A modified BET equation to investigate supercritical methane adsorption mechanisms in shale
Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in supercritical conditions because the saturation vapor pressure (p0) in this equation is not defined when T > Tc. In this study, a modified...
Gespeichert in:
| Veröffentlicht in: | Marine and petroleum geology Jg. 105; S. 284 - 292 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.07.2019
|
| Schlagworte: | |
| ISSN: | 0264-8172, 1873-4073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in supercritical conditions because the saturation vapor pressure (p0) in this equation is not defined when T > Tc. In this study, a modified BET equation is proposed, and can be applied to investigate supercritical methane adsorption mechanisms in shale by using density instead of pressure in this equation. The observed (excess) high-pressure methane adsorption isotherms always can be well-fitted by the modified BET model when the adsorbed-phase density (ρa) is not fixed. The fitted results show that the number of adsorption layers (n) ranges from 1.79 to 2.42, with an average value of 2.12, indicating a double-layer adsorption mechanism approximately. Moreover, we compare this novel model with the commonly used Langmuir and DR models, and find that all the three models can fit the excess adsorption isotherms equally well. However, a critical advantage of this new model is that it can calculate the number of adsorption layers (n), while other models cannot. It is this advantage that makes it possible to analyze the shale gas adsorption mechanism experimentally. Moreover, the average number of adsorption layers (θ) is much smaller than the number of adsorption layers (n), indicating that there are many empty adsorption sites in the adsorption space and the density of the second layer must be less than the first layer, which is consistent with the molecular simulation results.
•A modified BET equation is proposed to investigate methane adsorption mechanisms in shale.•The experimental high-pressure adsorption isotherms can be well-fitted by the new model.•Supercritical methane is found to be approximately double-layer adsorbed in shale. |
|---|---|
| AbstractList | Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in supercritical conditions because the saturation vapor pressure (p0) in this equation is not defined when T > Tc. In this study, a modified BET equation is proposed, and can be applied to investigate supercritical methane adsorption mechanisms in shale by using density instead of pressure in this equation. The observed (excess) high-pressure methane adsorption isotherms always can be well-fitted by the modified BET model when the adsorbed-phase density (ρa) is not fixed. The fitted results show that the number of adsorption layers (n) ranges from 1.79 to 2.42, with an average value of 2.12, indicating a double-layer adsorption mechanism approximately. Moreover, we compare this novel model with the commonly used Langmuir and DR models, and find that all the three models can fit the excess adsorption isotherms equally well. However, a critical advantage of this new model is that it can calculate the number of adsorption layers (n), while other models cannot. It is this advantage that makes it possible to analyze the shale gas adsorption mechanism experimentally. Moreover, the average number of adsorption layers (θ) is much smaller than the number of adsorption layers (n), indicating that there are many empty adsorption sites in the adsorption space and the density of the second layer must be less than the first layer, which is consistent with the molecular simulation results.
•A modified BET equation is proposed to investigate methane adsorption mechanisms in shale.•The experimental high-pressure adsorption isotherms can be well-fitted by the new model.•Supercritical methane is found to be approximately double-layer adsorbed in shale. |
| Author | Zhou, Shangwen Li, Xiaohan Wang, Hongyan Zhang, Dongxiao |
| Author_xml | – sequence: 1 givenname: Shangwen orcidid: 0000-0003-0426-9683 surname: Zhou fullname: Zhou, Shangwen organization: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China – sequence: 2 givenname: Dongxiao surname: Zhang fullname: Zhang, Dongxiao email: dxz@pku.edu.cn organization: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China – sequence: 3 givenname: Hongyan surname: Wang fullname: Wang, Hongyan organization: PetroChina Research Institute of Petroleum Exploration and Development, Beijing, 100083, China – sequence: 4 givenname: Xiaohan surname: Li fullname: Li, Xiaohan organization: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China |
