Level one algebraic cusp forms of classical groups of small rank

The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Chenevier, Gaëtan, Renard, David
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2015
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:147041094X, 9781470410940
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of \mathrm{GL}_n with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.
AbstractList The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of \mathrm{GL}_n with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.
We determine the number of level
Author Chenevier, Gaëtan
Renard, David
Author_xml – sequence: 1
  givenname: Gaëtan
  surname: Chenevier
  fullname: Chenevier, Gaëtan
  email: gaetan.chenevier@math.cnrs.fr
  organization: Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique, 91128 Palaiseau Cedex, France
– sequence: 2
  givenname: David
  surname: Renard
  fullname: Renard, David
  email: renard@math.polytechnique.fr
  organization: Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique, 91128 Palaiseau Cedex, France
BackLink https://cir.nii.ac.jp/crid/1130000798102109056$$DView record in CiNii
BookMark eNo9kUtP4zAUhc1T0wIL_kEkRkKzCNzrR2zvgAoGpEpsEGJnOY4DoU5c4hb-Pgmt2FxL93z2kc-Zkv0udp6QU4QLBA2XrW_jJSLFHTJFLoFTAZrukglqLvOCUtzbCgPOX_bJBKAQuaZFcUCmFFAAFlTSQzLRKJUcbrA_5CSld4BBRKGonpCruf_0IRusMxtefdnbxmVunZZZHfs2ZbHOXLApNc6G7LWP6-XPLrU2hKy33eKYHNQ2JH-yPY_I893t0-w-nz_-f5hdz3PLmKYyl6iwkMAqz6qykNairngJkqETXIqaKyGddiWvhs9jSWUtmPWlKK1EULRiR-Tf5mGbFv4rvcWwSuYz-DLGRTJaqt-Q1MCeb9hlHz_WPq3MD-Z8t-ptMLc3M64YBTqSfzdk1zTGNeNEZENCILVCoGMVohiws615m8zWEsGMqhmLMmNR7BukFnhw
ContentType eBook
Book
Copyright Copyright 2015 American Mathematical Society
Copyright_xml – notice: Copyright 2015 American Mathematical Society
DBID RYH
DEWEY 512.7/4
DOI 10.1090/memo/1121
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 1470425092
9781470425098
EISSN 1947-6221
Edition 1
ExternalDocumentID 9781470425098
EBC4832028
BB19526138
10_1090_memo_1121
GroupedDBID --Z
-~X
123
4.4
85S
ABPPZ
ACNCT
ACNUO
AEGFZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
DU5
P2P
RMA
WH7
XOL
YNT
YQT
3.E
38.
AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AEKGI
AERYV
AFOJC
AHWGJ
AJFER
AOJMM
AZZ
BBABE
CZZ
GEOUK
RYH
ID FETCH-LOGICAL-a33927-71816703de3db67aa19d4b0731c5475f4857c9cb4d0901b27f53aeb5ba71082d3
ISBN 147041094X
9781470410940
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000054930&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0065-9266
IngestDate Fri Nov 08 04:32:42 EST 2024
Wed Dec 10 11:58:24 EST 2025
Fri Jun 27 00:26:37 EDT 2025
Thu Aug 14 15:25:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords euclidean lattices
classical groups
invariants of finite groups
Langlands group of <inline-formula content-type="math/mathml"> Z {\mathbb {Z}} </inline-formula>
Sato-Tate groups
conductor one
endoscopy
vector-valued Siegel modular forms
Automorphic representations
dimension formulas
compact groups
LCCN 2015016272
LCCallNum_Ident QA243.C446 2016
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a33927-71816703de3db67aa19d4b0731c5475f4857c9cb4d0901b27f53aeb5ba71082d3
Notes Includes bibliographical references (p. 117-122)
OCLC 917876223
PQID EBC4832028
PageCount 134
ParticipantIDs askewsholts_vlebooks_9781470425098
proquest_ebookcentral_EBC4832028
nii_cinii_1130000798102109056
ams_ebooks_10_1090_memo_1121
PublicationCentury 2000
PublicationDate [2015]
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: [2015]
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: Providence, R.I
– name: Providence
PublicationSeriesTitle Memoirs of the American Mathematical Society
PublicationYear 2015
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
SSID ssj0001515829
ssj0008047
Score 2.6920424
Snippet We determine the number of level
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given...
The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any...
SourceID askewsholts
proquest
nii
ams
SourceType Aggregation Database
Publisher
SubjectTerms Cusp forms (Mathematics)
Forms (Mathematics)
TableOfContents Introduction -- Polynomial invariants of finite subgroups of compact connected Lie groups -- Automorphic representations of classical groups : review of Arthur’s results -- Determination of <inline-formula content-type="math/mathml"> Π alg ⊥ ( PGL n ) \Pi _\textrm {alg}^\bot (\textrm {PGL}_n) </inline-formula> for <inline-formula content-type="math/mathml"> n ≤ 5 n\leq 5 </inline-formula> -- Description of <inline-formula content-type="math/mathml"> Π disc ( SO 7 ) \Pi _\textrm {disc}(\textrm {SO}_7) </inline-formula> and <inline-formula content-type="math/mathml"> Π<!-- Π --> alg s ( PGL 6 ) \Pi _\textrm {alg}^\textrm {s}(\textrm {PGL}_6) </inline-formula> -- Description of <inline-formula content-type="math/mathml"> Π disc ( SO 9 ) \Pi _\textrm {disc}(\textrm {SO}_9) </inline-formula> and <inline-formula content-type="math/mathml"> Π<!-- Π --> alg s ( PGL 8 ) \Pi _\textrm {alg}^\textrm {s}(\textrm {PGL}_8) </inline-formula> -- Description of <inline-formula content-type="math/mathml"> Π disc ( SO 8 ) \Pi _\textrm {disc}(\textrm {SO}_8) </inline-formula> and <inline-formula content-type="math/mathml"> Π<!-- Π --> alg o ( PGL 8 ) \Pi _\textrm {alg}^\textrm {o}(\textrm {PGL}_8) </inline-formula> -- Description of <inline-formula content-type="math/mathml"> Π disc ( G 2 ) \Pi _\textrm {disc}(\textrm {G}_2) </inline-formula> -- Application to Siegel modular forms -- Adams-Johnson packets -- The Langlands group of <inline-formula content-type="math/mathml"> Z \mathbb {Z} </inline-formula> and Sato-Tate groups -- Tables -- The <inline-formula content-type="math/mathml"> 121 121 </inline-formula> level <inline-formula content-type="math/mathml"> 1 1 </inline-formula> automorphic representations of <inline-formula content-type="math/mathml"> SO 25 \textrm {SO}_{25} </inline-formula> with trivial coefficients
Cover -- Title page -- Chapter 1. Introduction -- 1.1. A counting problem -- 1.2. Motivations -- 1.3. The main result -- 1.4. Langlands-Sato-Tate groups -- 1.5. The symplectic-orthogonal alternative -- 1.6. Case-by-case description, examples in low motivic weight -- 1.7. Generalizations -- 1.8. Methods and proofs -- 1.9. Application to Borcherds even lattices of rank 25 and determinant 2 -- 1.10. A level 1, non-cuspidal, tempered automorphic representation of \GL₂₈ over \Q with weights 0,1,2,\cdots,27 -- Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups -- 2.1. The setting -- 2.2. The degenerate Weyl character formula -- 2.3. A computer program -- 2.4. Some numerical applications -- 2.5. Reliability -- 2.6. A check: the harmonic polynomial invariants of a Weyl group -- Chapter 3. Automorphic representations of classical groups : review of Arthur's results -- 3.1. Classical semisimple groups over \Z -- 3.2. Discrete automorphic representations -- 3.3. The case of Chevalley and definite semisimple \Z-groups -- 3.4. Langlands parameterization of Π_{ }( ) -- 3.5. Arthur's symplectic-orthogonal alternative -- 3.6. The symplectic-orthogonal alternative for polarized algebraic regular cuspidal automorphic representations of \GL_{ } over \Q -- 3.7. Arthur's classification: global parameters -- 3.8. The packet Π( ) of a ∈Ψ_{ }( ) -- 3.9. The character _{ } of _{ } -- 3.10. Arthur's multiplicity formula -- Chapter 4. Determination of Π_{ }^{⊥}(\PGL_{ }) for ≤5 -- 4.1. Determination of Π^{⊥}_{ }(\PGL₂) -- 4.2. Determination of Π_{ }^{ }(\PGL₄) -- 4.3. An elementary lifting result for isogenies -- 4.4. Symmetric square functoriality and Π^{⊥}_{ }(\PGL₃) -- 4.5. Tensor product functoriality and Π_{ }^{ }(\PGL₄) -- 4.6. Λ* functorality and Π_{ }^{ }(\PGL₅)
Chapter 5. Description of Π_{ }( ₇) and Π_{ }^{ }(\PGL₆) -- 5.1. The semisimple \Z-group ₇ -- 5.2. Parameterization by the infinitesimal character -- 5.3. Endoscopic partition of Π_{ }( ₇) -- 5.4. Conclusions -- Chapter 6. Description of Π_{ }( ₉) and Π_{ }^{ }(\PGL₈) -- 6.1. The semisimple \Z-group ₉ -- 6.2. Endoscopic partition of Π_{ } -- 6.3. Conclusions -- Chapter 7. Description of Π_{ }( ₈) and Π_{ }^{ }(\PGL₈) -- 7.1. The semisimple \Z-group ₈ -- 7.2. Endoscopic partition of Π_{ } -- 7.3. Conclusions -- Chapter 8. Description of Π_{ }( ₂) -- 8.1. The semisimple definite ₂ over \Z -- 8.2. Polynomial invariants for ₂(\Z)⊂ ₂(\R) -- 8.3. Endoscopic classification of Π_{ }( ₂) -- 8.4. Conclusions -- Chapter 9. Application to Siegel modular forms -- 9.1. Vector valued Siegel modular forms of level 1 -- 9.2. Two lemmas on holomorphic discrete series -- 9.3. An example: the case of genus 3 -- Appendix A. Adams-Johnson packets -- A.1. Strong inner forms of compact connected real Lie groups -- A.2. Adams-Johnson parameters -- A.3. Adams-Johnson packets -- A.4. Shelstad's parameterization map -- Appendix B. The Langlands group of \Z and Sato-Tate groups -- B.1. The locally compact group ℒ_{\Z} -- B.2. Sato-Tate groups -- B.3. A list in rank ≤8 -- Appendix C. Tables -- Appendix D. The 121 level 1 automorphic representations of ₂₅ with trivial coefficients -- Bibliography -- Back Cover
Title Level one algebraic cusp forms of classical groups of small rank
URI https://www.ams.org/memo/1121/
https://cir.nii.ac.jp/crid/1130000798102109056
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4832028
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470425098
Volume 237
WOSCitedRecordID wos0000054930&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Ni9QwFH84owfn5CfOuitBvC1lmzZpkpvMMioIq8gqcytp0kLR6Szb2WX_fN9Lv2QUxIOXMA1D0nm_TN4veV8Abzx3Mccmck7JSHBhI-tjExlZeCSwPnFFV2xCXVzozcZ87uO121BOQDWNvrszV_8VauxDsCl09h_gHgfFDvyMoGOLsGN7wIjHxz6cmfx_TnfIGql2B56Ca3fqbtqrEKAYPDYcUeWASgjmCH3tlozTVLp9svTj_kfqMtyZ22BKX-2nVfSlbOyhQ3x_b8Dlwb3BZBAa08NS-pHdmH9kPGRyoWLBKc_eH7fc2JCP4rbc7ugSgHfxzgc5rFcrbiSe1VI9g5nK8JB8__3609eP020Y0iqdmBB518-2GRJyDbMPeaFMfEazndFcIT9uu4CFbb-jUkCFscenWVPXv-nWQBguH8Gcgkgew72yeQKL6ce3T-FtwIkhTmzEiRFOLODEdhUbcWIdTtQXcGKE0zP49m59ef4h6utYRDZF-qki1P88w63Vl6kvMmUtN14UuLlyJ4WSldBSOeMKgf-SmBeJqmRqy0IWFvmfTnz6HOYNvtYLYCbVMqsqT3ksRckVPiVlhkSLDLSep0s4RoHkwdLe5p2HQZyTvHKS1xJe_yKp_PZH_8VB0EiIjV7CCQowdzW1nOydSCSNpiLwOJjMlsAG0XYT9X7E-Xp1LlBDIGU9-ssQL-HhtCaPYb6_vilP4IG73dft9at-dfwEX-FH4Q
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Level+one+algebraic+cusp+forms+of+classical+groups+of+small+rank&rft.au=Chenevier%2C+Ga%C3%ABtan&rft.au=Renard%2C+David&rft.date=2015-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470410940&rft_id=info:doi/10.1090%2Fmemo%2F1121&rft.externalDocID=BB19526138
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470425098.jpg