Decidability and Complexity in Weakening and Contraction Hypersequent Substructural Logics

We establish decidability for the infinitely many axiomatic extensions of the commutative Full Lambek logic with weakening FL ew (i.e. IMALLW) that have a cut-free hypersequent proof calculus. Specifically: every analytic structural rule extension of HFL ew . Decidability for the corresponding exten...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autoři: Balasubramanian, A. R., Lang, Timo, Ramanayake, Revantha
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We establish decidability for the infinitely many axiomatic extensions of the commutative Full Lambek logic with weakening FL ew (i.e. IMALLW) that have a cut-free hypersequent proof calculus. Specifically: every analytic structural rule extension of HFL ew . Decidability for the corresponding extensions of its contraction counterpart FL ec was established recently but their computational complexity was left unanswered. In the second part of this paper, we introduce just enough on length functions for well-quasi-orderings and the fast-growing complexity classes to obtain complexity upper bounds for both the weakening and contraction extensions. A specific instance of this result yields the first complexity bound for the prominent fuzzy logic MTL (monoidal t-norm based logic) providing an answer to a longstanding open problem.
DOI:10.1109/LICS52264.2021.9470733