| BookMark | eNqNkL1OwzAUhS1UJNrCM-AXSLBjYycDQ6nKj1SJpRuD5dg3rasmDrZbibcnbREDC0xXujrfkc43QaPOd4DQLSU5JVTcbfNWhx7SGnxeEFrlhOeEiQs0pqVkGSeSjdCYFIJnJZXFFZrEuCWEyIrQMXqf4dZb1ziw-HGxwvCx18n5DiePXXeAmNxaJ8Bx30MwwSVn9A63kDa6A6xt9KE_5Vsww8vFNg4cjhu9g2t02ehdhJvvO0Wrp8Vq_pIt355f57NlphkrUyZKLWgty1pUdckKboDThrOGcmlpVTcS6opUWlSssZazmpeW8XsqOGNa04JN0cO51gQfY4BGGZdOI1LQbqcoUUdRaqt-RKmjKEW4GkQNvPzF98EN0c9_kLMzCcO6g4OgonHQGbAugEnKevdnxxdLGYxG |
| CitedBy_id | crossref_primary_10_1007_s00894_023_05704_3 crossref_primary_10_1016_j_cej_2023_144778 crossref_primary_10_1016_j_coal_2023_104369 crossref_primary_10_1016_j_cej_2020_127678 crossref_primary_10_1088_2053_1591_abcc5d crossref_primary_10_1016_j_supflu_2024_106343 crossref_primary_10_1063_5_0220929 crossref_primary_10_1016_j_energy_2022_125898 crossref_primary_10_3389_feart_2022_903588 crossref_primary_10_1016_j_cej_2023_146196 crossref_primary_10_1016_j_jngse_2021_103824 crossref_primary_10_1177_0263617419866986 crossref_primary_10_1016_j_snb_2021_130277 crossref_primary_10_1016_j_cej_2025_167666 crossref_primary_10_1007_s11270_022_05750_2 crossref_primary_10_1016_j_cej_2023_145931 crossref_primary_10_1155_2021_5562532 crossref_primary_10_1016_j_petsci_2025_09_012 crossref_primary_10_1007_s11053_021_09846_0 crossref_primary_10_3390_app132413194 crossref_primary_10_1063_5_0278272 crossref_primary_10_1039_D2RA03632K crossref_primary_10_1016_j_cej_2022_138105 crossref_primary_10_3390_en14206836 crossref_primary_10_1016_j_rineng_2025_107370 crossref_primary_10_1002_ente_202400377 crossref_primary_10_1016_j_petsci_2022_12_006 crossref_primary_10_2118_205886_PA crossref_primary_10_3389_feart_2022_943935 crossref_primary_10_1016_j_fuel_2025_134976 crossref_primary_10_3390_en16083305 crossref_primary_10_1016_j_cej_2020_124989 crossref_primary_10_1051_e3sconf_202448803009 crossref_primary_10_1016_j_fuel_2023_127520 crossref_primary_10_3389_fenrg_2022_829800 crossref_primary_10_1016_j_ijhydene_2025_05_090 crossref_primary_10_1007_s10450_021_00352_6 crossref_primary_10_1016_j_apsadv_2025_100808 crossref_primary_10_5194_bg_20_929_2023 crossref_primary_10_1016_j_fuel_2020_119454 crossref_primary_10_1016_j_petrol_2021_109379 crossref_primary_10_1016_j_cej_2024_150483 crossref_primary_10_1016_j_cej_2024_152690 crossref_primary_10_3390_en15030944 crossref_primary_10_1016_j_cej_2024_156812 crossref_primary_10_1016_j_commatsci_2025_114198 crossref_primary_10_1016_j_cej_2021_132526 crossref_primary_10_1080_15567036_2020_1806954 crossref_primary_10_1016_j_ces_2020_116228 crossref_primary_10_1016_j_jpowsour_2019_227222 |
| Cites_doi | 10.1021/la991159w 10.1016/S1876-3804(15)30072-0 10.1016/0008-6223(95)00079-S 10.1038/srep23629 10.1016/j.colsurfa.2013.12.047 10.1006/jcis.1996.0334 10.1021/ie504030v 10.1016/S1876-3804(16)30045-3 10.1021/ef300405g 10.1016/j.jngse.2018.02.002 10.1103/PhysRevApplied.4.024018 10.1016/j.fuel.2017.09.065 10.1016/j.coal.2012.02.005 10.1306/09170404042 10.1021/ja02242a004 10.1002/ceat.201500617 10.1016/j.coal.2013.01.001 10.1021/la020682z 10.1016/j.marpetgeo.2015.08.012 10.1021/ef400381v 10.1016/j.marpetgeo.2016.02.033 10.2118/131772-PA 10.1016/j.jngse.2016.08.047 10.1021/acs.energyfuels.6b03168 10.1016/j.orggeochem.2012.03.012 10.1038/srep33461 10.1016/j.coal.2016.01.013 10.1016/S0008-6223(03)00152-0 10.1016/S0008-6223(97)00124-3 10.1177/0263617415623425 10.1007/s10450-008-9114-0 10.1021/ef0600614 10.1016/j.fuel.2015.12.074 10.1016/j.fuel.2017.03.083 10.1021/ja01269a023 10.1016/j.fuel.2016.07.088 10.1021/acs.energyfuels.5b02088 10.1016/j.coal.2015.09.004 |
| ContentType | Journal Article |
| Copyright | 2019 |
| Copyright_xml | – notice: 2019 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.marpetgeo.2019.04.036 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1873-4073 |
| EndPage | 292 |
| ExternalDocumentID | 10_1016_j_marpetgeo_2019_04_036 S0264817219301862 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W KOM LY3 LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SEW SPC SPCBC SSE SSZ T5K WH7 WUQ XPP ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-a338t-68a61b78b69b8324ce41f43f147d19bf7eb909a693fdd43b48d34516433aa123 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000469896400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0264-8172 |
