2D cooperative inversion of direct current resistivity and gravity data: A case study of uranium bearing target rock

ABSTRACT Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical Prospecting Ročník 67; číslo 3; s. 696 - 708
Hlavní autoři: Singh, Anand, Mishra, Pankaj K., Sharma, S.P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Houten Wiley Subscription Services, Inc 01.03.2019
Témata:
ISSN:0016-8025, 1365-2478
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ABSTRACT Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach of direct current resistivity and gravity data. The algorithm uses fuzzy c‐means clustering to determine the petrophysical relationship between density and resistivity to obtain the similarity. Synthetic data set has demonstrated that the cooperative inversion approach can produce more reliable and better resistivity and density models of the subsurface as compared to those obtained through individual inversions. To utilize the presented cooperative inversion algorithm, the number of geologic units (number of clusters) in the study region must be known a priori. As a field study, the cooperative inversion approach was used to identify the extension of uranium‐bearing target rock around the Beldih open cast mine. We noted the inconsistencies in both resistivity and density models obtained from the individual inversions. However, the presented cooperative inversion approach was able to produce similar resistivity and density models while maintaining the same error level of the respective individual inversions. We have considered four geologic units in the presented cooperative inversion as a field case study. We have also compared our cooperative results with drilled borehole and found to be a reliable tool to differentiate between the target rocks (kaolinite and quartz–magnetite–apatite rocks) and the ultramafic rock (host rock quartzite/alkaline granite). However, this study is subject to certain limitations such as the inability to differentiate between closely spaced kaolinite and quartz–magnetite–apatite rocks.
AbstractList ABSTRACT Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach of direct current resistivity and gravity data. The algorithm uses fuzzy c‐means clustering to determine the petrophysical relationship between density and resistivity to obtain the similarity. Synthetic data set has demonstrated that the cooperative inversion approach can produce more reliable and better resistivity and density models of the subsurface as compared to those obtained through individual inversions. To utilize the presented cooperative inversion algorithm, the number of geologic units (number of clusters) in the study region must be known a priori. As a field study, the cooperative inversion approach was used to identify the extension of uranium‐bearing target rock around the Beldih open cast mine. We noted the inconsistencies in both resistivity and density models obtained from the individual inversions. However, the presented cooperative inversion approach was able to produce similar resistivity and density models while maintaining the same error level of the respective individual inversions. We have considered four geologic units in the presented cooperative inversion as a field case study. We have also compared our cooperative results with drilled borehole and found to be a reliable tool to differentiate between the target rocks (kaolinite and quartz–magnetite–apatite rocks) and the ultramafic rock (host rock quartzite/alkaline granite). However, this study is subject to certain limitations such as the inability to differentiate between closely spaced kaolinite and quartz–magnetite–apatite rocks.
Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach of direct current resistivity and gravity data. The algorithm uses fuzzy c‐means clustering to determine the petrophysical relationship between density and resistivity to obtain the similarity. Synthetic data set has demonstrated that the cooperative inversion approach can produce more reliable and better resistivity and density models of the subsurface as compared to those obtained through individual inversions. To utilize the presented cooperative inversion algorithm, the number of geologic units (number of clusters) in the study region must be known a priori . As a field study, the cooperative inversion approach was used to identify the extension of uranium‐bearing target rock around the Beldih open cast mine. We noted the inconsistencies in both resistivity and density models obtained from the individual inversions. However, the presented cooperative inversion approach was able to produce similar resistivity and density models while maintaining the same error level of the respective individual inversions. We have considered four geologic units in the presented cooperative inversion as a field case study. We have also compared our cooperative results with drilled borehole and found to be a reliable tool to differentiate between the target rocks (kaolinite and quartz–magnetite–apatite rocks) and the ultramafic rock (host rock quartzite/alkaline granite). However, this study is subject to certain limitations such as the inability to differentiate between closely spaced kaolinite and quartz–magnetite–apatite rocks.
Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach of direct current resistivity and gravity data. The algorithm uses fuzzy c‐means clustering to determine the petrophysical relationship between density and resistivity to obtain the similarity. Synthetic data set has demonstrated that the cooperative inversion approach can produce more reliable and better resistivity and density models of the subsurface as compared to those obtained through individual inversions. To utilize the presented cooperative inversion algorithm, the number of geologic units (number of clusters) in the study region must be known a priori. As a field study, the cooperative inversion approach was used to identify the extension of uranium‐bearing target rock around the Beldih open cast mine. We noted the inconsistencies in both resistivity and density models obtained from the individual inversions. However, the presented cooperative inversion approach was able to produce similar resistivity and density models while maintaining the same error level of the respective individual inversions. We have considered four geologic units in the presented cooperative inversion as a field case study. We have also compared our cooperative results with drilled borehole and found to be a reliable tool to differentiate between the target rocks (kaolinite and quartz–magnetite–apatite rocks) and the ultramafic rock (host rock quartzite/alkaline granite). However, this study is subject to certain limitations such as the inability to differentiate between closely spaced kaolinite and quartz–magnetite–apatite rocks.
Author Mishra, Pankaj K.
Singh, Anand
Sharma, S.P.
Author_xml – sequence: 1
  givenname: Anand
  surname: Singh
  fullname: Singh, Anand
  email: anandsinghiitb@gmail.com, anand.singh@iitb.ac.in
  organization: Indian Institute of Technology Bombay
– sequence: 2
  givenname: Pankaj K.
  surname: Mishra
  fullname: Mishra, Pankaj K.
  organization: Hong Kong Baptist University
– sequence: 3
  givenname: S.P.
  surname: Sharma
  fullname: Sharma, S.P.
  organization: Indian Institute of Technology Kharagpur
BookMark eNqFkE1LAzEURYNUsK2u3QZcT5tMJjOpu1K1CoIiug6ZJFNSa1JfMpX-e6cfuHChb5NHuOddOAPU88FbhC4pGdFuxpSVPMuLSoxoXpXsBPV_fnqoTwgtM0FyfoYGMS4JYYTzoo9SfoN1CGsLKrmNxc5vLEQXPA4NNg6sTli3ANYnDDa62KVc2mLlDV6A2u9GJXWNp1iraHFMrdnu4BaUd-0Hrq0C5xc4KVjY7kjQ7-fotFGraC-O7xC93d2-zu6zx6f5w2z6mCnGBMtKYQrWVLVQdVEQk4u6FJOKG1VYTURjKsEaQcvK1KQpc8GIEiVjXOecTDgzhg3R1eHuGsJna2OSy9CC7yplTie8YIR2PUPEDykNIUawjdQudTaCT6DcSlIid4LlTqfc6ZR7wR03_sWtwX0o2P5BHJu-3Mpu_4vL-fPLgfsGRniODw
CitedBy_id crossref_primary_10_1007_s11053_021_09880_y
crossref_primary_10_1007_s11600_022_00857_w
crossref_primary_10_3390_min14101012
crossref_primary_10_1016_j_pepi_2020_106604
crossref_primary_10_1007_s00024_024_03432_0
crossref_primary_10_1016_j_jappgeo_2020_104117
crossref_primary_10_1007_s11053_019_09480_x
crossref_primary_10_1007_s11600_022_00909_1
crossref_primary_10_1016_j_watcyc_2024_04_004
Cites_doi 10.1007/s10712-013-9232-4
10.1016/j.oregeorev.2014.12.015
10.1111/j.1365-246X.2010.04856.x
10.1017/CBO9781139167932
10.1088/0266-5611/13/1/006
10.1002/9781118929063
10.1190/geo2010-0255.1
10.1515/acgeo-2015-0071
10.1190/1.1443968
10.1029/2003JB002716
10.1111/1365-2478.12205
10.1007/s10712-017-9413-7
10.1007/978-1-4757-0450-1
10.1190/1.3513426
10.1190/geo2011-0154.1
