Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program Transformations

Metamorphic testing is a well-established testing technique that has been successfully applied in various domains, including testing deep learning models to assess their robustness against data noise or malicious input. Currently, metamorphic testing approaches for machine learning (ML) models focus...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/ACM International Conference on Automated Software Engineering : [proceedings] s. 1377 - 1381
Hlavní autori: Applis, Leonhard, Panichella, Annibale, van Deursen, Arie
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2021
Predmet:
ISSN:2643-1572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Metamorphic testing is a well-established testing technique that has been successfully applied in various domains, including testing deep learning models to assess their robustness against data noise or malicious input. Currently, metamorphic testing approaches for machine learning (ML) models focused on image processing and object recognition tasks. Hence, these approaches cannot be applied to ML targeting program analysis tasks. In this paper, we extend metamorphic testing approaches for ML models targeting software programs. We present LAMPION, a novel testing framework that applies (semantics preserving) metamorphic transformations on the test datasets. LAMPION produces new code snippets equivalent to the original test set but different in their identifiers or syntactic structure. We evaluate LAMPION against CodeBERT, a state-of-the-art ML model for Code-To-Text tasks that creates Javadoc summaries for given Java methods. Our results show that simple transformations significantly impact the target model behavior, providing additional information on the models reasoning apart from the classic performance metric.
AbstractList Metamorphic testing is a well-established testing technique that has been successfully applied in various domains, including testing deep learning models to assess their robustness against data noise or malicious input. Currently, metamorphic testing approaches for machine learning (ML) models focused on image processing and object recognition tasks. Hence, these approaches cannot be applied to ML targeting program analysis tasks. In this paper, we extend metamorphic testing approaches for ML models targeting software programs. We present LAMPION, a novel testing framework that applies (semantics preserving) metamorphic transformations on the test datasets. LAMPION produces new code snippets equivalent to the original test set but different in their identifiers or syntactic structure. We evaluate LAMPION against CodeBERT, a state-of-the-art ML model for Code-To-Text tasks that creates Javadoc summaries for given Java methods. Our results show that simple transformations significantly impact the target model behavior, providing additional information on the models reasoning apart from the classic performance metric.
Author Applis, Leonhard
Panichella, Annibale
van Deursen, Arie
Author_xml – sequence: 1
  givenname: Leonhard
  surname: Applis
  fullname: Applis, Leonhard
  email: L.H.Applis@tudelft.nl
  organization: Technische Universiteit,Delft,Netherlands
– sequence: 2
  givenname: Annibale
  surname: Panichella
  fullname: Panichella, Annibale
  email: A.Panichella@tudelft.nl
  organization: Technische Universiteit,Delft,Netherlands
– sequence: 3
  givenname: Arie
  surname: van Deursen
  fullname: van Deursen, Arie
  email: Arie.vanDeursen@tudelft.nl
  organization: Technische Universiteit,Delft,Netherlands
BookMark eNo9UN1KwzAYjaLgNvcEIuQFWvOf9rKOTYUORXs_vjTpLKzJSLqLvb1FhzfncH6-7-LM0Y0P3iH0SElOKSmfqq-1pJKJnBFG81LpQhN1heZUKSkI55pfoxlTgmdUanaHlin1hoiiEEKXaoagSslNnt_jz2BOafSTwqHD2zp7huQs_ohhH2HAlYfDOfUJNyEcEj793mzdCEOIx---_S82EXzqQhxg7INP9-i2g0NyywsvULNZN6vXrH5_eVtVdQacizFTAILxru0048ZNaCnlpDVOSSgKapThWlvTCasLq8oJpNJaWmnaKWd8gR7-3vbOud0x9gPE8-4yCP8B_NZY5A
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
DOI 10.1109/ASE51524.2021.9678706
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1665403373
9781665403375
EISSN 2643-1572
EndPage 1381
ExternalDocumentID 9678706
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
AAWTH
ABLEC
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
ESBDL
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a334t-6aa423fcf723bef72d1130cbe65a881b6b377dbf4d78d6978d56775d5bca8823
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779309000164&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Aug 27 02:40:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a334t-6aa423fcf723bef72d1130cbe65a881b6b377dbf4d78d6978d56775d5bca8823
OpenAccessLink https://ieeexplore.ieee.org/document/9678706
PageCount 5
ParticipantIDs ieee_primary_9678706
PublicationCentury 2000
PublicationDate 2021-Nov.
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-Nov.
PublicationDecade 2020
PublicationTitle IEEE/ACM International Conference on Automated Software Engineering : [proceedings]
PublicationTitleAbbrev ASE
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib048844796
ssj0051577
Score 2.3766448
Snippet Metamorphic testing is a well-established testing technique that has been successfully applied in various domains, including testing deep learning models to...
SourceID ieee
SourceType Publisher
StartPage 1377
SubjectTerms documentation-generation
Java
machine learning in software engineering
Measurement
metamorphic testing
Robustness
Semantics
Software
Statistical analysis
Syntactics
Title Assessing Robustness of ML-Based Program Analysis Tools using Metamorphic Program Transformations
URI https://ieeexplore.ieee.org/document/9678706
WOSCitedRecordID wos000779309000164&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED61FQNTgRbxlgdG0jaJ7UtGQK0YaFVBhm6Vn1IlaFCb8Puxk7SAxMISWY5jRb6zv7N93x3ALWWorEEb2ISqgDqbPhCh9eQcjlwwI5kRVbIJnM2SxSKdt-Buz4UxxlTOZ2bgi9Vdvs5V6Y_Khin36sXb0EbkNVdrpztODymtQsfVq7CDacSGsROO0uH969hVRf4UJQoHTUe_MqpUgDLp_u9XjqD_zcwj8z3mHEPLrE-gu0vNQJqZ2gNRX-a6NuQll-W28CsayS2ZPgcPDri078U7ZpFdVBKS5fnblpTVN1NTiPfciWCl9g2zHyauU9U-ZJNx9vgUNNkUAhHHtAi4EM50sspiFEvjnjp0-KWk4UwkznjlMkbU3m8PE83d5lIzjsg0k8q9j-JT6KzztTkDEmkTW65FpGVEZaxFSuVIp9rZdlYlDM-h5wds-VHHy1g2Y3Xxd_UlHHqZ1Py-K-gUm9Jcw4H6LFbbzU0l5C8ge6my
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggRTgRbxxgMj6cPxIxkBtSqirSrI0K3yU6oEDWoTfj92khaQWFgiy3GsyHf2d7bvuwO4JZQra7gNbERUQJxNH4ie9eQcxpmgRlIjimQTfDKJZrN4WoO7LRfGGFM4n5m2LxZ3-TpVuT8q68TMqxfbgV1KCO6WbK2N9jhNJKQIHleuww6oOa84O71u3Ll_7bsq7M9RcK9ddfUrp0oBKYPG_37mEFrf3Dw03aLOEdTM8hgam-QMqJqrTRDlda5rg15Sma8zv6ah1KLxKHhw0KV9L941C23ikqAkTd_WKC--GZtMvKdOCAu1bZj8MHKdsrYgGfSTx2FQ5VMIRBiSLGBCOOPJKstxKI176p5DMCUNoyJy5iuTIefae-7xSDO3vdSUcU41lcq9x-EJ1Jfp0pwCwtqElmmBtcREhlrERHZ1rJ11Z1VE-Rk0_YDNP8qIGfNqrM7_rr6B_WEyHs1HT5PnCzjw8inZfpdQz1a5uYI99Zkt1qvrQuBfIJ-s-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%3A+%5Bproceedings%5D&rft.atitle=Assessing+Robustness+of+ML-Based+Program+Analysis+Tools+using+Metamorphic+Program+Transformations&rft.au=Applis%2C+Leonhard&rft.au=Panichella%2C+Annibale&rft.au=van+Deursen%2C+Arie&rft.date=2021-11-01&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1377&rft.epage=1381&rft_id=info:doi/10.1109%2FASE51524.2021.9678706&rft.externalDocID=9678706