Level one algebraic cusp forms of classical groups of small rank
The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain...
Uložené v:
| Hlavní autori: | , |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2015
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 147041094X, 9781470410940 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of \mathrm{GL}_n with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy. |
|---|---|
| AbstractList | The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given infinitesimal character, for essentially all n \leq 8. For this, they compute the dimensions of spaces of level 1 automorphic forms for certain semisimple \mathbb Z-forms of the compact groups \mathrm{SO}_7, \mathrm{SO}_8, \mathrm{SO}_9 (and {\mathrm G}_2) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the 121 even lattices of rank 25 and determinant 2 found by Borcherds, to level one self-dual automorphic representations of \mathrm{GL}_n with trivial infinitesimal character, and to vector valued Siegel modular forms of genus 3. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy. We determine the number of level |
| Author | Chenevier, Gaëtan Renard, David |
| Author_xml | – sequence: 1 givenname: Gaëtan surname: Chenevier fullname: Chenevier, Gaëtan email: gaetan.chenevier@math.cnrs.fr organization: Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique, 91128 Palaiseau Cedex, France – sequence: 2 givenname: David surname: Renard fullname: Renard, David email: renard@math.polytechnique.fr organization: Centre de Mathématiques Laurent Schwartz, Ecole Polytechnique, 91128 Palaiseau Cedex, France |
| BackLink | https://cir.nii.ac.jp/crid/1130000798102109056$$DView record in CiNii |
| BookMark | eNo9kUtP4zAUhc1T0wIL_kEkRkKzCNzrR2zvgAoGpEpsEGJnOY4DoU5c4hb-Pgmt2FxL93z2kc-Zkv0udp6QU4QLBA2XrW_jJSLFHTJFLoFTAZrukglqLvOCUtzbCgPOX_bJBKAQuaZFcUCmFFAAFlTSQzLRKJUcbrA_5CSld4BBRKGonpCruf_0IRusMxtefdnbxmVunZZZHfs2ZbHOXLApNc6G7LWP6-XPLrU2hKy33eKYHNQ2JH-yPY_I893t0-w-nz_-f5hdz3PLmKYyl6iwkMAqz6qykNairngJkqETXIqaKyGddiWvhs9jSWUtmPWlKK1EULRiR-Tf5mGbFv4rvcWwSuYz-DLGRTJaqt-Q1MCeb9hlHz_WPq3MD-Z8t-ptMLc3M64YBTqSfzdk1zTGNeNEZENCILVCoGMVohiws615m8zWEsGMqhmLMmNR7BukFnhw |
| ContentType | eBook Book |
| Copyright | Copyright 2015 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2015 American Mathematical Society |
| DBID | RYH |
| DEWEY | 512.7/4 |
| DOI | 10.1090/memo/1121 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 1470425092 9781470425098 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470425098 EBC4832028 BB19526138 10_1090_memo_1121 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 XOL YNT YQT 3.E 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER AOJMM AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a33927-71816703de3db67aa19d4b0731c5475f4857c9cb4d0901b27f53aeb5ba71082d3 |
| ISBN | 147041094X 9781470410940 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000054930&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 04:32:42 EST 2024 Wed Dec 10 11:58:24 EST 2025 Fri Jun 27 00:26:37 EDT 2025 Thu Aug 14 15:25:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | euclidean lattices classical groups invariants of finite groups Langlands group of <inline-formula content-type="math/mathml"> Z {\mathbb {Z}} </inline-formula> Sato-Tate groups conductor one endoscopy vector-valued Siegel modular forms Automorphic representations dimension formulas compact groups |
| LCCN | 2015016272 |
| LCCallNum_Ident | QA243.C446 2016 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a33927-71816703de3db67aa19d4b0731c5475f4857c9cb4d0901b27f53aeb5ba71082d3 |
| Notes | Includes bibliographical references (p. 117-122) |
| OCLC | 917876223 |
| PQID | EBC4832028 |
| PageCount | 134 |
| ParticipantIDs | askewsholts_vlebooks_9781470425098 proquest_ebookcentral_EBC4832028 nii_cinii_1130000798102109056 ams_ebooks_10_1090_memo_1121 |
| PublicationCentury | 2000 |
| PublicationDate | [2015] |
| PublicationDateYYYYMMDD | 2015-01-01 |
| PublicationDate_xml | – year: 2015 text: [2015] |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, R.I – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2015 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0001515829 ssj0008047 |
| Score | 2.6920424 |
| Snippet | We determine the number of level The authors determine the number of level 1, polarized, algebraic regular, cuspidal automorphic representations of \mathrm{GL}_n over \mathbb Q of any given... The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Cusp forms (Mathematics) Forms (Mathematics) |
| TableOfContents | Introduction
--
Polynomial invariants of finite subgroups of compact connected Lie groups
--
Automorphic representations of classical groups : review of Arthur’s results
--
Determination of <inline-formula content-type="math/mathml">
Π alg
⊥ (
PGL n ) \Pi _\textrm {alg}^\bot (\textrm
{PGL}_n) </inline-formula> for <inline-formula content-type="math/mathml">
n ≤
5 n\leq 5
</inline-formula>
--
Description of <inline-formula content-type="math/mathml"> Π disc
( SO
7 ) \Pi
_\textrm {disc}(\textrm {SO}_7) </inline-formula> and <inline-formula
content-type="math/mathml"> Π<!-- Π
--> alg
s ( PGL 6 ) \Pi _\textrm {alg}^\textrm {s}(\textrm
{PGL}_6) </inline-formula>
--
Description of <inline-formula content-type="math/mathml"> Π disc
( SO
9 ) \Pi
_\textrm {disc}(\textrm {SO}_9) </inline-formula> and <inline-formula
content-type="math/mathml"> Π<!-- Π
--> alg
s ( PGL 8 ) \Pi _\textrm {alg}^\textrm {s}(\textrm
{PGL}_8) </inline-formula>
--
Description of <inline-formula content-type="math/mathml"> Π disc
( SO
8 ) \Pi
_\textrm {disc}(\textrm {SO}_8) </inline-formula> and <inline-formula
content-type="math/mathml"> Π<!-- Π
--> alg
o ( PGL 8 ) \Pi _\textrm {alg}^\textrm {o}(\textrm
{PGL}_8) </inline-formula>
--
Description of <inline-formula content-type="math/mathml"> Π disc
( G
2 ) \Pi
_\textrm {disc}(\textrm {G}_2) </inline-formula>
--
Application to Siegel modular forms
--
Adams-Johnson packets
--
The Langlands group of <inline-formula content-type="math/mathml">
Z \mathbb {Z} </inline-formula> and Sato-Tate
groups
--
Tables
--
The <inline-formula content-type="math/mathml"> 121
121 </inline-formula> level
<inline-formula content-type="math/mathml"> 1 1 </inline-formula> automorphic representations of
<inline-formula content-type="math/mathml"> SO 25
\textrm {SO}_{25}
</inline-formula> with trivial coefficients Cover -- Title page -- Chapter 1. Introduction -- 1.1. A counting problem -- 1.2. Motivations -- 1.3. The main result -- 1.4. Langlands-Sato-Tate groups -- 1.5. The symplectic-orthogonal alternative -- 1.6. Case-by-case description, examples in low motivic weight -- 1.7. Generalizations -- 1.8. Methods and proofs -- 1.9. Application to Borcherds even lattices of rank 25 and determinant 2 -- 1.10. A level 1, non-cuspidal, tempered automorphic representation of \GL₂₈ over \Q with weights 0,1,2,\cdots,27 -- Chapter 2. Polynomial invariants of finite subgroups of compact connected Lie groups -- 2.1. The setting -- 2.2. The degenerate Weyl character formula -- 2.3. A computer program -- 2.4. Some numerical applications -- 2.5. Reliability -- 2.6. A check: the harmonic polynomial invariants of a Weyl group -- Chapter 3. Automorphic representations of classical groups : review of Arthur's results -- 3.1. Classical semisimple groups over \Z -- 3.2. Discrete automorphic representations -- 3.3. The case of Chevalley and definite semisimple \Z-groups -- 3.4. Langlands parameterization of Π_{ }( ) -- 3.5. Arthur's symplectic-orthogonal alternative -- 3.6. The symplectic-orthogonal alternative for polarized algebraic regular cuspidal automorphic representations of \GL_{ } over \Q -- 3.7. Arthur's classification: global parameters -- 3.8. The packet Π( ) of a ∈Ψ_{ }( ) -- 3.9. The character _{ } of _{ } -- 3.10. Arthur's multiplicity formula -- Chapter 4. Determination of Π_{ }^{⊥}(\PGL_{ }) for ≤5 -- 4.1. Determination of Π^{⊥}_{ }(\PGL₂) -- 4.2. Determination of Π_{ }^{ }(\PGL₄) -- 4.3. An elementary lifting result for isogenies -- 4.4. Symmetric square functoriality and Π^{⊥}_{ }(\PGL₃) -- 4.5. Tensor product functoriality and Π_{ }^{ }(\PGL₄) -- 4.6. Λ* functorality and Π_{ }^{ }(\PGL₅) Chapter 5. Description of Π_{ }( ₇) and Π_{ }^{ }(\PGL₆) -- 5.1. The semisimple \Z-group ₇ -- 5.2. Parameterization by the infinitesimal character -- 5.3. Endoscopic partition of Π_{ }( ₇) -- 5.4. Conclusions -- Chapter 6. Description of Π_{ }( ₉) and Π_{ }^{ }(\PGL₈) -- 6.1. The semisimple \Z-group ₉ -- 6.2. Endoscopic partition of Π_{ } -- 6.3. Conclusions -- Chapter 7. Description of Π_{ }( ₈) and Π_{ }^{ }(\PGL₈) -- 7.1. The semisimple \Z-group ₈ -- 7.2. Endoscopic partition of Π_{ } -- 7.3. Conclusions -- Chapter 8. Description of Π_{ }( ₂) -- 8.1. The semisimple definite ₂ over \Z -- 8.2. Polynomial invariants for ₂(\Z)⊂ ₂(\R) -- 8.3. Endoscopic classification of Π_{ }( ₂) -- 8.4. Conclusions -- Chapter 9. Application to Siegel modular forms -- 9.1. Vector valued Siegel modular forms of level 1 -- 9.2. Two lemmas on holomorphic discrete series -- 9.3. An example: the case of genus 3 -- Appendix A. Adams-Johnson packets -- A.1. Strong inner forms of compact connected real Lie groups -- A.2. Adams-Johnson parameters -- A.3. Adams-Johnson packets -- A.4. Shelstad's parameterization map -- Appendix B. The Langlands group of \Z and Sato-Tate groups -- B.1. The locally compact group ℒ_{\Z} -- B.2. Sato-Tate groups -- B.3. A list in rank ≤8 -- Appendix C. Tables -- Appendix D. The 121 level 1 automorphic representations of ₂₅ with trivial coefficients -- Bibliography -- Back Cover |
| Title | Level one algebraic cusp forms of classical groups of small rank |
| URI | https://www.ams.org/memo/1121/ https://cir.nii.ac.jp/crid/1130000798102109056 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4832028 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470425098 |
| Volume | 237 |
| WOSCitedRecordID | wos0000054930&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Ni9QwFH84owfn5CfOuitBvC1lmzZpkpvMMioIq8gqcytp0kLR6Szb2WX_fN9Lv2QUxIOXMA1D0nm_TN4veV8Abzx3Mccmck7JSHBhI-tjExlZeCSwPnFFV2xCXVzozcZ87uO121BOQDWNvrszV_8VauxDsCl09h_gHgfFDvyMoGOLsGN7wIjHxz6cmfx_TnfIGql2B56Ca3fqbtqrEKAYPDYcUeWASgjmCH3tlozTVLp9svTj_kfqMtyZ22BKX-2nVfSlbOyhQ3x_b8Dlwb3BZBAa08NS-pHdmH9kPGRyoWLBKc_eH7fc2JCP4rbc7ugSgHfxzgc5rFcrbiSe1VI9g5nK8JB8__3609eP020Y0iqdmBB518-2GRJyDbMPeaFMfEazndFcIT9uu4CFbb-jUkCFscenWVPXv-nWQBguH8Gcgkgew72yeQKL6ce3T-FtwIkhTmzEiRFOLODEdhUbcWIdTtQXcGKE0zP49m59ef4h6utYRDZF-qki1P88w63Vl6kvMmUtN14UuLlyJ4WSldBSOeMKgf-SmBeJqmRqy0IWFvmfTnz6HOYNvtYLYCbVMqsqT3ksRckVPiVlhkSLDLSep0s4RoHkwdLe5p2HQZyTvHKS1xJe_yKp_PZH_8VB0EiIjV7CCQowdzW1nOydSCSNpiLwOJjMlsAG0XYT9X7E-Xp1LlBDIGU9-ssQL-HhtCaPYb6_vilP4IG73dft9at-dfwEX-FH4Q |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Level+one+algebraic+cusp+forms+of+classical+groups+of+small+rank&rft.au=Chenevier%2C+Ga%C3%ABtan&rft.au=Renard%2C+David&rft.date=2015-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470410940&rft_id=info:doi/10.1090%2Fmemo%2F1121&rft.externalDocID=BB19526138 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470425098.jpg |