10.1190/geo2014-0056.1
10.1111/j.1365-246X.2006.02923.x
10.1190/1.1444302
10.1190/geo2015-0147.1
10.1093/gji/ggw413
10.1111/j.1365-246X.2007.03366.x
10.1029/2012GL051233
10.1016/j.jappgeo.2017.11.014
10.1002/grl.50696
10.1190/geo2015-0457.1
10.1111/j.1365-2478.1996.tb00142.x
10.1190/1.1441501
10.1111/j.1365-246X.2010.04686.x
10.1111/1365-2478.12060
10.1190/geo2014-0122.1
10.4133/1.2923578
10.1007/s12594-014-0175-2
10.1190/geo2017-0040.1
10.1029/2003GL017370
10.1190/1.1442403
10.1190/segam2017-17790145.1
ContentType Journal Article
Copyright 2019 European Association of Geoscientists & Engineers
Copyright_xml – notice: 2019 European Association of Geoscientists & Engineers
DBID AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
DOI 10.1111/1365-2478.12763
DatabaseName CrossRef
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1365-2478
EndPage 708
ExternalDocumentID 10_1111_1365_2478_12763
GPR12763
Genre article
GroupedDBID -~X
1OB
1OC
ALMA_UNASSIGNED_HOLDINGS
BDRZF
BRZYM
DDYGU
FZ0
PALCI
AAYXX
CITATION
8FD
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-a3383-68d43f7b8ab440d28b68975da4ec08fd783f8167db0f62830a86335c250953dd3
IEDL.DBID DRFUL
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463809100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-8025
IngestDate Mon Jun 30 07:35:07 EDT 2025
Tue Nov 18 22:18:54 EST 2025
Sat Nov 29 02:58:43 EST 2025
Tue Nov 11 03:10:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3383-68d43f7b8ab440d28b68975da4ec08fd783f8167db0f62830a86335c250953dd3
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
PQID 2195430138
PQPubID 1066348
PageCount 13
ParticipantIDs proquest_journals_2195430138
crossref_citationtrail_10_1111_1365_2478_12763
crossref_primary_10_1111_1365_2478_12763
wiley_primary_10_1111_1365_2478_12763_GPR12763
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace Houten
PublicationPlace_xml – name: Houten
PublicationTitle Geophysical Prospecting
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 169
2010
2013; 40
2013; 61
2018; 148
2006
2011; 76
2016; 72
2012; 39
2015; 80
2018; 83
2010; 182
1988; 53
2004; 109
1998; 63
2014; 84
2003; 30
2012; 77
1977
2017; 208
2014; 80
1990
2006; 68
2013; 34
2017; 38
2000; 55
2015; 63
1997; 13
1996; 61
2016; 64
2006; 165
2017
2016
1981
2014
2016; 81
2011; 184
1983; 48
1996; 44
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Tikhonov A.N. (e_1_2_6_40_1) 1977
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
Heincke B. (e_1_2_6_15_1) 2014
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Gupta A. (e_1_2_6_12_1) 2000; 55
e_1_2_6_9_1
e_1_2_6_8_1
Acharyya A. (e_1_2_6_2_1) 2006; 68
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 169
  start-page: 1261
  year: 2007
  end-page: 1272
  article-title: Joint two‐dimensional cross‐gradient imaging of magnetotelluric and seismic traveltime data for structural and lithological classification
  publication-title: Geophysical Journal International
– volume: 53
  start-page: 8
  year: 1988
  end-page: 10
  article-title: Cooperative inversion of geophysical data
  publication-title: Geophysics
– volume: 80
  start-page: M69
  year: 2015
  end-page: M88
  article-title: 2D joint inversion of geophysical data using petrophysical clustering and facies deformation
  publication-title: Geophysics
– year: 1981
– volume: 55
