Cyber Security 18th China Annual Conference, CNCERT 2021, Beijing, China, July 20-21, 2021, Revised Selected Papers

This open access book constitutes the refereed proceedings of the 17th International Annual Conference on Cyber Security, CNCERT 2021, held in Beijing, China, in AJuly 2021. The 14 papers presented were carefully reviewed and selected from 51 submissions. The papers are organized according to the fo...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autoři: Lu, Wei, Zhang, Yuqing, Wen, Weiping, Yan, Hanbing, Li, Chao
Médium: E-kniha
Jazyk:angličtina
Vydáno: Singapore Springer Nature 2022
Springer
author funded
Vydání:1
Edice:Communications in Computer and Information Science
Témata:
ISBN:9811692297, 9789811692291, 9811692289, 9789811692284
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Obsah:
  • 1 Introduction -- 2 Principles of Machine Learning Algorithms -- 2.1 Naive Bayes -- 2.2 Supporting Vector Machine (SVM) -- 2.3 Decision Tree -- 2.4 KNN (K-Nearest Neighbor) -- 2.5 Random Forest -- 2.6 Neural Network -- 3 Comparative Study of the Machine Learning Algorithms -- 4 Conclusion -- References -- Author Index
  • Intro -- Preface -- Organization -- Contents -- Data Security -- A Robust and Adaptive Watermarking Technique for Relational Database -- 1 Introduction -- 2 Related Work -- 3 Scheme -- 3.1 Pre-processing Stage -- 3.2 Data Type Adaptation -- 3.3 Data Volume Evaluation -- 3.4 Data Column Sensitivity Judgment -- 3.5 Automatic Parameter Setting -- 3.6 Watermark Embedding Stage -- 3.7 Watermark Extraction Stage -- 3.8 Result Visualization Mechanism -- 4 Experimental Analysis -- 4.1 Invisibility Analysis Experiments -- 4.2 Precision Control Analysis Experiment -- 4.3 Watermark Robustness Ability Comparison Experiment -- 5 Summary -- References -- A Privacy-Preserving Medical Data Traceability System Based on Attribute-Based Encryption on Blockchain -- 1 Introduction -- 2 Related Work -- 2.1 Blockchain Technology -- 2.2 Reversible Data Desensitization -- 2.3 Attribute-Based Encryption Technology -- 3 System Model -- 3.1 Reversible Data Desensitization -- 3.2 Access Control Based on Attributes -- 4 Scheme -- 5 Performance and Safety Analysis -- 6 Summary -- References -- Privacy Protection -- Analysis of Address Linkability in Tornado Cash on Ethereum -- 1 Introduction -- 2 Related Work -- 3 Preliminaries -- 3.1 Basics of Tornado Cash -- 3.2 Coin Mixing Process in Tornado Cash -- 4 Analysis of Tornado Cash -- 4.1 Definitions -- 4.2 Data Acquisition -- 4.3 Transaction Patterns -- 5 Heuristic Cluster Rules -- 5.1 Heuristics -- 5.2 Evaluation -- 6 Conclusion and Future Work -- References -- FPFlow: Detect and Prevent Browser Fingerprinting with Dynamic Taint Analysis -- 1 Introduction -- 2 Related Work -- 3 Motivation -- 4 Technique Approach -- 4.1 Overview -- 4.2 Taint Source and Taint Sink -- 4.3 Taint Table and Taint Name Table -- 4.4 Taint Propagation -- 4.5 Logging -- 5 Evaluation -- 5.1 Experimental Setup -- 5.2 Large Scale Experiment Result
  • 4.2 Stage 1 - Normal SMS Filter -- 4.3 Stage 2 - Fraud SMS Classification -- 5 Experiments -- 5.1 Dataset and Experiments Setting -- 5.2 Comparison of Different Algorithms -- 5.3 Ablation Experiment -- 6 Conclusion -- References -- Vulnerability Detection -- Research Towards Key Issues of API Security -- 1 Introduction -- 2 API Asset Discovery Based on Traffic -- 3 API Vulnerability Detection Method -- 3.1 API Security Audit Based on Data Flow Tracing -- 3.2 Finite State Machine Model of Interaction by API -- 3.3 Demonstration -- 3.4 Relationship Between FSM Testing and Data Flow Taint Analysis -- 4 API Security Audit System Based on Traffic -- 4.1 Research Ideas -- 4.2 System Framework Design -- 4.3 Key Techniques -- 5 Opportunities and Challenges -- 6 Conclusion -- References -- Smart Contract Vulnerability Detection Based on Symbolic Execution Technology -- 1 Introduction -- 2 Related Work -- 3 Background -- 3.1 Reentrancy Vulnerability -- 3.2 Integer Overflow Vulnerability -- 3.3 Unchecked Call Return Value Vulnerability -- 4 Vulnerability Detection Methods -- 4.1 Control Flow Generation -- 4.2 Symbolic Execution -- 4.3 Vulnerability Detection -- 4.4 Constraint Solving -- 5 Evalution -- 6 Conclusion -- References -- Text Classification -- A Multi-task Text Classification Model Based on Label Embedding Learning -- 1 Introduction -- 2 Related Work and Background -- 2.1 Text Classification -- 2.2 Attention Mechanism -- 3 Methodology of Text Classification Model -- 3.1 Framework Overview -- 3.2 Problem Statement -- 3.3 Attention Learning on Word Embedding -- 3.4 Attention Learning on Modified TF-IDF Matrix -- 4 Experiment Evaluation -- 4.1 Dataset and Parameter Settings -- 4.2 Experiment Result -- 4.3 Text Classification Visualization Analysis -- 5 Conclusion -- References -- A Review of Machine Learning Algorithms for Text Classification
