Comonadic semantics for guarded fragments

In previous work ([1], [2], [3]), it has been shown how a range of model comparison games which play a central role in finite model theory, including Ehrenfeucht-Fraïssé, pebbling, and bisimulation games, can be captured in terms of resource-indexed comonads on the category of relational structures....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science s. 1 - 13
Hlavní autoři: Abramsky, Samson, Marsden, Dan
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 29.06.2021
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In previous work ([1], [2], [3]), it has been shown how a range of model comparison games which play a central role in finite model theory, including Ehrenfeucht-Fraïssé, pebbling, and bisimulation games, can be captured in terms of resource-indexed comonads on the category of relational structures. Moreover, the coalgebras for these comonads capture important combinatorial parameters such as tree-width and tree-depth.The present paper extends this analysis to quantifier-guarded fragments of first-order logic. We give a systematic account, covering atomic, loose and clique guards. In each case, we show that coKleisli morphisms capture winning strategies for Duplicator in the existential guarded bisimulation game, while back-and-forth bisimulation, and hence equivalence in the full guarded fragment, is captured by spans of open morphisms. We study the coalgebras for these comonads, and show that they correspond to guarded tree decompositions. We relate these constructions to a syntax-free setting, with a comonad on the category of hypergraphs.
DOI:10.1109/LICS52264.2021.9470594