  start-page: 195
  year: 2000
  end-page: 226
  article-title: North Singhbhum Proterozoic mobile belt Eastern India–a review
  publication-title: Special Publication ‐Geological Survey of India
– volume: 165
  start-page: 705
  year: 2006
  end-page: 718
  article-title: Joint inversion of gravity and geoelectrical data for groundwater and structural investigation: application to the northwestern part of Sinai, Egypt
  publication-title: Geophysical Journal International
– volume: 83
  start-page: E11
  year: 2018
  end-page: E24
  article-title: Fuzzy constrained Lp‐norm inversion of direct current resistivity data
  publication-title: Geophysics
– volume: 48
  start-page: 713
  year: 1983
  end-page: 721
  article-title: Compact gravity inversion
  publication-title: Geophysics
– volume: 77
  start-page: K1
  year: 2012
  end-page: K15
  article-title: Joint inversion of seismic travel times and gravity data on unstructured grids with application to mineral exploration
  publication-title: Geophysics
– volume: 148
  start-page: 127
  year: 2018
  end-page: 138
  article-title: Identification of different geologic units using fuzzy constrained resistivity tomography
  publication-title: Journal of Applied Geophysics
– volume: 80
  start-page: W1
  year: 2014
  end-page: W15
  article-title: A study of fuzzy c‐means coupling for joint inversion, using seismic tomography and gravity data test scenarios
  publication-title: Geophysics
– start-page: 1196
  year: 2006
  end-page: 1202
– volume: 61
  start-page: 394
  year: 1996
  end-page: 408
  article-title: 3D inversion of magnetic data
  publication-title: Geophysics
– volume: 72
  start-page: 1307
  year: 2016
  end-page: 1326
  article-title: Integrated geophysical studies to elicit the subsurface structures associated with uranium mineralization around South Purulia Shear Zone, India: a review
  publication-title: Ore Geology Reviews
– volume: 13
  start-page: 63
  year: 1997
  end-page: 77
  article-title: Joint inversion: a structural approach
  publication-title: Inverse problems
– volume: 81
  start-page: ID37
  year: 2016
  end-page: ID57
  article-title: Joint inversion of multiple geophysical data using guided fuzzy c‐means clustering
  publication-title: Geophysics
– volume: 63
  start-page: 109
  year: 1998
  end-page: 119
  article-title: 3D inversion of gravity data
  publication-title: Geophysics
– volume: 61
  start-page: 1218
  year: 2013
  end-page: 1228
  article-title: Joint inversion of seismic traveltimes and magnetotelluric data with a directed structural constraint
  publication-title: Geophysical Prospecting
– year: 2016
– year: 1990
– year: 1977
– volume: 182
  start-page: 1174
  year: 2010
  end-page: 1188
  article-title: Non‐linear model error and resolution properties from two‐dimensional single and joint inversions of direct current resistivity and radio magnetotelluric data
  publication-title: Geophysical Journal International
– volume: 208
  start-page: 546
  year: 2017
  end-page: 560
  article-title: Improving compact gravity inversion using new weighting functions
  publication-title: Geophysical Journal International
– year: 2010
– volume: 109
  start-page: B03311
  year: 2004
  article-title: Joint two‐dimensional DC resistivity and seismic travel time inversion with cross‐gradients constraints
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 76
  start-page: B173
  year: 2011
  end-page: B185
  article-title: Integrated geological and geophysical studies for delineation of chromite deposits: A case study from Tangarparha, Orissa, India
  publication-title: Geophysics
– volume: 39
  start-page: L09301
  year: 2012
  article-title: Generalized joint inversion of multimodal geophysical data using Gramian constraints
  publication-title: Geophysical Research Letters
– volume: 64
  start-page: 443
  year: 2016
  end-page: 462
  article-title: ELRIS2D: a MATLAB package for the 2D inversion of DC resistivity/IP data
  publication-title: Acta Geophysica
– volume: 30
  start-page: 1658
  year: 2003
  article-title: Characterization of heterogeneous near‐surface materials by joint 2D inversion of dc resistivity and seismic data
  publication-title: Geophysical Research Letters
– volume: 40
  start-page: 3596
  year: 2013
  end-page: 3601
  article-title: Verification of velocity‐resistivity relationships derived from structural joint inversion with borehole data
  publication-title: Geophysical Research Letters
– start-page: 1744
  year: 2017
  end-page: 1749
  article-title: Modified zonal cooperative inversion of gravity data‐a case study from uranium mineralization
  publication-title: SEG Technical Program Expanded Abstracts
– volume: 184
  start-page: 477
  year: 2011
  end-page: 493
  article-title: A framework for 3D joint inversion of MT, gravity and seismic refraction data
  publication-title: Geophysical Journal International
– volume: 84
  start-page: 645
  year: 2014
  end-page: 656
  article-title: Delineation of extension of uranium mineralization zone using resistivity and VLF surveys around South Purulia Shear Zone, India
  publication-title: Journal of the Geological Society of India
– start-page: 2805
  year: 2010
  end-page: 2809
  article-title: Adaptive coupling strategy for simultaneous joint inversions that use petrophysical information as constraints
  publication-title: SEG Technical Program, Expanded Abstracts
– volume: 68
  start-page: 1069
  year: 2006
  end-page: 1086
  article-title: Proterozoic rock suites along South Purulia Shear Zone, Eastern India: evidence for rift – related setting
  publication-title: Journal of the Geological Society of India
– volume: 80
  start-page: B131
  year: 2015
  end-page: B152
  article-title: Joint inversion of gravity, magnetic, and petrophysical data—A case study from a gabbro intrusion in Boden, Sweden
  publication-title: Geophysics
– volume: 34
  start-page: 675
  year: 2013
  end-page: 695
  article-title: Model fusion and joint inversion
  publication-title: Surveys in Geophysics
– volume: 44
  start-page: 131
  year: 1996
  end-page: 152
  article-title: Rapid least‐squares inversion of apparent resistivity pseudo section by a quasi‐Newton method
  publication-title: Geophysical Prospecting
– volume: 63
  start-page: 713
  year: 2015
  end-page: 726
  article-title: Geophysical signatures of uranium mineralization and its subsurface validation at Beldih, Purulia District, West Bengal, India — a case study
  publication-title: Geophysical Prospecting
– volume: 38
  start-page: 935
  year: 2017
  end-page: 962
  article-title: Integrating electromagnetic data with other geophysical observations for enhanced Imaging of the earth: a tutorial and review
  publication-title: Surveys in Geophysics
– start-page: 770
  year: 2014
  end-page: 775
  article-title: Joint‐inversion of magnetotelluric, gravity and seismic data to image sub‐basalt sediments offshore the Faroe‐Islands
  publication-title: SEG Technical Program, Expanded Abstracts
– ident: e_1_2_6_13_1
  doi: 10.1007/s10712-013-9232-4
– volume: 55
  start-page: 195
  year: 2000
  ident: e_1_2_6_12_1
  article-title: North Singhbhum Proterozoic mobile belt Eastern India–a review
  publication-title: Special Publication ‐Geological Survey of India
– ident: e_1_2_6_5_1
  doi: 10.1016/j.oregeorev.2014.12.015
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1365-246X.2010.04856.x
– ident: e_1_2_6_39_1
  doi: 10.1017/CBO9781139167932
– ident: e_1_2_6_14_1
  doi: 10.1088/0266-5611/13/1/006
– ident: e_1_2_6_31_1
  doi: 10.1002/9781118929063
– start-page: 770
  year: 2014
  ident: e_1_2_6_15_1
  article-title: Joint‐inversion of magnetotelluric, gravity and seismic data to image sub‐basalt sediments offshore the Faroe‐Islands
  publication-title: SEG Technical Program, Expanded Abstracts
– ident: e_1_2_6_27_1
  doi: 10.1190/geo2010-0255.1
– ident: e_1_2_6_3_1
  doi: 10.1515/acgeo-2015-0071
– ident: e_1_2_6_22_1
  doi: 10.1190/1.1443968
– ident: e_1_2_6_8_1
  doi: 10.1029/2003JB002716
– ident: e_1_2_6_26_1
  doi: 10.1111/1365-2478.12205
– ident: e_1_2_6_29_1
  doi: 10.1007/s10712-017-9413-7
– ident: e_1_2_6_4_1
  doi: 10.1007/978-1-4757-0450-1
– ident: e_1_2_6_16_1
  doi: 10.1190/1.3513426
– ident: e_1_2_6_21_1
  doi: 10.1190/geo2011-0154.1
– ident: e_1_2_6_6_1
  doi: 10.1190/geo2014-0056.1
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1365-246X.2006.02923.x
– ident: e_1_2_6_19_1
– ident: e_1_2_6_23_1
  doi: 10.1190/1.1444302
– ident: e_1_2_6_41_1
  doi: 10.1190/geo2015-0147.1
– ident: e_1_2_6_10_1
  doi: 10.1093/gji/ggw413
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-246X.2007.03366.x
– ident: e_1_2_6_42_1
  doi: 10.1029/2012GL051233
– ident: e_1_2_6_36_1
  doi: 10.1016/j.jappgeo.2017.11.014
– ident: e_1_2_6_32_1
  doi: 10.1002/grl.50696
– ident: e_1_2_6_38_1
  doi: 10.1190/geo2015-0457.1
– volume-title: Solution of Ill‐Posed Problems
  year: 1977
  ident: e_1_2_6_40_1
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2478.1996.tb00142.x
– ident: e_1_2_6_20_1
  doi: 10.1190/1.1441501
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-246X.2010.04686.x
– ident: e_1_2_6_28_1
  doi: 10.1111/1365-2478.12060
– ident: e_1_2_6_18_1
  doi: 10.1190/geo2014-0122.1
– volume: 68
  start-page: 1069
  year: 2006
  ident: e_1_2_6_2_1
  article-title: Proterozoic rock suites along South Purulia Shear Zone, Eastern India: evidence for rift – related setting
  publication-title: Journal of the Geological Society of India
– ident: e_1_2_6_11_1
  doi: 10.4133/1.2923578
– ident: e_1_2_6_34_1
  doi: 10.1007/s12594-014-0175-2
– ident: e_1_2_6_37_1
  doi: 10.1190/geo2017-0040.1
– ident: e_1_2_6_7_1
  doi: 10.1029/2003GL017370
– ident: e_1_2_6_24_1
  doi: 10.1190/1.1442403
– ident: e_1_2_6_35_1
  doi: 10.1190/segam2017-17790145.1
SSID ssj0030554
ssj0017384
Score 2.252189
Snippet ABSTRACT Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of...
Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 696
SubjectTerms Algorithms
Apatite
Bearing
Boreholes
Case studies
Clustering
Cooperative inversion
DC resistivity
Density
Direct current
Electrical resistivity
Geologic units
Geology
Geophysical data
Geophysics
Gravity
Gravity data
Inversions
Kaolinite
Magnetite
Mathematical models
Mineral exploration
Petrophysical constraints
Quartz
Quartzite
Rock
Rocks
Uranium
Title 2D cooperative inversion of direct current resistivity and gravity data: A case study of uranium bearing target rock
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2478.12763
https://www.proquest.com/docview/2195430138
Volume 67
WOSCitedRecordID wos000463809100014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-2478
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017384
  issn: 0016-8025
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50VdCDb_FNDh68VNombVJvoq4elkVExVtpXrCo3WVf4L8303TXVRARvCXQJCXJl_mSTL4BOAltzLWjqYHkDm4sEiYQRhVI5LSOqbOg1ZnuU4u32-L5OburvQnxLYzXh5geuCEyqvUaAV7IwQzIvX8W4-Isih1I5mEhdrM3acDC1X3zsTW9SuAUX2L6DMpbeV3mCGV446QW-0Hfnm_1fbVTn-RzlsJWNqi59g9_vw6rNQElF37GbMCcKTdhZUaWcBOWbqpwv-9bMIyviOp2e8brg5NOOfbna6RribeGRHmFJ-L27bheYCwKUpSaYGAjTKMP6jm5IMrZS1Kp2WLhkbORndEbkQ5prlHiPdKJM6cv2_DYvH64vA3qOA1BgRvcIBWaUculKCRjoY6FTEXGE10wo0JhNRfUiijlWoY2RcGxQqSUJsqxryyhWtMdaJTd0uwCcYTCMkVTQ1PBVBoKnoVSmYIl0mpjoz04m4xKrmoRc4yl8ZpPNjPYsTl2bF517B6cTgv0vH7Hz58eToY5r4E8yGNUxKN4neuargb0t2rym7v7KrH_1wIHsOzoWOY93A6hMeyPzBEsqvGwM-gf1_P6A3AH8o8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58oh58i49Vc_DgpdI2aZN6E3VVXBdZdsVbafOARe2K7gr-ezNNd10FEcFbAk1SkpnMl8nkG4AD34RcWZjq5dyqGwuE9oSWGQI5pUJqLWjp071r8GZT3N8n429hHD_EyOGGmlHu16jg6JAe03IXoMW4OApCqyWTMM2sMFkpnz5r1TuN0V0Cp_gU01WQ38oRMwfIwxtGFdsPBvd86--rofpEn-MYtjRC9aX_-P1lWKwgKDlxMrMCE7pYhYUxYsJVmL0oE_6-r0E_PCOy13vWjiGcdIs352EjPUOcPSTScTwRe3LHHQOzUZCsUARTG2EZo1CPyQmR1mKSks8WGw-slewOnkhudc0OSlxMOrEG9WEdOvXz9umlV2Vq8DI84nqxUIwanossZ8xXochjkfBIZUxLXxjFBTUiiLnKfRMj5VgmYkojafFXElGl6AZMFb1CbwKxkMIwSWNNY8Fk7Aue-LnUGYtyo7QJtuBouCyprGjMMZvGYzo8zuDEpjixaTmxW3A4avDsGDx-_rQ2XOe0UuXXNEROPIoXunbockV_6ya9uG2Vhe2_NtiHucv2TSNtXDWvd2DegrPExbvVYKr_MtC7MCPf-t3Xl71KyD8ADmf2fw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFD7opqIP3sW7efDBl0rbpE3q23BOxTFEVHwrbS4w1G7oJvjvzWm6OQURwbcEmqQk-XK-JCffATj0TciVpalezi3cWCC0J7TMkMgpFVJrQcsz3fs273TEw0My-RbG6UOMD9wQGeV6jQDXfWUmUO4ctBgXx0FoUTINdYahZGpQb9607trjuwRO8Smmy6C-lRNmDlCHN4wqtR907vlW31dD9ck-JzlsaYRaS__x-8uwWFFQ0nBzZgWmdLEKCxPChKswe14G_H1fg0HYJLLX62unEE66xZs7YSM9Q5w9JNJpPBG7c8cVA6NRkKxQBEMbYRq9UE9Ig0hrMUmpZ4uFh9ZKdofPJLdYs40S55NOrEF9XIe71tnt6YVXRWrwMtzierFQjBqeiyxnzFehyGOR8EhlTEtfGMUFNSKIucp9E6PkWCZiSiNp-VcSUaXoBtSKXqE3gVhKYZiksaaxYDL2BU_8XOqMRblR2gRbcDwallRWMuYYTeMpHW1nsGNT7Ni07NgtOBoX6DsFj58_3R2Nc1pB-TUNUROP4oWubboc0d-qSc-vb8rE9l8LHMDcdbOVti87Vzswb7lZ4tzddqE2eBnqPZiRb4Pu68t-Ncc_AKP99fo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2D+cooperative+inversion+of+direct+current+resistivity+and+gravity+data%3A+A+case+study+of+uranium+bearing+target+rock&rft.jtitle=Geophysical+Prospecting&rft.au=Singh%2C+Anand&rft.au=Mishra%2C+Pankaj+K.&rft.au=Sharma%2C+S.P.&rft.date=2019-03-01&rft.issn=0016-8025&rft.eissn=1365-2478&rft.volume=67&rft.issue=3&rft.spage=696&rft.epage=708&rft_id=info:doi/10.1111%2F1365-2478.12763&rft.externalDBID=10.1111%252F1365-2478.12763&rft.externalDocID=GPR12763
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-8025&client=summon