  • 5.3 Evaluate the Accuracy of Taint Analysis -- 5.4 Fingerprinting Prevention -- 6 Discussion -- 7 Conclusion -- References -- Anomaly Detection -- Deep Learning Based Anomaly Detection for Muti-dimensional Time Series: A Survey -- 1 Introduction -- 2 Challenge -- 2.1 Dimensional Explosion -- 2.2 Concept Drift -- 2.3 Complex Semantics -- 2.4 Data Sparse -- 2.5 Poor Scalability -- 2.6 Summary -- 3 Rule-Based Anomaly Detection Algorithm -- 4 Anomaly Detection Algorithm Based on Machine Learning -- 4.1 Clustering-Based Method -- 4.2 Classification-Based Method -- 4.3 Method-Based Prediction -- 5 Anomaly Detection Algorithm Based on Deep Learning -- 5.1 Method-Based Regression -- 5.2 Method-Based Dimension Reduction -- 6 Summary -- References -- ExitSniffer: Towards Comprehensive Security Analysis of Anomalous Binding Relationship of Exit Routers -- 1 Introduction -- 2 Related Work -- 3 The Design of ExitSniffer and Phenomenon -- 3.1 The Design of ExitSniffer -- 3.2 Dataset -- 4 Experimental Analysis -- 4.1 The Size of the Malicious Exit Nodes -- 4.2 Bandwidth Ratio of MENP Nodes -- 4.3 Behavior Exploration of MENP Nodes -- 4.4 The co-owner Relationship of the Malicious Exit Node -- 5 Conclusion -- References -- Traffic Analysis -- Efficient Classification of Darknet Access Activity with Partial Traffic -- 1 Introduction -- 2 Background -- 2.1 Tor -- 2.2 Hidden Service Components -- 2.3 Threat Model -- 3 Data Collection and Processing -- 3.1 Data Collection -- 3.2 Data Extraction and Processing -- 4 Evaluation and Discussion -- 4.1 Position Distribution Observation -- 4.2 Comparison of Different Classification Methods -- 4.3 Classification with Partial Cell Fragment -- 5 Related Work -- 6 Conclusion -- References -- Research and Application of Security Situation Awareness Platform for Large Enterprises -- 1 Introduction
  • 2 General Status and Problems of Information Security in Large Enterprises -- 2.1 General Situation of Information Security in Large Enterprises -- 2.2 Analysis of Information Security Situation of Large Enterprises -- 2.3 Analysis of Information Security Problems in Large Enterprises -- 3 Status and Role of Security Situation Awareness Platform -- 3.1 Relationship Between Security Situation Awareness Platform and Security Management System -- 3.2 Main Functions of Security Situation Awareness Platform -- 4 Technology Implementation Scheme and Evolution Route of Security Situation Awareness Platform -- 4.1 Platform Structure -- 4.2 Main Capabilities of Network Security Situation Awareness Technology -- 4.3 Platform Evolution Route -- 5 Problems Needing Attention -- 5.1 Organization Mechanism Guarantee, Forming a Virtuous Circle -- 5.2 Devops Guarantee -- 5.3 Institutional Constraints to Reduce Employee Risk -- 5.4 Persevere and Introduce Ecology (Good Partner) -- 6 Conclusion -- References -- Social Network Security -- Research on the Relationship Between Chinese Nicknames and Accounts in Social Networks -- 1 Introduction -- 2 Related Work -- 2.1 Research Status -- 2.2 Existing Problem -- 2.3 Research Opportunities -- 3 Data Collection and Implementation -- 3.1 Information Acquisition and Integration Analysis -- 3.2 Acquisition Module Design and Implementation -- 4 Data Collection and Implementation -- 4.1 Universal Feature -- 4.2 Feature Selection -- 5 Algorithm Design -- 5.1 Jaro Distance -- 5.2 Jaro-Winkler Distance -- 5.3 Text Algorithm -- 6 Experiment and Analysis -- 6.1 Data Description -- 6.2 Index Evaluation -- 6.3 Comparison of Methods -- 7 Conclusion -- References -- TFC: Defending Against SMS Fraud via a Two-Stage Algorithm -- 1 Introduction -- 2 Related Work -- 3 Measurement Analysis -- 4 Algorithm Design -- 4.1 Model Overview