Efficient Local Computation of Differential Bisimulations via Coupling and Up-to Methods
We introduce polynomial couplings, a generalization of probabilistic couplings, to develop an algorithm for the computation of equivalence relations which can be interpreted as a lifting of probabilistic bisimulation to polynomial differential equations, a ubiquitous model of dynamical systems acros...
Uložené v:
| Vydané v: | Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
29.06.2021
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We introduce polynomial couplings, a generalization of probabilistic couplings, to develop an algorithm for the computation of equivalence relations which can be interpreted as a lifting of probabilistic bisimulation to polynomial differential equations, a ubiquitous model of dynamical systems across science and engineering. The algorithm enjoys polynomial time complexity and complements classical partition-refinement approaches because: (a) it implements a local exploration of the system, possibly yielding equivalences that do not necessarily involve the inspection of the whole system of differential equations; (b) it can be enhanced by up-to techniques; and (c) it allows the specification of pairs which ought not be included in the output. Using a prototype, these advantages are demonstrated on case studies from systems biology for applications to model reduction and comparison. Notably, we report four orders of magnitude smaller runtimes than partition-refinement approaches when disproving equivalences between Markov chains. |
|---|---|
| DOI: | 10.1109/LICS52264.2021.9470555 |