Lattice QCD with domain decomposition on Intel® Xeon Phi™ co-processors

The gap between the cost of moving data and the cost of computing continues to grow, making it ever harder to design iterative solvers on extreme-scale architectures. This problem can be alleviated by alternative algorithms that reduce the amount of data movement. We investigate this in the context...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis s. 69 - 80
Hlavní autori: Heybrock, Simon, Joó, Bálint, Kalamkar, Dhiraj D., Smelyanskiy, Mikhail, Vaidyanathan, Karthikeyan, Wettig, Tilo, Dubey, Pradeep
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Piscataway, NJ, USA IEEE Press 16.11.2014
IEEE
Edícia:ACM Conferences
Predmet:
ISBN:1479955000, 9781479955008
ISSN:2167-4329
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The gap between the cost of moving data and the cost of computing continues to grow, making it ever harder to design iterative solvers on extreme-scale architectures. This problem can be alleviated by alternative algorithms that reduce the amount of data movement. We investigate this in the context of Lattice Quantum Chromodynamics and implement such an alternative solver algorithm, based on domain decomposition, on Intel® Xeon Phi™ co-processor (KNC) clusters. We demonstrate close-to-linear on-chip scaling to all 60 cores of the KNC. With a mix of single- and half-precision the domain-decomposition method sustains 400-500 Gflop/s per chip. Compared to an optimized KNC implementation of a standard solver [1], our full multi-node domain-decomposition solver strong-scales to more nodes and reduces the time-to-solution by a factor of 5.
ISBN:1479955000
9781479955008
ISSN:2167-4329
DOI:10.1109/SC.2014.11