Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program

We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Our implementation features an octree based numerical grid point partitioning scheme, GPU enabled grid pruning...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of chemical theory and computation Ročník 16; číslo 7; s. 4315
Hlavní autoři: Manathunga, Madushanka, Miao, Yipu, Mu, Dawei, Götz, Andreas W, Merz, Kenneth M
Médium: Journal Article
Jazyk:angličtina
Vydáno: 14.07.2020
ISSN:1549-9626, 1549-9626
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Our implementation features an octree based numerical grid point partitioning scheme, GPU enabled grid pruning and basis and primitive function prescreening, and fully GPU capable XC energy and gradient algorithms. Benchmarking against the CPU version demonstrated that the GPU implementation is capable of delivering an impressive performance while retaining excellent accuracy. For small to medium size protein/organic molecular systems, the realized speedups in double precision XC energy and gradient computation on a NVIDIA V100 GPU were 60-80-fold and 140-500-fold, respectively, as compared to the serial CPU implementation. The acceleration gained in density functional theory calculations from a single V100 GPU significantly exceeds that of a modern CPU with 40 cores running in parallel.We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Our implementation features an octree based numerical grid point partitioning scheme, GPU enabled grid pruning and basis and primitive function prescreening, and fully GPU capable XC energy and gradient algorithms. Benchmarking against the CPU version demonstrated that the GPU implementation is capable of delivering an impressive performance while retaining excellent accuracy. For small to medium size protein/organic molecular systems, the realized speedups in double precision XC energy and gradient computation on a NVIDIA V100 GPU were 60-80-fold and 140-500-fold, respectively, as compared to the serial CPU implementation. The acceleration gained in density functional theory calculations from a single V100 GPU significantly exceeds that of a modern CPU with 40 cores running in parallel.
AbstractList We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Our implementation features an octree based numerical grid point partitioning scheme, GPU enabled grid pruning and basis and primitive function prescreening, and fully GPU capable XC energy and gradient algorithms. Benchmarking against the CPU version demonstrated that the GPU implementation is capable of delivering an impressive performance while retaining excellent accuracy. For small to medium size protein/organic molecular systems, the realized speedups in double precision XC energy and gradient computation on a NVIDIA V100 GPU were 60-80-fold and 140-500-fold, respectively, as compared to the serial CPU implementation. The acceleration gained in density functional theory calculations from a single V100 GPU significantly exceeds that of a modern CPU with 40 cores running in parallel.We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Our implementation features an octree based numerical grid point partitioning scheme, GPU enabled grid pruning and basis and primitive function prescreening, and fully GPU capable XC energy and gradient algorithms. Benchmarking against the CPU version demonstrated that the GPU implementation is capable of delivering an impressive performance while retaining excellent accuracy. For small to medium size protein/organic molecular systems, the realized speedups in double precision XC energy and gradient computation on a NVIDIA V100 GPU were 60-80-fold and 140-500-fold, respectively, as compared to the serial CPU implementation. The acceleration gained in density functional theory calculations from a single V100 GPU significantly exceeds that of a modern CPU with 40 cores running in parallel.
Author Manathunga, Madushanka
Merz, Kenneth M
Mu, Dawei
Miao, Yipu
Götz, Andreas W
Author_xml – sequence: 1
  givenname: Madushanka
  surname: Manathunga
  fullname: Manathunga, Madushanka
– sequence: 2
  givenname: Yipu
  surname: Miao
  fullname: Miao, Yipu
– sequence: 3
  givenname: Dawei
  surname: Mu
  fullname: Mu, Dawei
– sequence: 4
  givenname: Andreas W
  surname: Götz
  fullname: Götz, Andreas W
– sequence: 5
  givenname: Kenneth M
  surname: Merz
  fullname: Merz, Kenneth M
BookMark eNpNTUtPAjEYbAwmAnr32KOXxb72dTQoSMSICZ7J1_KtLOm22HYP_HtRPDiXmUzmMSID5x0ScsvZhDPB78HEyd4kM2GGMVGzCzLkuaqzuhDF4J--IqMY94xJqYQckrSCANaipYvuYLFDlyC13lHf0Ed0sU1HOuud-fHA0vUOfTjSV0w7v420dTTtkL734FLf0YVLGOA3S6e-O_TnrVPvBYM7fayC_wzQXZPLBmzEmz8ek4_Z03r6nC3f5ovpwzIDqXjKcqPzCpRmNcimBlCmVEZwWRS6UVoDL-ttWWFVarHFRiGvKlFgo_O8NDkKI8bk7rx7CP6rx5g2XRsNWgsOfR83QnHOmRQnfAOY2WUA
CitedBy_id crossref_primary_10_1016_j_parco_2021_102829
crossref_primary_10_1063_1674_0068_cjcp2403028
crossref_primary_10_1021_acs_jpca_5c01811
crossref_primary_10_1038_s41467_024_48697_0
crossref_primary_10_1038_s42254_025_00823_7
crossref_primary_10_1002_jcc_70109
crossref_primary_10_1063_5_0213317
crossref_primary_10_6023_A21020044
crossref_primary_10_1038_s41524_023_01041_4
crossref_primary_10_1021_acs_chemrev_5c00259
crossref_primary_10_3389_fchem_2020_581058
crossref_primary_10_1021_acs_jcim_5c01329
crossref_primary_10_1021_acs_jctc_4c01759
ContentType Journal Article
DBID 7X8
DOI 10.1021/acs.jctc.0c00290
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
GroupedDBID 4.4
53G
55A
5GY
5VS
7X8
7~N
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
ID FETCH-LOGICAL-a341t-5cb58a4b09a3f9aa4c74c21366bf4bba179d78e87b2def4e18826efb557c5e2c2
IEDL.DBID 7X8
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607532300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9626
IngestDate Fri Jul 11 16:51:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a341t-5cb58a4b09a3f9aa4c74c21366bf4bba179d78e87b2def4e18826efb557c5e2c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2411103222
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2411103222
PublicationCentury 2000
PublicationDate 20200714
PublicationDateYYYYMMDD 2020-07-14
PublicationDate_xml – month: 07
  year: 2020
  text: 20200714
  day: 14
PublicationDecade 2020
PublicationTitle Journal of chemical theory and computation
PublicationYear 2020
SSID ssj0033423
Score 2.494252
Snippet We present the details of a graphics processing unit (GPU) capable exchange correlation (XC) scheme integrated into the open source QUantum Interaction...
SourceID proquest
SourceType Aggregation Database
StartPage 4315
Title Parallel Implementation of Density Functional Theory Methods in the Quantum Interaction Computational Kernel Program
URI https://www.proquest.com/docview/2411103222
Volume 16
WOSCitedRecordID wos000607532300027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xLt6J4Gu2Nk2b5klkOgR1TFDY20iyBCau1bYT_PeepK0--CL4Xkg5Obecy_chdGF5oCEbCkkIL2vCRCKINFaSWEmrRMw1s35R-J4Ph-l4LEZNwa1sxipbn-gd9TTXrkbeg0gTOvA3Si_f3oljjXLd1YZCYxl1IkhlnGHy8XcXIXLodh4vlTkUStq2KSGs9aQuuy-60t1Au8ZU8MsV-_gy2Pzvn22hjSazxFe1KmyjJZPtoLV-S-i2i6qRLBxzyiv2kMDzZusow7nF126OvfrEAwhzdXUQ11v7-MFTTJd4lmHIFfHjAq5iMce-klgvReCaGaKpKuI7U2Rwxqge_NpDz4Obp_4taUgXiISAVpFYqziVTAVCRlZIyTRnmoZRkijLlJJgwFOempQrOjWWmRBS9MRYFcO9xoZquo9WsjwzBwgHyjBJtRDKIcrEqQpBXQIu00SaBDTkEJ23Ap2AKFynQmYmX5STH5Ee_eGbY7RO3SvYwV2yE9SxYLjmFK3qj2pWFmdeJ74AlQfEwA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+Implementation+of+Density+Functional+Theory+Methods+in+the+Quantum+Interaction+Computational+Kernel+Program&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Manathunga%2C+Madushanka&rft.au=Miao%2C+Yipu&rft.au=Mu%2C+Dawei&rft.au=G%C3%B6tz%2C+Andreas+W&rft.date=2020-07-14&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=16&rft.issue=7&rft.spage=4315&rft_id=info:doi/10.1021%2Facs.jctc.0c00290&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon