Semi‐supervised deep autoencoder for seismic facies classification

ABSTRACT Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir prediction. Facies identification based on supervised machine learning methods usually requires a large amount of labelled data, which a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical Prospecting Ročník 69; číslo 6; s. 1295 - 1315
Hlavní autoři: Liu, Xingye, Li, Bin, Li, Jingye, Chen, Xiaohong, Li, Qingchun, Chen, Yangkang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Houten Wiley Subscription Services, Inc 01.07.2021
Témata:
ISSN:0016-8025, 1365-2478
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir prediction. Facies identification based on supervised machine learning methods usually requires a large amount of labelled data, which are sometimes difficult to obtain. Here, we introduce the deep autoencoder to learn the hidden features and conduct facies classification from elastic attributes. Both labelled and unlabelled data are involved in the training process. Then, we develop a semi‐supervised deep autoencoder by taking the mean of intra‐class and the whole population of facies into account to construct a classification regularization term, thereby improving the classification accuracy and reducing the uncertainty. The new method inherits the profits of deep autoencoder and absorbs the information provided by labelled data. The proposed method performs well and produces promising results when it is used to address problems of reservoir prediction and facies identification. The new method is evaluated on both well and seismic data and compared with the conventional deep autoencoder method, which demonstrates its feasibility and superiority with respect to classification accuracy.
AbstractList Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir prediction. Facies identification based on supervised machine learning methods usually requires a large amount of labelled data, which are sometimes difficult to obtain. Here, we introduce the deep autoencoder to learn the hidden features and conduct facies classification from elastic attributes. Both labelled and unlabelled data are involved in the training process. Then, we develop a semi‐supervised deep autoencoder by taking the mean of intra‐class and the whole population of facies into account to construct a classification regularization term, thereby improving the classification accuracy and reducing the uncertainty. The new method inherits the profits of deep autoencoder and absorbs the information provided by labelled data. The proposed method performs well and produces promising results when it is used to address problems of reservoir prediction and facies identification. The new method is evaluated on both well and seismic data and compared with the conventional deep autoencoder method, which demonstrates its feasibility and superiority with respect to classification accuracy.
ABSTRACT Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir prediction. Facies identification based on supervised machine learning methods usually requires a large amount of labelled data, which are sometimes difficult to obtain. Here, we introduce the deep autoencoder to learn the hidden features and conduct facies classification from elastic attributes. Both labelled and unlabelled data are involved in the training process. Then, we develop a semi‐supervised deep autoencoder by taking the mean of intra‐class and the whole population of facies into account to construct a classification regularization term, thereby improving the classification accuracy and reducing the uncertainty. The new method inherits the profits of deep autoencoder and absorbs the information provided by labelled data. The proposed method performs well and produces promising results when it is used to address problems of reservoir prediction and facies identification. The new method is evaluated on both well and seismic data and compared with the conventional deep autoencoder method, which demonstrates its feasibility and superiority with respect to classification accuracy.
Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir prediction. Facies identification based on supervised machine learning methods usually requires a large amount of labelled data, which are sometimes difficult to obtain. Here, we introduce the deep autoencoder to learn the hidden features and conduct facies classification from elastic attributes. Both labelled and unlabelled data are involved in the training process. Then, we develop a semi‐supervised deep autoencoder by taking the mean of intra‐class and the whole population of facies into account to construct a classification regularization term, thereby improving the classification accuracy and reducing the uncertainty. The new method inherits the profits of deep autoencoder and absorbs the information provided by labelled data. The proposed method performs well and produces promising results when it is used to address problems of reservoir prediction and facies identification. The new method is evaluated on both well and seismic data and compared with the conventional deep autoencoder method, which demonstrates its feasibility and superiority with respect to classification accuracy.
Author Liu, Xingye
Li, Jingye
Li, Bin
Li, Qingchun
Chen, Yangkang
Chen, Xiaohong
Author_xml – sequence: 1
  givenname: Xingye
  orcidid: 0000-0002-9193-1075
  surname: Liu
  fullname: Liu, Xingye
  email: lwxwyh506673@126.com
  organization: Xi'an University of Science and Technology
– sequence: 2
  givenname: Bin
  surname: Li
  fullname: Li, Bin
  organization: Tongji University
– sequence: 3
  givenname: Jingye
  surname: Li
  fullname: Li, Jingye
  organization: China University of Petroleum‐Beijing
– sequence: 4
  givenname: Xiaohong
  surname: Chen
  fullname: Chen, Xiaohong
  organization: China University of Petroleum‐Beijing
– sequence: 5
  givenname: Qingchun
  surname: Li
  fullname: Li, Qingchun
  organization: Chang'an University
– sequence: 6
  givenname: Yangkang
  surname: Chen
  fullname: Chen, Yangkang
  organization: Zhejiang University
BookMark eNqFkM1OwzAQhC1UJNrCmWskzmntrJ2fIypQkCqB-DlbjrOWXKVxsBNQbzwCz8iTkLaIAxf2stJqvh3NTMiocQ0Scs7ojA0zZ5CKOOFZPmPAaHpExr-XERlTytI4p4k4IZMQ1pQCFYKPydUTbuzXx2foW_RvNmAVVYhtpPrOYaNdhT4yzkcBbdhYHRmlLYZI1yoEa6xWnXXNKTk2qg549rOn5OXm-nlxG6_ul3eLy1WsAPI05lxTACgMJoyVUIjcGFoWJSsT5LRkJitYWRqdgRJFigXXKcchClZKZAgVTMnF4W_r3WuPoZNr1_tmsJSJ4JRnHAQMqvlBpb0LwaORrbcb5beSUbmrSu6Kkbti5L6qgRB_CG27fbLOK1v_z73bGrf_2cjlw-OB-waTQH5Q
CitedBy_id crossref_primary_10_1111_1365_2478_13493
crossref_primary_10_1109_ACCESS_2025_3566005
crossref_primary_10_1109_TGRS_2024_3458870
crossref_primary_10_1109_TGRS_2025_3531493
crossref_primary_10_1109_TGRS_2023_3302352
crossref_primary_10_1190_geo2022_0746_1
crossref_primary_10_1109_JSTARS_2023_3325969
crossref_primary_10_3390_app14104175
crossref_primary_10_3390_jmse13081390
crossref_primary_10_1016_j_cageo_2024_105823
crossref_primary_10_1109_TGRS_2021_3139931
crossref_primary_10_1016_j_enggeo_2025_107939
crossref_primary_10_1016_j_petrol_2022_110498
crossref_primary_10_1190_geo2021_0365_1
crossref_primary_10_1016_j_eswa_2025_128290
crossref_primary_10_1109_TGRS_2023_3317983
crossref_primary_10_1109_JSTARS_2023_3308754
crossref_primary_10_1093_jge_gxac035
Cites_doi 10.1190/segam2018-2994378.1
10.1016/j.patcog.2016.01.012
10.1190/INT-2018-0208.1
10.1111/1365-2478.12893
10.1190/geo2019-0223.1
10.1190/geo2019-0261.1
10.1109/TGRS.2019.2928715
10.1111/j.1365-2478.1994.tb00230.x
10.2113/JEEG19-045
10.1109/TPAMI.2008.79
10.1190/segam2018-2997356.1
10.1190/geo2018-0699.1
10.1109/ACII.2013.90
10.1190/geo2017-0524.1
10.1016/j.imavis.2006.02.007
10.1190/INT-2018-0119.1
10.1109/INDICON.2015.7443734
10.1190/INT-2015-0044.1
10.1190/1.1487078
10.1016/j.measurement.2016.04.007
10.1190/INT-2016-0025.1
10.1109/LGRS.2015.2482520
10.1190/geo2015-0539.1
10.1190/segam2018-2997085.1
10.1190/1.1438908
10.1190/geo2017-0192.1
10.1016/j.aasri.2014.05.004
10.1109/ICACC.2015.75
10.1109/DESSERT.2019.8770007
10.1109/CEC.2018.8477735
10.1109/ICICSP48821.2019.8958539
10.1190/geo2019-0405.1
10.1109/BigMM.2017.69
10.1109/ACCESS.2019.2947568
10.1109/ICCV.2015.123
10.1109/SCCSIT.2017.8293059
10.1109/LGRS.2019.2941166
10.3997/2214-4609.201700918
10.1190/geo2017-0595.1
10.1109/TGRS.2019.2953473
10.1111/1365-2478.13070
10.1109/ISCBI.2015.9
10.1109/ICACSIS.2016.7872787
10.1111/1365-2478.12504
10.1109/TPAMI.2012.277
10.1190/tle35100906.1
10.1190/INT-2018-0249.1
10.1109/IJCNN.2018.8489520
10.1109/TGRS.2020.2981687
10.1126/science.1127647
10.1190/INT-2015-0098.1
10.1145/1390156.1390294
10.1007/s12182-020-00445-x
10.1007/s12182-020-00474-6
10.1190/geo2019-0468.1
10.1109/CISP.2015.7407967
10.1190/INT-2013-0077.1
ContentType Journal Article
Copyright 2021 European Association of Geoscientists & Engineers
Copyright_xml – notice: 2021 European Association of Geoscientists & Engineers
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.13106
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 1315
ExternalDocumentID 10_1111_1365_2478_13106
GPR13106
Genre article
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
AAYXX
CITATION
PALCI
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-a3386-44c03339fe211b3958ff0b9b1b2e40b1f791bbfc73a596e94c64e106eda57e3d3
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000655361900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-8025
IngestDate Mon Jun 30 10:12:44 EDT 2025
Tue Nov 18 22:30:50 EST 2025
Sat Nov 29 02:58:44 EST 2025
Sat Aug 24 01:03:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3386-44c03339fe211b3958ff0b9b1b2e40b1f791bbfc73a596e94c64e106eda57e3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9193-1075
PQID 2540474353
PQPubID 1066348
PageCount 21
ParticipantIDs proquest_journals_2540474353
crossref_primary_10_1111_1365_2478_13106
crossref_citationtrail_10_1111_1365_2478_13106
wiley_primary_10_1111_1365_2478_13106_GPR13106
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 69
2017; 5
2019; 7
2015; 12
2010; 11
2019; 90
2015; 3
2020; 85
2011
2010
2019; 57
2017; 65
2020; 17
2008
2007
2020; 58
2018; 83
2020c; 17
2001; 66
2020b; 25
2006; 313
2020a; 29
2016; 59
2016; 35
1994; 42
2016; 4
2014; 2
2009; 31
2019; 85
2017; 36
2018; 215
2006; 24
2010; 29
2013; 35
2021
2019; 68
2019
2018
2017
2016
2015
2013
2020b; 58
2020a; 17
2014; 6
2012; 20
2016; 89
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Bengio Y. (e_1_2_8_5_1) 2007
e_1_2_8_3_1
Sams M.S. (e_1_2_8_43_1) 2010; 29
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
Han K. (e_1_2_8_14_1) 2018
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_30_1
Chen Y. (e_1_2_8_7_1) 2019; 90
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
Liu X. (e_1_2_8_28_1) 2020; 29
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_35_1
Huang L. (e_1_2_8_18_1) 2017; 36
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Yu S. (e_1_2_8_61_1) 2021
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
Vincent P. (e_1_2_8_51_1) 2010; 11
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
Zhang G. (e_1_2_8_62_1) 2018; 215
References_xml – volume: 83
  start-page: O25
  issue: 2
  year: 2018
  end-page: O30
  article-title: Supervised seismic facies analysis based on image segmentation
  publication-title: Geophysics
– year: 2011
– start-page: 434
  year: 2015
  end-page: 438
– volume: 83
  start-page: A39
  issue: 3
  year: 2018
  end-page: A43
  article-title: Unsupervised seismic facies analysis via deep convolutional autoencoders
  publication-title: Geophysics
– start-page: 1026
  year: 2015
  end-page: 1034
– start-page: 1
  year: 2021
  end-page: 73
  article-title: Data‐driven geophysics: from dictionary learning to deep learning
  publication-title: Reviews of Geophysics
– volume: 85
  start-page: WA213
  issue: 4
  year: 2020
  end-page: WA225
  article-title: Deep learning reservoir porosity prediction based on multilayer long short‐term memory network
  publication-title: Geophysics
– volume: 69
  start-page: 984
  issue: 5
  year: 2021
  end-page: 1002
  article-title: Seismic noise attenuation by signal reconstruction: an unsupervised machine learning approach
  publication-title: Geophysical Prospecting
– start-page: 2046
  year: 2018
  end-page: 2050
– volume: 58
  start-page: 7282
  issue: 10
  year: 2020b
  end-page: 7296
  article-title: Facies identification based on multikernel relevance vector machine
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 25
  start-page: 89
  issue: 1
  year: 2020b
  end-page: 100
  article-title: Bayesian time‐lapse difference inversion based on the exact Zoeppritz equations with blockiness constraint
  publication-title: Journal of Environmental and Engineering Geophysics
– year: 2018
– start-page: 506
  year: 2016
  end-page: 511
– start-page: 1
  year: 2018
  end-page: 8
– volume: 3
  start-page: SAE29
  issue: 4
  year: 2015
  end-page: SAE58
  article-title: A comparison of classification techniques for seismic facies recognition
  publication-title: Interpretation
– volume: 68
  start-page: 845
  year: 2019
  end-page: 871
  article-title: Attenuation of marine seismic interference noise employing a customized U‐net
  publication-title: Geophysical Prospecting
– volume: 24
  start-page: 819
  issue: 8
  year: 2006
  end-page: 826
  article-title: Supervised locality pursuit embedding for pattern classification
  publication-title: Image and Vision Computing
– volume: 7
  start-page: SE93
  issue: 3
  year: 2019
  end-page: SE111
  article-title: Unsupervised seismic facies using Gaussian mixture models
  publication-title: Interpretation
– volume: 42
  start-page: 541
  issue: 6
  year: 1994
  end-page: 564
  article-title: Backus averaging, scattering and drift
  publication-title: Geophysical Prospecting
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– start-page: 2071
  year: 2018
  end-page: 2075
– volume: 58
  start-page: 2135
  year: 2020
  end-page: 2149
  article-title: Deep‐learning inversion of seismic data
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 223
  year: 2019
  end-page: 230
– volume: 17
  start-page: 628
  issue: 3
  year: 2020a
  end-page: 644
  article-title: Nonlinear amplitude versus angle inversion for transversely isotropic media with vertical symmetry axis using new weak anisotropy approximation equations
  publication-title: Petroleum Science
– volume: 59
  start-page: 199
  year: 2016
  end-page: 212
  article-title: Human action recognition using genetic algorithms and convolutional neural networks
  publication-title: Pattern Recognition
– start-page: 430
  year: 2019
  end-page: 434
– volume: 7
  start-page: SE175
  issue: 3
  year: 2019
  end-page: SE187
  article-title: A machine‐learning benchmark for facies classification
  publication-title: Interpretation
– volume: 6
  start-page: 19
  year: 2014
  end-page: 25
  article-title: Interval based weight initialization method for sigmoidal feedforward artificial neural networks
  publication-title: AASRI Procedia
– volume: 17
  start-page: 954
  issue: 4
  year: 2020c
  end-page: 966
  article-title: Lithofacies identification using support vector machine based on local deep multi‐kernel learning
  publication-title: Petroleum Science
– start-page: 150630
  issue: 7
  year: 2019
  end-page: 150641
  article-title: Causality‐based attribute weighting via information flow and genetic algorithm for naive Bayes classifier
  publication-title: IEEE Access
– start-page: 153
  year: 2007
  end-page: 160
– volume: 20
  start-page: 188
  issue: 2
  year: 2012
  end-page: 191
  article-title: Sequential Backus averaging: upscaling well logs to seismic wavelengths
  publication-title: The Leading Edge
– volume: 90
  start-page: 1552
  issue: 4
  year: 2019
  end-page: 1564
  article-title: Improving the signal‐to‐noise ratio of seismological datasets by unsupervised machine learning
  publication-title: Seismological Research Letters
– volume: 29
  start-page: 305
  issue: 4
  year: 2020a
  end-page: 326
  article-title: Nonlinear prestack inversion using the reflectivity method and quantum particle swarm optimization
  publication-title: Journal of Seismic Exploration
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  end-page: 227
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 83
  start-page: O17
  issue: 5
  year: 2018
  end-page: O35
  article-title: Seismic facies analysis using machine‐learning
  publication-title: Geophysics
– start-page: 511
  year: 2013
  end-page: 516
– volume: 66
  start-page: 988
  issue: 4
  year: 2001
  end-page: 1001
  article-title: Mapping lithofacies and pore‐fluid probabilities in a North Sea reservoir: seismic inversions and statistical rock physics
  publication-title: Geophysics
– volume: 12
  start-page: 2438
  issue: 12
  year: 2015
  end-page: 2442
  article-title: Unsupervised spectral spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– start-page: 1
  year: 2017
  end-page: 5
– start-page: 70
  year: 2017
  end-page: 73
– volume: 57
  start-page: 9709
  issue: 12
  year: 2019
  end-page: 9723
  article-title: Seismic noise attenuation using unsupervised sparse feature learning
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– start-page: 6
  year: 2015
  end-page: 12
– volume: 35
  start-page: 1930
  issue: 8
  year: 2013
  end-page: 1943
  article-title: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 85
  start-page: O17
  issue: 2
  year: 2020
  end-page: O35
  article-title: Seismic attribute selection for machine‐learning‐based facies analysis
  publication-title: Geophysics
– start-page: 697
  year: 2015
  end-page: 701
– start-page: 2008
  year: 2008
– volume: 65
  start-page: 49
  year: 2017
  end-page: 58
  article-title: Seismic facies analysis through musical attributes
  publication-title: Geophysical Prospecting
– volume: 35
  start-page: 906
  issue: 10
  year: 2016
  end-page: 909
  article-title: Facies classification using machine learning
  publication-title: The Leading Edge
– year: 2010
– volume: 83
  start-page: O31
  issue: 2
  year: 2018
  end-page: O44
  article-title: Seismic attribute selection for unsupervised seismic facies analysis using user guided data‐adaptive weights
  publication-title: Geophysics
– volume: 4
  start-page: SB91
  issue: 1
  year: 2016
  end-page: SB106
  article-title: Semisupervised multiattribute seismic facies analysis
  publication-title: Interpretation
– volume: 85
  start-page: V119
  issue: 2
  year: 2020
  end-page: V130
  article-title: Seismic trace interpolation for irregularly spatial sampled data using convolutional autoencoder
  publication-title: Geophysics
– volume: 29
  start-page: 576
  issue: 5
  year: 2010
  end-page: 583
  article-title: Uncertainties in the quantitative interpretation of lithology probability volumes
  publication-title: Geophysics
– volume: 85
  start-page: V367
  issue: 4
  year: 2020
  end-page: V376
  article-title: Deep denoising autoencoder for seismic random noise attenuation
  publication-title: Geophysics
– start-page: 1
  year: 2015
  end-page: 5
– start-page: 2941
  year: 2018
  end-page: 2945
– volume: 85
  start-page: WA41
  issue: 4
  year: 2019
  end-page: WA52
  article-title: A comparison of deep machine learning and Monte Carlo methods for facies classification from seismic data
  publication-title: Geophysics
– volume: 2
  start-page: SA31
  issue: 1
  year: 2014
  end-page: SA47
  article-title: Generative topographic mapping for seismic facies estimation of a carbonate wash, Veracruz basin, southern Mexico
  publication-title: Interpretation
– volume: 17
  start-page: 1119
  issue: 7
  year: 2020
  end-page: 1123
  article-title: Seismic facies analysis based on deep learning
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 215
  start-page: 1368
  issue: 2
  year: 2018
  end-page: 1387
  article-title: Deep learning for seismic lithology prediction
  publication-title: Geophysical Journal International
– volume: 5
  start-page: SE1
  issue: 2
  year: 2017
  end-page: SE10
  article-title: Bayesian discriminant analysis of lithofacies integrate the Fisher transformation and the kernel function estimation
  publication-title: Interpretation
– year: 2017
– volume: 36
  start-page: 249
  issue: 3
  year: 2017
  end-page: 256
  article-title: A scalable deep learning platform for identifying geologic features from seismic attributes
  publication-title: Geophysics
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  article-title: A sparse auto‐encoder‐based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– volume: 7
  start-page: SE69
  issue: 3
  year: 2019
  end-page: SE79
  article-title: Seismic structure interpretation based on machine learning: a case study in coal mining
  publication-title: Interpretation
– ident: e_1_2_8_9_1
  doi: 10.1190/segam2018-2994378.1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.patcog.2016.01.012
– ident: e_1_2_8_22_1
  doi: 10.1190/INT-2018-0208.1
– ident: e_1_2_8_47_1
  doi: 10.1111/1365-2478.12893
– ident: e_1_2_8_38_1
  doi: 10.1190/geo2019-0223.1
– ident: e_1_2_8_6_1
  doi: 10.1190/geo2019-0261.1
– ident: e_1_2_8_63_1
  doi: 10.1109/TGRS.2019.2928715
– ident: e_1_2_8_44_1
  doi: 10.1111/j.1365-2478.1994.tb00230.x
– volume: 36
  start-page: 249
  issue: 3
  year: 2017
  ident: e_1_2_8_18_1
  article-title: A scalable deep learning platform for identifying geologic features from seismic attributes
  publication-title: Geophysics
– ident: e_1_2_8_70_1
  doi: 10.2113/JEEG19-045
– ident: e_1_2_8_58_1
  doi: 10.1109/TPAMI.2008.79
– volume: 29
  start-page: 305
  issue: 4
  year: 2020
  ident: e_1_2_8_28_1
  article-title: Nonlinear prestack inversion using the reflectivity method and quantum particle swarm optimization
  publication-title: Journal of Seismic Exploration
– ident: e_1_2_8_8_1
  doi: 10.1190/segam2018-2997356.1
– ident: e_1_2_8_32_1
– ident: e_1_2_8_56_1
  doi: 10.1190/geo2018-0699.1
– ident: e_1_2_8_10_1
  doi: 10.1109/ACII.2013.90
– ident: e_1_2_8_39_1
  doi: 10.1190/geo2017-0524.1
– ident: e_1_2_8_68_1
  doi: 10.1016/j.imavis.2006.02.007
– start-page: 2941
  volume-title: International Conference on Acoustics, Speech, and Signal Processing
  year: 2018
  ident: e_1_2_8_14_1
– ident: e_1_2_8_54_1
  doi: 10.1190/INT-2018-0119.1
– ident: e_1_2_8_33_1
  doi: 10.1109/INDICON.2015.7443734
– ident: e_1_2_8_66_1
  doi: 10.1190/INT-2015-0044.1
– ident: e_1_2_8_34_1
  doi: 10.1190/1.1487078
– ident: e_1_2_8_48_1
  doi: 10.1016/j.measurement.2016.04.007
– ident: e_1_2_8_30_1
  doi: 10.1190/INT-2016-0025.1
– ident: e_1_2_8_49_1
  doi: 10.1109/LGRS.2015.2482520
– ident: e_1_2_8_27_1
  doi: 10.1190/geo2015-0539.1
– ident: e_1_2_8_65_1
  doi: 10.1190/segam2018-2997085.1
– ident: e_1_2_8_26_1
  doi: 10.1190/1.1438908
– ident: e_1_2_8_67_1
  doi: 10.1190/geo2017-0192.1
– ident: e_1_2_8_46_1
  doi: 10.1016/j.aasri.2014.05.004
– ident: e_1_2_8_15_1
  doi: 10.1109/ICACC.2015.75
– ident: e_1_2_8_41_1
  doi: 10.1109/DESSERT.2019.8770007
– ident: e_1_2_8_55_1
  doi: 10.1109/CEC.2018.8477735
– ident: e_1_2_8_57_1
  doi: 10.1109/ICICSP48821.2019.8958539
– ident: e_1_2_8_12_1
  doi: 10.1190/geo2019-0405.1
– ident: e_1_2_8_60_1
  doi: 10.1109/BigMM.2017.69
– ident: e_1_2_8_23_1
  doi: 10.1109/ACCESS.2019.2947568
– ident: e_1_2_8_16_1
  doi: 10.1109/ICCV.2015.123
– start-page: 1
  year: 2021
  ident: e_1_2_8_61_1
  article-title: Data‐driven geophysics: from dictionary learning to deep learning
  publication-title: Reviews of Geophysics
– ident: e_1_2_8_21_1
  doi: 10.1109/SCCSIT.2017.8293059
– volume: 29
  start-page: 576
  issue: 5
  year: 2010
  ident: e_1_2_8_43_1
  article-title: Uncertainties in the quantitative interpretation of lithology probability volumes
  publication-title: Geophysics
– ident: e_1_2_8_64_1
  doi: 10.1109/LGRS.2019.2941166
– ident: e_1_2_8_53_1
  doi: 10.3997/2214-4609.201700918
– ident: e_1_2_8_59_1
  doi: 10.1190/geo2017-0595.1
– ident: e_1_2_8_24_1
  doi: 10.1109/TGRS.2019.2953473
– ident: e_1_2_8_11_1
  doi: 10.1111/1365-2478.13070
– ident: e_1_2_8_20_1
– volume: 215
  start-page: 1368
  issue: 2
  year: 2018
  ident: e_1_2_8_62_1
  article-title: Deep learning for seismic lithology prediction
  publication-title: Geophysical Journal International
– ident: e_1_2_8_35_1
  doi: 10.1109/ISCBI.2015.9
– start-page: 153
  volume-title: Advances in Neural Information Processing Systems, 19 (NIPS 2006)
  year: 2007
  ident: e_1_2_8_5_1
– ident: e_1_2_8_4_1
  doi: 10.1109/ICACSIS.2016.7872787
– ident: e_1_2_8_3_1
  doi: 10.1111/1365-2478.12504
– ident: e_1_2_8_45_1
  doi: 10.1109/TPAMI.2012.277
– ident: e_1_2_8_13_1
  doi: 10.1190/tle35100906.1
– ident: e_1_2_8_2_1
  doi: 10.1190/INT-2018-0249.1
– volume: 90
  start-page: 1552
  issue: 4
  year: 2019
  ident: e_1_2_8_7_1
  article-title: Improving the signal‐to‐noise ratio of seismological datasets by unsupervised machine learning
  publication-title: Seismological Research Letters
– ident: e_1_2_8_19_1
  doi: 10.1109/IJCNN.2018.8489520
– ident: e_1_2_8_29_1
  doi: 10.1109/TGRS.2020.2981687
– ident: e_1_2_8_52_1
– ident: e_1_2_8_17_1
  doi: 10.1126/science.1127647
– ident: e_1_2_8_37_1
  doi: 10.1190/INT-2015-0098.1
– ident: e_1_2_8_50_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_8_69_1
  doi: 10.1007/s12182-020-00445-x
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: e_1_2_8_51_1
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_31_1
  doi: 10.1007/s12182-020-00474-6
– ident: e_1_2_8_42_1
  doi: 10.1190/geo2019-0468.1
– ident: e_1_2_8_25_1
  doi: 10.1109/CISP.2015.7407967
– ident: e_1_2_8_40_1
  doi: 10.1190/INT-2013-0077.1
SSID ssj0030554
ssj0017384
Score 2.401144
Snippet ABSTRACT Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and...
Facies boundaries are critical for flow performance in a reservoir and are significant for lithofacies identification in well interpretation and reservoir...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1295
SubjectTerms Accuracy
Classification
Feasibility studies
Identification
Lithofacies
Machine learning
Parameter estimation
Regularization
Reservoir geophysics
Reservoirs
Seismic data
Seismic surveys
Seismics
Training
Title Semi‐supervised deep autoencoder for seismic facies classification
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.13106
https://www.proquest.com/docview/2540474353
Volume 69
WOSCitedRecordID wos000655361900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  issn: 0016-8025
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA-yKejBj6k4ndKDBy8dbZO0zVGcmwcZYzrYrfQlKRTcB8smePNP8G_0LzFJuzkFEUF6aaF5ad9X3mtffg-hyzDiQrAMXPCxTlAo4y5EPnUpBUy08UGGi2YTUbcbD4esV1YTmr0wBT7E6oObsQzrr42Bp6DWjLyozyJR3NSzGNDtaqC1l1RQtdVvD-5XvxIibHZiFhcG3qrAZfYNDG9AS7AfU9vzjd7Xdeoz-FwPYe0a1N77h6ffR7tlAOpcFxpzgDbkuIZ21mAJa2irY9v9vhyi1oMc5e-vb2oxNT5FSeEIKadOuphPDAKmkDNHR72Okrka5dzJUu0qlMNNSG5qkKzYj9Cgfft4c-eWfRfcVCesoUsI9zDGLJM6OwTMaJxlHjDwIZDEAz-LmA-Q8QinlIWSER4SqV9CipRGEgt8jCrjyVieICfmIEQMmgCmRKT6oKkPFFOmM3pBaR01l1xOeAlKbnpjPCXL5MQwKjGMSiyj6uhqNWBa4HH8fGtjKbakNEyV6HzYIzpqolhPbQX0G5mk0-vbk9O_DjhD24GpgLHFvQ1Umc8W8hxt8ud5rmYXpZ5-ANQ_48g
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6kVdSDj6pYrboHD14iTXc3yR7F2lasRWoLvYXsIxCwD5pW8OZP8Df6S9xN0hoFEUFySSA7u5nH7sxm9huAc8cVUrKQW9zGOkChTFjctalFKcdEGx8PcVpswu10vMGA5c_CpPgQyw03YxnJfG0M3GxI56w8TdAirnepuzGo20WilYkWoFjvNvrt5b8EF5ujmOmDwbdKgZltg8Nboxnaj0nu-Ubv60L16X3mfdhkEWps_8fwd2Arc0HRVaozu7CiRiXYzAETlmCtmRT8fdmD-qMaRu-vb_F8YmaVWEkklZqgYD4bGwxMqaZI-70oVlE8jAQKAz1ZxEgYp9xkISWC34d-46Z33bKyygtWoENWxyJEVDHGLFQ6PuSYUS8Mq5xxm9cUqXI7dJnNeShcHFDmKEaEQ5T-CCUD6ios8QEURuOROgTkCS6lxzUBTIkM9EUDm1NMmY7pJaVluFyw2RcZLLmpjvHkL8ITwyjfMMpPGFWGi2WDSYrI8fOrlYXc_Mw0Y19HxFWi_SaKddeJhH4j4zcfusnN0V8bnMF6q3ff9tu3nbtj2KiZfJgk1bcChdl0rk5gVTzPonh6mintB5Dr57g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7EqujBR1WsVs3Bg5eUprubZI9ibRVLKdVCb0v2BQH7oGkFb_4Ef6O_xNkkrVUQESSXBLIzyczO7Ewy-w1CF34glWJGuMLDkKBQJl0ReNSlVGACxicMzppNBO122O-z5b0wGT7E4oObtYzUX1sD12Nllqw8K9AiQVgBNhZ1uwCsfDDOQr3b6LUW_xICbLdiZhcW3yoDZvYsDm-N5mg_trjnG72vC9Vn9Lkcw6aLUGPnPx5_F23nIahzlc2ZPbSih0W0tQRMWETrzbTh78s-qj_oQfz--pbMxtarJFo5SuuxE82mI4uBqfTEgbjXSXScDGLpmAicReJIG5TbKqRU8Qeo17h5vL51884LbgQpq-8SIqsYY2Y05IcCMxoaUxVMeKKmSVV4JmCeEEYGOAKRa0akTzS8hFYRDTRW-BCtDkdDfYScUAqlQgEEMCUqgoNGnqCYMsjpFaUlVJmLmcscltx2x3ji8_TECopbQfFUUCV0uRgwzhA5fr61PNcbz00z4ZARVwnETRQD61RDv5HhzU43PTn-64BztNGpN3jrrn1_gjZrthwmrfQto9XpZKZP0Zp8nsbJ5Cyfsx89BOcz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi%E2%80%90supervised+deep+autoencoder+for+seismic+facies+classification&rft.jtitle=Geophysical+Prospecting&rft.au=Liu%2C+Xingye&rft.au=Li%2C+Bin&rft.au=Li%2C+Jingye&rft.au=Chen%2C+Xiaohong&rft.date=2021-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=69&rft.issue=6&rft.spage=1295&rft.epage=1315&rft_id=info:doi/10.1111%2F1365-2478.13106&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon