LEFT GLOBAL DIMENSIONS AND INVERSE POLYNOMIAL MODULES
We prove the fact l. gl. dimR[x] = (l. gl. dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l. gl. dimR[x] = (l. gl. dimR)+1 is using polynomial modules and projective dimensions.
Saved in:
| Published in: | International Journal of Mathematics and Mathematical Sciences Vol. 2000; no. 7; pp. a437 - 440-156 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hindawi Limiteds
01.01.2000
Wiley |
| Subjects: | |
| ISSN: | 0161-1712, 1687-0425 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We prove the fact l. gl. dimR[x] = (l. gl. dimR)+1, where l.gl.dim means the left global dimension by using inverse polynomial modules and injective dimensions. The classical way to prove the fact l. gl. dimR[x] = (l. gl. dimR)+1 is using polynomial modules and projective dimensions. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0161-1712 1687-0425 |
| DOI: | 10.1155/S0161171200004129 |