| IngestDate | Tue Nov 18 22:36:33 EST 2025 Sat Nov 29 07:19:24 EST 2025 Fri Feb 23 02:32:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | BET equation Double-layer adsorption Supercritical adsorption Density of adsorbed phase Adsorption mechanism Shale gas |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a338t-68a61b78b69b8324ce41f43f147d19bf7eb909a693fdd43b48d34516433aa123 |
| ORCID | 0000-0003-0426-9683 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_marpetgeo_2019_04_036 crossref_primary_10_1016_j_marpetgeo_2019_04_036 elsevier_sciencedirect_doi_10_1016_j_marpetgeo_2019_04_036 |
| PublicationCentury | 2000 |
| PublicationDate | July 2019 2019-07-00 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Marine and petroleum geology |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bi, Jiang, Li, Li, Chen, Pan, Wu (bib5) 2016; 35 Mosher, He, Liu, Rupp, Wilcox (bib24) 2013 Clarkson, Bustin, Levy (bib9) 1997; 35 Li, Ding, Zhou, Cao, Zhang, Fu, Chen (bib20) 2017; 31 Clarkson, Haghshenas (bib8) 2013 Hao, Chu, Jiang, Yu (bib17) 2014; 444 Do (bib11) 1998 Wang, Li, Guo, Meng (bib33) 2016; 39 Langmuir (bib19) 1918; 40 Zhou, Zhou, Li, Chen, Wang (bib42) 2000; 16 Wang, Zhu, Liu, Zhang (bib32) 2016; 172 Shen, Li, Lu, Guo, Zhou, Wan (bib29) 2018 Zou, Dong, Wang, Li, Huang, Wang, Guan, Zhang, Wang, Liu, Bai, Liang, Lin, Zhao, Liu, Yang, Liang, Sun, Qiu (bib46) 2015; 42 Yu, Sepehrnoori, Patzek (bib39) 2014 Sakurovs, Day, Weir, Duffy (bib28) 2007; 21 Chareonsuppanimit, Mohammad, Robinson, Gasem (bib7) 2012; 95 Tang, Ripepi, Stadie, Yu, Hall (bib30) 2016; 185 Xiong, Liu, Liang, Zeng (bib37) 2017; 200 Ambrose, Hartman, Diaz-Campos, Akkutlu, Sondergeld (bib2) 2010 Curtis (bib10) 2002; 86 Gasparik, Ghanizadeh, Bertier, Gensterblum, Bouw, Krooss (bib16) 2012; 26 Tian, Li, Zhang, Xiao (bib31) 2016; 156 Rexer, Benham, Aplin, Thomas (bib27) 2013; 27 EIA (bib15) 2016 Aranovich, Donohue (bib4) 1996; 180 Liang, Bai, Zou, Wang, Wu, Ma, Zhang, Guo, Sun, Zhu, Cui, Liu (bib21) 2016; 43 Zhang, Ellis, Ruppel, Milliken, Yang (bib40) 2012; 47 Papaioannou, Kausik (bib26) 2015; 4 Wu, Chen, Li, Dong (bib36) 2016; 6 Ji, Song, Jiang, Chen, Li, Yang, Meng (bib18) 2015; 68 Luo, Wang, Wang, Jing, Lv, Zhai, Han (bib22) 2015 Zhou, Wang, Xue, Guo, Li (bib44) 2016; 36 Duan, Gu, Du, Xian (bib14) 2016; 30 Zhou, Xue, Ning, Guo, Zhang (bib45) 2018; 211 Do, Do (bib12) 2003; 41 Ambrose, Hartman, Diaz-Campos, Akkutlu, Sondergeld (bib3) 2012; 17 Brunauer, Emmett, Teller (bib6) 1938; 60 Xiong, Zuo, Luo, Hu, Cui (bib38) 2016; 34 Zhou, Bai, Su, Yang, Zhou (bib41) 2003; 19 Wu, Li, Wang, Yu, Chen (bib35) 2015; 54 Montgomery, Jarvie, Bowker, Pollastro (bib23) 2005; 89 Ottiger, Pini, Storti, Mazzotti (bib25) 2008; 14 Amankwah, Schwarz (bib1) 1995; 33 Wu, Zhang (bib34) 2016; 6 Zhou, Yan, Xue, Guo, Li (bib43) 2016; 73 Wu (10.1016/j.marpetgeo.2019.04.036_bib36) 2016; 6 Xiong (10.1016/j.marpetgeo.2019.04.036_bib38) 2016; 34 Wu (10.1016/j.marpetgeo.2019.04.036_bib35) 2015; 54 Do (10.1016/j.marpetgeo.2019.04.036_bib11) 1998 Montgomery (10.1016/j.marpetgeo.2019.04.036_bib23) 2005; 89 Clarkson (10.1016/j.marpetgeo.2019.04.036_bib9) 1997; 35 Gasparik (10.1016/j.marpetgeo.2019.04.036_bib16) 2012; 26 Tian (10.1016/j.marpetgeo.2019.04.036_bib31) 2016; 156 Mosher (10.1016/j.marpetgeo.2019.04.036_bib24) 2013 Zhou (10.1016/j.marpetgeo.2019.04.036_bib42) 2000; 16 Zou (10.1016/j.marpetgeo.2019.04.036_bib46) 2015; 42 Amankwah (10.1016/j.marpetgeo.2019.04.036_bib1) 1995; 33 Clarkson (10.1016/j.marpetgeo.2019.04.036_bib8) 2013 Shen (10.1016/j.marpetgeo.2019.04.036_bib29) 2018 Tang (10.1016/j.marpetgeo.2019.04.036_bib30) 2016; 185 Wang (10.1016/j.marpetgeo.2019.04.036_bib33) 2016; 39 Zhang (10.1016/j.marpetgeo.2019.04.036_bib40) 2012; 47 Luo (10.1016/j.marpetgeo.2019.04.036_bib22) 2015 Zhou (10.1016/j.marpetgeo.2019.04.036_bib43) 2016; 73 Zhou (10.1016/j.marpetgeo.2019.04.036_bib41) 2003; 19 Zhou (10.1016/j.marpetgeo.2019.04.036_bib45) 2018; 211 Duan (10.1016/j.marpetgeo.2019.04.036_bib14) 2016; 30 Yu (10.1016/j.marpetgeo.2019.04.036_bib39) 2014 Zhou (10.1016/j.marpetgeo.2019.04.036_bib44) 2016; 36 EIA (10.1016/j.marpetgeo.2019.04.036_bib15) Chareonsuppanimit (10.1016/j.marpetgeo.2019.04.036_bib7) 2012; 95 Liang (10.1016/j.marpetgeo.2019.04.036_bib21) 2016; 43 Do (10.1016/j.marpetgeo.2019.04.036_bib12) 2003; 41 Aranovich (10.1016/j.marpetgeo.2019.04.036_bib4) 1996; 180 Bi (10.1016/j.marpetgeo.2019.04.036_bib5) 2016; 35 Hao (10.1016/j.marpetgeo.2019.04.036_bib17) 2014; 444 Langmuir (10.1016/j.marpetgeo.2019.04.036_bib19) 1918; 40 Ottiger (10.1016/j.marpetgeo.2019.04.036_bib25) 2008; 14 Papaioannou (10.1016/j.marpetgeo.2019.04.036_bib26) 2015; 4 Sakurovs (10.1016/j.marpetgeo.2019.04.036_bib28) 2007; 21 Xiong (10.1016/j.marpetgeo.2019.04.036_bib37) 2017; 200 Rexer (10.1016/j.marpetgeo.2019.04.036_bib27) 2013; 27 Ambrose (10.1016/j.marpetgeo.2019.04.036_bib3) 2012; 17 Li (10.1016/j.marpetgeo.2019.04.036_bib20) 2017; 31 Wu (10.1016/j.marpetgeo.2019.04.036_bib34) 2016; 6 Curtis (10.1016/j.marpetgeo.2019.04.036_bib10) 2002; 86 Wang (10.1016/j.marpetgeo.2019.04.036_bib32) 2016; 172 Ambrose (10.1016/j.marpetgeo.2019.04.036_bib2) 2010 Ji (10.1016/j.marpetgeo.2019.04.036_bib18) 2015; 68 Brunauer (10.1016/j.marpetgeo.2019.04.036_bib6) 1938; 60 |
| References_xml | – volume: 26 start-page: 4995 year: 2012 end-page: 5004 ident: bib16 article-title: High-pressure methane sorption isotherms of black shales from The Netherlands publication-title: Energy Fuels – volume: 54 start-page: 3225 year: 2015 end-page: 3236 ident: bib35 article-title: Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs publication-title: Ind. Eng. Chem. Res. – volume: 73 start-page: 174 year: 2016 end-page: 180 ident: bib43 article-title: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM publication-title: Mar. Petrol. Geol. – volume: 6 start-page: 33461 year: 2016 ident: bib36 article-title: Methane storage in nanoporous material at supercritical temperature over a wide range of pressures publication-title: Sci. Rep. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bib6 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – start-page: 36 year: 2013 end-page: 44 ident: bib24 article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems publication-title: Int. J. Coal Geol. – volume: 47 start-page: 120 year: 2012 end-page: 131 ident: bib40 article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems publication-title: Org. Geochem. – volume: 89 start-page: 155 year: 2005 end-page: 175 ident: bib23 article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi–trillion cubic foot potential publication-title: AAPG Bull. – volume: 39 start-page: 1921 year: 2016 end-page: 1932 ident: bib33 article-title: Analyzing the adaption of different adsorption models for describing the shale gas adsorption law publication-title: Chem. Eng. Technol. – volume: 211 start-page: 140 year: 2018 end-page: 148 ident: bib45 article-title: Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane publication-title: Fuel – volume: 444 start-page: 104 year: 2014 end-page: 113 ident: bib17 article-title: Methane adsorption characteristics on coal surface above critical temperature through Dubinin-Astakhov model and Langmuir model publication-title: Colloids Surf., A – volume: 30 start-page: 2248 year: 2016 end-page: 2256 ident: bib14 article-title: Adsorption equilibrium of CO2 and CH4, and their mixture on Sichuan Basin shale publication-title: Energy Fuels – year: 2014 ident: bib39 article-title: Modeling gas adsorption in Marcellus shale with Langmuir and BET Isotherms publication-title: SPE Annual Technical Conference and Exhibition – volume: 4 start-page: 1 year: 2015 end-page: 11 ident: bib26 article-title: Methane Storage in nanoporous media as observed via high-field NMR relaxometry publication-title: Phys. Rev. Appl. – volume: 185 start-page: 10 year: 2016 end-page: 17 ident: bib30 article-title: A dual-site Langmuir equation for accurate estimation of high pressure deep shale gas resources publication-title: Fuel – year: 2013 ident: bib8 article-title: Modeling of supercritical fluid adsorption on organic-rich shales and coal publication-title: Unconventional Resources Conference Held in the Woodlands – volume: 6 start-page: 23629 year: 2016 ident: bib34 article-title: Impact of adsorption on gas transport in nanopores publication-title: Sci. Rep. – volume: 68 start-page: 94 year: 2015 end-page: 106 ident: bib18 article-title: Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China publication-title: Mar. Petrol. Geol. – volume: 17 start-page: 219 year: 2012 end-page: 229 ident: bib3 article-title: Shale gas-in-place calculations part I: new pore-scale considerations publication-title: SPE J. – start-page: 210 year: 2015 end-page: 223 ident: bib22 article-title: Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China publication-title: Int. J. Coal Geol. – volume: 200 start-page: 299 year: 2017 end-page: 315 ident: bib37 article-title: Adsorption of methane in organic-rich shale nanopores: an experimental and molecular simulation study publication-title: Fuel – volume: 14 start-page: 539 year: 2008 end-page: 556 ident: bib25 article-title: Competitive adsorption equilibria of CO publication-title: Adsorption – volume: 36 start-page: 12 year: 2016 end-page: 20 ident: bib44 article-title: Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method publication-title: Nat. Gas. Ind. – volume: 42 start-page: 753 year: 2015 end-page: 767 ident: bib46 article-title: Shale gas in China: characteristics, challenges and prospects (II) publication-title: Petrol. Explor. Dev. – volume: 180 start-page: 537 year: 1996 end-page: 541 ident: bib4 article-title: Adsorption of supercritical fluids publication-title: J. Colloid Interface Sci. – year: 1998 ident: bib11 article-title: Adsorption Analysis: Equilibria and Kinetics – year: 2016 ident: bib15 – volume: 35 start-page: 114 year: 2016 end-page: 121 ident: bib5 article-title: The Ono–Kondo model and an experimental study on supercritical adsorption of shale gas: a case study on Longmaxi shale in southeastern Chongqing, China publication-title: J. Nat. Gas Sci. Eng. – volume: 43 start-page: 386 year: 2016 end-page: 394 ident: bib21 article-title: Shale gas enrichment pattern and exploration significance of Wuxi-2 well in northeast Chongqing, NE Sichuan Basin publication-title: Petrol. Explor. Dev. – volume: 16 start-page: 5955 year: 2000 end-page: 5959 ident: bib42 article-title: Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon publication-title: Langmuir – volume: 86 start-page: 1921 year: 2002 end-page: 1938 ident: bib10 article-title: Fractured shale-gas systems publication-title: AAPG Bull. – volume: 27 start-page: 3099 year: 2013 end-page: 3109 ident: bib27 article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions publication-title: Energy Fuels – volume: 40 start-page: 1361 year: 1918 end-page: 1403 ident: bib19 article-title: The adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. – volume: 172 start-page: 301 year: 2016 end-page: 309 ident: bib32 article-title: Methane adsorption measurements and modeling for organic-rich marine shale samples publication-title: Fuel – year: 2018 ident: bib29 article-title: Experimental study and isotherm models of water vapor adsorption in shale rocks publication-title: J. Nat. Gas Sci. Eng. – year: 2010 ident: bib2 article-title: New pore-scale considerations for shale gas in place calculations publication-title: SPE Unconventional Gas Conference Held in Pittsburgh – volume: 34 start-page: 193 year: 2016 end-page: 211 ident: bib38 article-title: Methane adsorption on shale under high temperature and high pressure of reservoir condition: experiments and supercritical adsorption modeling publication-title: Adsorpt. Sci. Technol. – volume: 21 start-page: 992 year: 2007 end-page: 997 ident: bib28 article-title: Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions publication-title: Energy Fuels – volume: 19 start-page: 2683 year: 2003 end-page: 2690 ident: bib41 article-title: Comparative study of the excess versus absolute adsorption of CO publication-title: Langmuir – volume: 31 start-page: 2625 year: 2017 end-page: 2635 ident: bib20 article-title: Investigation of the methane adsorption characteristics of marine shale: a case study of lower cambrian qiongzhusi shale in eastern yunnan province, south China publication-title: Energy Fuels – volume: 156 start-page: 36 year: 2016 end-page: 49 ident: bib31 article-title: Characterization of methane adsorption on overmature lower silurian–upper ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications publication-title: Int. J. Coal Geol. – volume: 95 start-page: 34 year: 2012 end-page: 46 ident: bib7 article-title: High-pressure adsorption of gases on shales: measurements and modeling publication-title: Int. J. Coal Geol. – volume: 41 start-page: 1777 year: 2003 end-page: 1791 ident: bib12 article-title: Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density publication-title: Carbon – volume: 35 start-page: 1689 year: 1997 end-page: 1705 ident: bib9 article-title: Application of the monolayer/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure publication-title: Carbon – volume: 33 start-page: 1313 year: 1995 end-page: 1319 ident: bib1 article-title: A modified approach for estimating pseudo- vapor pressures in the application of the Dubinin–Astakhov equation publication-title: Carbon – year: 2013 ident: 10.1016/j.marpetgeo.2019.04.036_bib8 article-title: Modeling of supercritical fluid adsorption on organic-rich shales and coal – volume: 16 start-page: 5955 issue: 14 year: 2000 ident: 10.1016/j.marpetgeo.2019.04.036_bib42 article-title: Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon publication-title: Langmuir doi: 10.1021/la991159w – volume: 42 start-page: 753 issue: 6 year: 2015 ident: 10.1016/j.marpetgeo.2019.04.036_bib46 article-title: Shale gas in China: characteristics, challenges and prospects (II) publication-title: Petrol. Explor. Dev. doi: 10.1016/S1876-3804(15)30072-0 – volume: 33 start-page: 1313 year: 1995 ident: 10.1016/j.marpetgeo.2019.04.036_bib1 article-title: A modified approach for estimating pseudo- vapor pressures in the application of the Dubinin–Astakhov equation publication-title: Carbon doi: 10.1016/0008-6223(95)00079-S – volume: 6 start-page: 23629 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib34 article-title: Impact of adsorption on gas transport in nanopores publication-title: Sci. Rep. doi: 10.1038/srep23629 – volume: 444 start-page: 104 year: 2014 ident: 10.1016/j.marpetgeo.2019.04.036_bib17 article-title: Methane adsorption characteristics on coal surface above critical temperature through Dubinin-Astakhov model and Langmuir model publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2013.12.047 – volume: 180 start-page: 537 issue: 2 year: 1996 ident: 10.1016/j.marpetgeo.2019.04.036_bib4 article-title: Adsorption of supercritical fluids publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0334 – volume: 54 start-page: 3225 year: 2015 ident: 10.1016/j.marpetgeo.2019.04.036_bib35 article-title: Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie504030v – volume: 43 start-page: 386 issue: 3 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib21 article-title: Shale gas enrichment pattern and exploration significance of Wuxi-2 well in northeast Chongqing, NE Sichuan Basin publication-title: Petrol. Explor. Dev. doi: 10.1016/S1876-3804(16)30045-3 – year: 2014 ident: 10.1016/j.marpetgeo.2019.04.036_bib39 article-title: Modeling gas adsorption in Marcellus shale with Langmuir and BET Isotherms – volume: 26 start-page: 4995 year: 2012 ident: 10.1016/j.marpetgeo.2019.04.036_bib16 article-title: High-pressure methane sorption isotherms of black shales from The Netherlands publication-title: Energy Fuels doi: 10.1021/ef300405g – year: 2018 ident: 10.1016/j.marpetgeo.2019.04.036_bib29 article-title: Experimental study and isotherm models of water vapor adsorption in shale rocks publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2018.02.002 – year: 1998 ident: 10.1016/j.marpetgeo.2019.04.036_bib11 – volume: 4 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.marpetgeo.2019.04.036_bib26 article-title: Methane Storage in nanoporous media as observed via high-field NMR relaxometry publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.024018 – volume: 211 start-page: 140 year: 2018 ident: 10.1016/j.marpetgeo.2019.04.036_bib45 article-title: Experimental study of supercritical methane adsorption in Longmaxi shale: insights into the density of adsorbed methane publication-title: Fuel doi: 10.1016/j.fuel.2017.09.065 – volume: 95 start-page: 34 year: 2012 ident: 10.1016/j.marpetgeo.2019.04.036_bib7 article-title: High-pressure adsorption of gases on shales: measurements and modeling publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2012.02.005 – volume: 89 start-page: 155 issue: 2 year: 2005 ident: 10.1016/j.marpetgeo.2019.04.036_bib23 article-title: Mississippian Barnett Shale, Fort Worth basin, north-central Texas: gas-shale play with multi–trillion cubic foot potential publication-title: AAPG Bull. doi: 10.1306/09170404042 – volume: 40 start-page: 1361 year: 1918 ident: 10.1016/j.marpetgeo.2019.04.036_bib19 article-title: The adsorption of gases on plane surfaces of glass, mica and platinum publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02242a004 – volume: 39 start-page: 1921 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib33 article-title: Analyzing the adaption of different adsorption models for describing the shale gas adsorption law publication-title: Chem. Eng. Technol. doi: 10.1002/ceat.201500617 – volume: 36 start-page: 12 issue: 11 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib44 article-title: Difference between excess and absolute adsorption capacity of shale and a new shale gas reserve calculation method publication-title: Nat. Gas. Ind. – volume: 86 start-page: 1921 issue: 11 year: 2002 ident: 10.1016/j.marpetgeo.2019.04.036_bib10 article-title: Fractured shale-gas systems publication-title: AAPG Bull. – start-page: 36 year: 2013 ident: 10.1016/j.marpetgeo.2019.04.036_bib24 article-title: Molecular simulation of methane adsorption in micro- and mesoporous carbons with applications to coal and gas shale systems publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2013.01.001 – volume: 19 start-page: 2683 issue: 7 year: 2003 ident: 10.1016/j.marpetgeo.2019.04.036_bib41 article-title: Comparative study of the excess versus absolute adsorption of CO2 on superactivated carbon for the near-critical region publication-title: Langmuir doi: 10.1021/la020682z – volume: 68 start-page: 94 year: 2015 ident: 10.1016/j.marpetgeo.2019.04.036_bib18 article-title: Estimation of marine shale methane adsorption capacity based on experimental investigations of Lower Silurian Longmaxi formation in the Upper Yangtze Platform, south China publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2015.08.012 – year: 2010 ident: 10.1016/j.marpetgeo.2019.04.036_bib2 article-title: New pore-scale considerations for shale gas in place calculations – volume: 27 start-page: 3099 year: 2013 ident: 10.1016/j.marpetgeo.2019.04.036_bib27 article-title: Methane adsorption on shale under simulated geological temperature and pressure conditions publication-title: Energy Fuels doi: 10.1021/ef400381v – volume: 73 start-page: 174 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib43 article-title: 2D and 3D nanopore characterization of gas shale in Longmaxi formation based on FIB-SEM publication-title: Mar. Petrol. Geol. doi: 10.1016/j.marpetgeo.2016.02.033 – volume: 17 start-page: 219 year: 2012 ident: 10.1016/j.marpetgeo.2019.04.036_bib3 article-title: Shale gas-in-place calculations part I: new pore-scale considerations publication-title: SPE J. doi: 10.2118/131772-PA – volume: 35 start-page: 114 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib5 article-title: The Ono–Kondo model and an experimental study on supercritical adsorption of shale gas: a case study on Longmaxi shale in southeastern Chongqing, China publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.08.047 – volume: 31 start-page: 2625 issue: 3 year: 2017 ident: 10.1016/j.marpetgeo.2019.04.036_bib20 article-title: Investigation of the methane adsorption characteristics of marine shale: a case study of lower cambrian qiongzhusi shale in eastern yunnan province, south China publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b03168 – volume: 47 start-page: 120 year: 2012 ident: 10.1016/j.marpetgeo.2019.04.036_bib40 article-title: Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2012.03.012 – volume: 6 start-page: 33461 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib36 article-title: Methane storage in nanoporous material at supercritical temperature over a wide range of pressures publication-title: Sci. Rep. doi: 10.1038/srep33461 – ident: 10.1016/j.marpetgeo.2019.04.036_bib15 – volume: 156 start-page: 36 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib31 article-title: Characterization of methane adsorption on overmature lower silurian–upper ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2016.01.013 – volume: 41 start-page: 1777 issue: 9 year: 2003 ident: 10.1016/j.marpetgeo.2019.04.036_bib12 article-title: Adsorption of supercritical fluids in non-porous and porous carbons: analysis of adsorbed phase volume and density publication-title: Carbon doi: 10.1016/S0008-6223(03)00152-0 – volume: 35 start-page: 1689 issue: 12 year: 1997 ident: 10.1016/j.marpetgeo.2019.04.036_bib9 article-title: Application of the monolayer/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure publication-title: Carbon doi: 10.1016/S0008-6223(97)00124-3 – volume: 34 start-page: 193 issue: 2–3 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib38 article-title: Methane adsorption on shale under high temperature and high pressure of reservoir condition: experiments and supercritical adsorption modeling publication-title: Adsorpt. Sci. Technol. doi: 10.1177/0263617415623425 – volume: 14 start-page: 539 issue: 4–5 year: 2008 ident: 10.1016/j.marpetgeo.2019.04.036_bib25 article-title: Competitive adsorption equilibria of CO2 and CH4 on a dry coal publication-title: Adsorption doi: 10.1007/s10450-008-9114-0 – volume: 21 start-page: 992 issue: 2 year: 2007 ident: 10.1016/j.marpetgeo.2019.04.036_bib28 article-title: Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions publication-title: Energy Fuels doi: 10.1021/ef0600614 – volume: 172 start-page: 301 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib32 article-title: Methane adsorption measurements and modeling for organic-rich marine shale samples publication-title: Fuel doi: 10.1016/j.fuel.2015.12.074 – volume: 200 start-page: 299 year: 2017 ident: 10.1016/j.marpetgeo.2019.04.036_bib37 article-title: Adsorption of methane in organic-rich shale nanopores: an experimental and molecular simulation study publication-title: Fuel doi: 10.1016/j.fuel.2017.03.083 – volume: 60 start-page: 309 issue: 2 year: 1938 ident: 10.1016/j.marpetgeo.2019.04.036_bib6 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 185 start-page: 10 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib30 article-title: A dual-site Langmuir equation for accurate estimation of high pressure deep shale gas resources publication-title: Fuel doi: 10.1016/j.fuel.2016.07.088 – volume: 30 start-page: 2248 issue: 3 year: 2016 ident: 10.1016/j.marpetgeo.2019.04.036_bib14 article-title: Adsorption equilibrium of CO2 and CH4, and their mixture on Sichuan Basin shale publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b02088 – start-page: 210 year: 2015 ident: 10.1016/j.marpetgeo.2019.04.036_bib22 article-title: Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2015.09.004 |
| SSID | ssj0007901 |
| Score | 2.5114608 |
| Snippet | Although the Brunauer-Emmett-Teller (BET) equation is a classic adsorption model for describing the adsorption of gases in adsorbents, it cannot be applied in... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 284 |
| SubjectTerms | Adsorption mechanism BET equation Density of adsorbed phase Double-layer adsorption Shale gas Supercritical adsorption |
| Title | A modified BET equation to investigate supercritical methane adsorption mechanisms in shale |
| URI | https://dx.doi.org/10.1016/j.marpetgeo.2019.04.036 |
| Volume | 105 |
| WOSCitedRecordID | wos000469896400018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Freedom Collection) customDbUrl: eissn: 1873-4073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007901 issn: 0264-8172 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9KT0EfRE_l7vxgH3wrOZLsJtm9t6rVU_AQ7EPRh7BJNm2ONqlNetY_xP_X2d18VQ9OESmEMnTSZeeXnel0Zn4IvRAu90icuBYFX2DRgEgrYnFigbGl5wXcpiLVZBPBxQWbzfjHweBH0wtztQzynO12fP1fTQ0yMLZqnf0Lc7c3BQG8B6PDFcwO1z8y_Fix22SpCi1fTqYj-dUM81ZBZtYO1ZCjcruWm7ghOlBE0gLiTZGUxcacIiupmoKzcqUrZsuFWO5VDX0Qqm_QzBmQqtpdblejudzL0n9eFFudXlVZ6W9d01mbpX5d5PNdJoourW_k5yD_3qsW0iUHM_jgohbWeQrdGtXPU7QNNF21UqnnvlKLOYa951SaM5gFgBrbMJy0h7Tt9Y9ZQytXe2zXsOn95gxMXuLydKX-yarmutfT4XqyLfll_LZ26J_UatRiIKi1HaY8-4EbeJwN0cH43WT2vnXxgGHHJO_M6vcKB6_9uuvDnl4oM72P7tW_QfDYYOcBGsj8EN3tTaY8RLffGks-RF_GuMETBjzhBk-4KnAPT3gPT7jGE-7whDs8gR7WeHqEpm8m01fnVs3IYQlCWGX5TPhOFLDI5xG4AhpL6qSUpA4NEodHaSAjbnPhc5ImCSURZQlRTNCUECEgRnqMhnmRyyOEXRpx4qWJ73EIyIkbsVSmMfWoE6tXfIz8Zr_CuJ5Wr0hTlmFTlngZthsdqo0ObRrCRh8ju1Vcm4EtN6ucNQYJ67jTxJMhIOkm5ZN_UX6C7nSPylM0rDZb-Qzdiq-qrNw8r1H3Ez0Kryg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+modified+BET+equation+to+investigate+supercritical+methane+adsorption+mechanisms+in+shale&rft.jtitle=Marine+and+petroleum+geology&rft.au=Zhou%2C+Shangwen&rft.au=Zhang%2C+Dongxiao&rft.au=Wang%2C+Hongyan&rft.au=Li%2C+Xiaohan&rft.date=2019-07-01&rft.pub=Elsevier+Ltd&rft.issn=0264-8172&rft.eissn=1873-4073&rft.volume=105&rft.spage=284&rft.epage=292&rft_id=info:doi/10.1016%2Fj.marpetgeo.2019.04.036&rft.externalDocID=S0264817219301862 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-8172&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-8172&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-8172&client=summon |