour_2024_235638 crossref_primary_10_1002_cctc_202300010 crossref_primary_10_1002_ange_202502097 crossref_primary_10_1021_acs_joc_4c03070 crossref_primary_10_1002_chem_202400024 crossref_primary_10_1088_1361_648X_acfcfb crossref_primary_10_1002_chem_202403893 |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1021/acs.jctc.1c00462 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7X8 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F |
| ID | FETCH-LOGICAL-a341t-f6a5a3c2bb4bb33fdeef6dd71895fd35e45bf94ef16bd02100ef5d596f02122b2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 301 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685205900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-9626 |
| IngestDate | Thu Jul 10 16:53:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a341t-f6a5a3c2bb4bb33fdeef6dd71895fd35e45bf94ef16bd02100ef5d596f02122b2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2553242319 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2553242319 |
| PublicationCentury | 2000 |
| PublicationDate | 20210810 |
| PublicationDateYYYYMMDD | 2021-08-10 |
| PublicationDate_xml | – month: 08 year: 2021 text: 20210810 day: 10 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationYear | 2021 |
| SSID | ssj0033423 |
| Score | 2.696949 |
| Snippet | The climbing image nudged elastic band method (CI-NEB) is used to identify reaction coordinates and to find saddle points representing transition states of... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 4929 |
| Title | Nudged Elastic Band Method for Molecular Reactions Using Energy-Weighted Springs Combined with Eigenvector Following |
| URI | https://www.proquest.com/docview/2553242319 |
| Volume | 17 |
| WOSCitedRecordID | wos000685205900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrxLb6J4LW7NknT7UlUunhwFxHFvS1JJhE9tGq76993km314EXwWoZShunMN69vCDljXIP1VIgiZpigOBBRJpJ-5LTUDgGKSmVYFL5NR6P-eJzdNQW3qhmrbH1icNRQGl8j7yH0DbE_zi7e3iN_Ncp3V5sTGoukwxHK-JGudPzdReCe3S7wpQrPQsnaNiWGtZ4yVffV1KYbm7Cf-csVh_gyWP_vl22QtQZZ0su5KWySBVtskZXr9qDbNqlHU3i2QHMEzChDr1QBdBguSFOErnTYXsql93a-7lDRMFFA87AgGD2FMiq-YV4NrCg6E0ys8YGv5tLcE3vOQheADtC8yk8U2iGPg_zh-iZqji5ECgNaHTmpEsUN01pozbkDa50EwBCWJQ54YkWiXSasi6UGnzCeW5dAkknnyeKZZrtkqSgLu0eoxPQX4lQ5g6mv4ugawClh-joDzkHKfXLaKnSCqvCdClXYclpNflR68AeZQ7LK_KRJIKo9Ih2HP649JstmVr9UHyfBJr4AeSjDlA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nudged+Elastic+Band+Method+for+Molecular+Reactions+Using+Energy-Weighted+Springs+Combined+with+Eigenvector+Following&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=%C3%81sgeirsson%2C+Vilhj%C3%A1lmur&rft.au=Birgisson%2C+Benedikt+Orri&rft.au=Bjornsson%2C+Ragnar&rft.au=Becker%2C+Ute&rft.date=2021-08-10&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=17&rft.issue=8&rft.spage=4929&rft_id=info:doi/10.1021%2Facs.jctc.1c00462&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon |