A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice

Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging. Here we present multimodalityMagnetic Particle Imaging (MPI), Magnetic Resonance Imaging (MRI), Photoacoustic, Fluorescentnanoparticles (term...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano Jg. 13; H. 7; S. 7750 - 7758
Hauptverfasser: Song, Guosheng, Zheng, Xianchuang, Wang, Youjuan, Xia, Xin, Chu, Steven, Rao, Jianghong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States American Chemical Society 23.07.2019
Schlagworte:
ISSN:1936-0851, 1936-086X, 1936-086X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging. Here we present multimodalityMagnetic Particle Imaging (MPI), Magnetic Resonance Imaging (MRI), Photoacoustic, Fluorescentnanoparticles (termed MMPF NPs) for imaging tumor xenografts in living mice. MMPF NPs provide long-term (more than 2 months), dynamic, and accurate quantification, in vivo, of NPs and in real time by MPI. Moreover, MMPF NPs offer ultrasensitive MPI imaging of tumors (the tumor ROI increased by 30.6 times over that of preinjection). Moreover, the nanoparticle possessed a long-term blood circulation time (half-life at 49 h) and high tumor uptake (18% ID/g). MMPF NPs have been demonstrated for imaging breast and brain tumor xenografts in both subcutaneous and orthotopic models in mice via simultaneous MPI, MRI, fluorescence, and photoacoustic imaging with excellent tumor contrast to normal tissues.
AbstractList Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging. Here we present multimodality-Magnetic Particle Imaging (MPI), Magnetic Resonance Imaging (MRI), Photoacoustic, Fluorescent-nanoparticles (termed MMPF NPs) for imaging tumor xenografts in living mice. MMPF NPs provide long-term (more than 2 months), dynamic, and accurate quantification, in vivo, of NPs and in real time by MPI. Moreover, MMPF NPs offer ultrasensitive MPI imaging of tumors (the tumor ROI increased by 30.6 times over that of preinjection). Moreover, the nanoparticle possessed a long-term blood circulation time (half-life at 49 h) and high tumor uptake (18% ID/g). MMPF NPs have been demonstrated for imaging breast and brain tumor xenografts in both subcutaneous and orthotopic models in mice via simultaneous MPI, MRI, fluorescence, and photoacoustic imaging with excellent tumor contrast to normal tissues.Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging. Here we present multimodality-Magnetic Particle Imaging (MPI), Magnetic Resonance Imaging (MRI), Photoacoustic, Fluorescent-nanoparticles (termed MMPF NPs) for imaging tumor xenografts in living mice. MMPF NPs provide long-term (more than 2 months), dynamic, and accurate quantification, in vivo, of NPs and in real time by MPI. Moreover, MMPF NPs offer ultrasensitive MPI imaging of tumors (the tumor ROI increased by 30.6 times over that of preinjection). Moreover, the nanoparticle possessed a long-term blood circulation time (half-life at 49 h) and high tumor uptake (18% ID/g). MMPF NPs have been demonstrated for imaging breast and brain tumor xenografts in both subcutaneous and orthotopic models in mice via simultaneous MPI, MRI, fluorescence, and photoacoustic imaging with excellent tumor contrast to normal tissues.
Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging. Here we present multimodality-Magnetic Particle Imaging (MPI), Magnetic Resonance Imaging (MRI), Photoacoustic, Fluorescent-nanoparticles (termed MMPF NPs) for imaging tumor xenografts in living mice. MMPF NPs provide long-term (more than 2 months), dynamic, and accurate quantification, , of NPs and in real time by MPI. Moreover, MMPF NPs offer ultrasensitive MPI imaging of tumors (the tumor ROI increased by 30.6 times over that of preinjection). Moreover, the nanoparticle possessed a long-term blood circulation time (half-life at 49 h) and high tumor uptake (18% ID/g). MMPF NPs have been demonstrated for imaging breast and brain tumor xenografts in both subcutaneous and orthotopic models in mice via simultaneous MPI, MRI, fluorescence, and photoacoustic imaging with excellent tumor contrast to normal tissues.
Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging. Here we present multimodalityMagnetic Particle Imaging (MPI), Magnetic Resonance Imaging (MRI), Photoacoustic, Fluorescentnanoparticles (termed MMPF NPs) for imaging tumor xenografts in living mice. MMPF NPs provide long-term (more than 2 months), dynamic, and accurate quantification, in vivo, of NPs and in real time by MPI. Moreover, MMPF NPs offer ultrasensitive MPI imaging of tumors (the tumor ROI increased by 30.6 times over that of preinjection). Moreover, the nanoparticle possessed a long-term blood circulation time (half-life at 49 h) and high tumor uptake (18% ID/g). MMPF NPs have been demonstrated for imaging breast and brain tumor xenografts in both subcutaneous and orthotopic models in mice via simultaneous MPI, MRI, fluorescence, and photoacoustic imaging with excellent tumor contrast to normal tissues.
Author Wang, Youjuan
Chu, Steven
Zheng, Xianchuang
Rao, Jianghong
Song, Guosheng
Xia, Xin
AuthorAffiliation State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering
Departments of Physics and Molecular & Cellular Physiology
Molecular Imaging Program at Stanford, Department of Radiology
AuthorAffiliation_xml – name: Departments of Physics and Molecular & Cellular Physiology
– name: Molecular Imaging Program at Stanford, Department of Radiology
– name: State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering
Author_xml – sequence: 1
  givenname: Guosheng
  orcidid: 0000-0001-5628-6245
  surname: Song
  fullname: Song, Guosheng
  organization: Molecular Imaging Program at Stanford, Department of Radiology
– sequence: 2
  givenname: Xianchuang
  surname: Zheng
  fullname: Zheng, Xianchuang
  organization: Molecular Imaging Program at Stanford, Department of Radiology
– sequence: 3
  givenname: Youjuan
  surname: Wang
  fullname: Wang, Youjuan
  organization: State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering
– sequence: 4
  givenname: Xin
  surname: Xia
  fullname: Xia, Xin
  organization: State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering
– sequence: 5
  givenname: Steven
  surname: Chu
  fullname: Chu, Steven
  organization: Departments of Physics and Molecular & Cellular Physiology
– sequence: 6
  givenname: Jianghong
  orcidid: 0000-0002-5143-9529
  surname: Rao
  fullname: Rao, Jianghong
  email: jrao@stanford.edu
  organization: Molecular Imaging Program at Stanford, Department of Radiology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31244043$$D View this record in MEDLINE/PubMed
BookMark eNp9kL1PwzAQxS1URD9gZkMekVBaO06ceKwqPopauhSJLXIcp3KV2MV2hv73GDV0QILl7nT3e0-6NwYDbbQE4BajKUYxnnHhNNdmykqEE0IvwAgzQiOU04_BeU7xEIyd2yOUZnlGr8CQ4DhJUEJG4HUO13ynpTfR5uCV4A18C4aHhvva2BaGAtdd41VrKt4of4TLlu-U3kFTw23XGuug0nCthLwGlzVvnLzp-wS8Pz1uFy_RavO8XMxXESeE-CiTFa1ozWImKlHSvEKClVQmGDFe12WclizhZcZSxrGMBUJxVldhxcqcYJJmZALuT74Haz476XzRKidk03AtTeeKOE5ykuU0owG969GubGVVHKxquT0WP_8HYHYChDXOWVmfEYyK74SLPuGiTzgo0l8KoTz3ymhvuWr-0T2cdOFQ7E1ndcjoT_oLntWP_w
CitedBy_id crossref_primary_10_2217_nnm_2021_0010
crossref_primary_10_1002_adfm_202101278
crossref_primary_10_1002_adhm_202401749
crossref_primary_10_1007_s00259_022_06056_5
crossref_primary_10_1002_wnan_1865
crossref_primary_10_1109_MNANO_2021_3081758
crossref_primary_10_1039_D2BM01572B
crossref_primary_10_3389_fchem_2020_00561
crossref_primary_10_1002_anie_202209512
crossref_primary_10_1016_j_bbrc_2022_04_143
crossref_primary_10_1039_D2NR01897G
crossref_primary_10_3390_mi15050559
crossref_primary_10_1039_D3QM00523B
crossref_primary_10_1038_s41551_024_01274_8
crossref_primary_10_1002_smll_202206272
crossref_primary_10_1016_j_compbiomed_2024_109043
crossref_primary_10_1002_ange_202310975
crossref_primary_10_1002_adma_202409117
crossref_primary_10_1021_jacs_5c10319
crossref_primary_10_1002_smll_202203678
crossref_primary_10_1016_j_jconrel_2025_113871
crossref_primary_10_1126_sciadv_adv2485
crossref_primary_10_1016_j_nano_2020_102335
crossref_primary_10_3390_diagnostics10100800
crossref_primary_10_1007_s11307_022_01770_w
crossref_primary_10_1016_j_chempr_2022_03_009
crossref_primary_10_1038_s41551_024_01286_4
crossref_primary_10_1002_anie_202310975
crossref_primary_10_1186_s40779_025_00603_5
crossref_primary_10_3390_bios13040494
crossref_primary_10_1186_s42492_022_00120_5
crossref_primary_10_1002_advs_202300854
crossref_primary_10_3390_polym12061397
crossref_primary_10_1186_s12951_021_00870_z
crossref_primary_10_1002_EXP_20240037
crossref_primary_10_1016_j_snb_2019_126853
crossref_primary_10_1016_j_scib_2023_12_036
crossref_primary_10_1016_j_cej_2024_157554
crossref_primary_10_1016_j_addr_2022_114447
crossref_primary_10_1016_j_ccr_2021_213978
crossref_primary_10_1016_j_jconrel_2023_02_038
crossref_primary_10_1039_D1NR03260G
crossref_primary_10_1016_j_cej_2023_148472
crossref_primary_10_3390_nano14231964
crossref_primary_10_1002_adfm_202011284
crossref_primary_10_1039_D2NR02059A
crossref_primary_10_3389_fphar_2019_01573
crossref_primary_10_1007_s00259_024_06617_w
crossref_primary_10_1016_j_chempr_2020_06_024
crossref_primary_10_1002_advs_202300462
crossref_primary_10_3389_fbioe_2021_746815
crossref_primary_10_1007_s00259_021_05207_4
crossref_primary_10_1039_C9NR09788K
crossref_primary_10_1186_s12951_021_00866_9
crossref_primary_10_1039_D1NR08394E
crossref_primary_10_1002_advs_202202384
crossref_primary_10_1002_ange_202209512
crossref_primary_10_3390_nano12030428
crossref_primary_10_1016_j_mtphys_2023_101003
crossref_primary_10_1016_j_bioactmat_2023_04_025
crossref_primary_10_1002_adhm_202401060
crossref_primary_10_1002_wnan_1929
crossref_primary_10_1016_j_biomaterials_2020_119771
crossref_primary_10_1093_rb_rbaf054
crossref_primary_10_1186_s12951_021_00922_4
crossref_primary_10_1016_j_nantod_2023_101931
crossref_primary_10_1063_5_0041054
crossref_primary_10_1016_j_cclet_2021_12_080
crossref_primary_10_1088_1361_6560_acaf47
crossref_primary_10_1016_j_ebiom_2022_104040
crossref_primary_10_1002_adma_202306450
crossref_primary_10_1039_D1NR05670K
Cites_doi 10.1038/nrc3958
10.1002/mrm.21795
10.1038/natrevmats.2017.14
10.1088/1361-6560/aa52ad
10.1007/s11307-018-1276-x
10.1515/iss-2018-2026
10.1016/j.addr.2013.09.006
10.1021/cr068445e
10.1002/smll.201502309
10.1021/acs.chemrev.5b00112
10.1016/j.biomaterials.2011.10.077
10.1021/acs.jpclett.5b00610
10.1002/adma.201808166
10.1515/cdbme-2018-0066
10.1038/s41551-016-0010
10.1021/acsnano.8b00893
10.1038/nrcardio.2017.47
10.1016/j.biomaterials.2018.05.048
10.1088/1361-6560/aa616c
10.1073/pnas.1701976114
10.1038/nrclinonc.2014.134
10.1002/adma.201200221
10.1021/acs.nanolett.7b03829
10.1021/nn3046055
10.1038/srep14055
10.1021/acsnano.7b04844
10.1016/j.biomaterials.2017.11.025
10.1038/s41571-018-0123-y
10.1021/cr900351r
10.1021/acs.chemrev.5b00687
10.2967/jnumed.108.051243
10.1088/1361-6560/aa6c99
10.1016/j.nano.2011.10.013
10.1021/acsanm.8b00063
10.1021/acs.nanolett.6b04865
10.1039/C7CS00862G
10.1021/acs.chemrev.6b00525
10.1002/adma.201604381
10.1038/nm.2721
10.1039/C8CS00001H
10.1021/acs.chemrev.6b00073
10.1038/nature03808
10.1016/j.addr.2018.12.007
10.7150/thno.3666
10.1021/acsnano.7b05784
10.7150/thno.27454
10.1039/C7NR05502A
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.9b01436
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 7758
ExternalDocumentID 31244043
10_1021_acsnano_9b01436
f03804987
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U54 CA199075
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a333t-7ed6d6f929cdcb68d0c9b6e4109affb25b94ab7959a1e2c0027fd94a9b8313573
IEDL.DBID ACS
ISICitedReferencesCount 135
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000477786400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Thu Jul 10 20:56:51 EDT 2025
Thu Jan 02 22:58:46 EST 2025
Sat Nov 29 02:50:23 EST 2025
Tue Nov 18 22:24:52 EST 2025
Thu Aug 27 13:44:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords multimodality imaging
tumor imaging
iron oxide nanoparticles
semiconducting polymers
magnetic particle imaging
long blood circulation
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-7ed6d6f929cdcb68d0c9b6e4109affb25b94ab7959a1e2c0027fd94a9b8313573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5628-6245
0000-0002-5143-9529
PMID 31244043
PQID 2248378676
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2248378676
pubmed_primary_31244043
crossref_primary_10_1021_acsnano_9b01436
crossref_citationtrail_10_1021_acsnano_9b01436
acs_journals_10_1021_acsnano_9b01436
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-07-23
PublicationDateYYYYMMDD 2019-07-23
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref37/cit37
  doi: 10.1038/nrc3958
– ident: ref38/cit38
  doi: 10.1002/mrm.21795
– ident: ref4/cit4
  doi: 10.1038/natrevmats.2017.14
– ident: ref28/cit28
  doi: 10.1088/1361-6560/aa52ad
– ident: ref32/cit32
  doi: 10.1007/s11307-018-1276-x
– ident: ref30/cit30
  doi: 10.1515/iss-2018-2026
– ident: ref43/cit43
  doi: 10.1016/j.addr.2013.09.006
– ident: ref12/cit12
  doi: 10.1021/cr068445e
– ident: ref39/cit39
  doi: 10.1002/smll.201502309
– ident: ref40/cit40
  doi: 10.1021/acs.chemrev.5b00112
– ident: ref41/cit41
  doi: 10.1016/j.biomaterials.2011.10.077
– ident: ref20/cit20
  doi: 10.1021/acs.jpclett.5b00610
– ident: ref36/cit36
  doi: 10.1002/adma.201808166
– ident: ref31/cit31
  doi: 10.1515/cdbme-2018-0066
– ident: ref10/cit10
  doi: 10.1038/s41551-016-0010
– ident: ref25/cit25
  doi: 10.1021/acsnano.8b00893
– ident: ref5/cit5
  doi: 10.1038/nrcardio.2017.47
– ident: ref34/cit34
  doi: 10.1016/j.biomaterials.2018.05.048
– ident: ref29/cit29
  doi: 10.1088/1361-6560/aa616c
– ident: ref3/cit3
  doi: 10.1073/pnas.1701976114
– ident: ref14/cit14
  doi: 10.1038/nrclinonc.2014.134
– ident: ref17/cit17
  doi: 10.1002/adma.201200221
– ident: ref22/cit22
  doi: 10.1021/acs.nanolett.7b03829
– ident: ref44/cit44
  doi: 10.1021/nn3046055
– ident: ref46/cit46
  doi: 10.1038/srep14055
– ident: ref26/cit26
  doi: 10.1021/acsnano.7b04844
– ident: ref47/cit47
  doi: 10.1016/j.biomaterials.2017.11.025
– ident: ref6/cit6
  doi: 10.1038/s41571-018-0123-y
– ident: ref9/cit9
  doi: 10.1021/cr900351r
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.5b00687
– ident: ref42/cit42
  doi: 10.2967/jnumed.108.051243
– ident: ref15/cit15
  doi: 10.1088/1361-6560/aa6c99
– ident: ref45/cit45
  doi: 10.1016/j.nano.2011.10.013
– ident: ref11/cit11
  doi: 10.1021/acsanm.8b00063
– ident: ref27/cit27
  doi: 10.1021/acs.nanolett.6b04865
– ident: ref7/cit7
  doi: 10.1039/C7CS00862G
– ident: ref18/cit18
  doi: 10.1021/acs.chemrev.6b00525
– ident: ref2/cit2
  doi: 10.1002/adma.201604381
– ident: ref8/cit8
  doi: 10.1038/nm.2721
– ident: ref19/cit19
  doi: 10.1039/C8CS00001H
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.6b00073
– ident: ref16/cit16
  doi: 10.1038/nature03808
– ident: ref21/cit21
  doi: 10.1016/j.addr.2018.12.007
– ident: ref23/cit23
  doi: 10.7150/thno.3666
– ident: ref24/cit24
  doi: 10.1021/acsnano.7b05784
– ident: ref33/cit33
  doi: 10.7150/thno.27454
– ident: ref35/cit35
  doi: 10.1039/C7NR05502A
SSID ssj0057876
Score 2.6142714
Snippet Multimodality imaging involves the use of more imaging modes to image the same living subjects and is now generally preferred in clinics for cancer imaging....
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7750
Title A Magneto-Optical Nanoplatform for Multimodality Imaging of Tumors in Mice
URI http://dx.doi.org/10.1021/acsnano.9b01436
https://www.ncbi.nlm.nih.gov/pubmed/31244043
https://www.proquest.com/docview/2248378676
Volume 13
WOSCitedRecordID wos000477786400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVo4QAH9qUslZF64OLS2ImTHKuKChAtSBTUW-QtqFIbV03K92MnadlUCS45RLaVzExmnjPyewA0Yo9xKYiPpO-EyGWOh5hLXeRRIpTVRQlybcDXB7_fD4bD8OmTLPpnBx8710ykCUt0M-SWio5WwDo2INcGc7vzvEi6Nu5o0UA2G2SDIpYsPr8WsGVIpN_L0ApsmdeY7s4_nm4XbJdAErYLz--BNZXsg60v9IIH4L4Ne-wtUZlGj9P8nzU0yVRPxyyzUBWaC8wP4E60zOE4vJvkokVQx3Awn-hZCkcJ7JlccgheujeDzi0qtRMQI4RkyFeSShob8COk4DSQLRFyqlynFbI45tjjocu4FRpnjsLC7k5jaW6FPCAO8XxyBKqJTtQJgI6vOKfY5UQYeOeqQAaMxdh4WIVYKlEDDWOFqIz9NMrb2tiJStNEpWlqoLmweCRK_nErgzFePeFqOWFaUG-sHnq5cGFkPg_b82CJ0vM0MgjFUuZT34w5Lny7XIxYbNNyyenfXuAMbBq0ZI98IUzOQTWbzdUF2BDv2Sid1UHFHwb1PCg_AIHk3Ig
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4BQwIe2IABhW14Eg-8mDVx4sSPFQKVrS2TVhBvkX8FIdGkalL-fs5uWoZQpe0lD5Z9cs5n32ef7juA0zyWymiWUJMEgkYyiKmMeERjzrR1dVFSXxvwrpcMBun9vfi9Au15LgxOokJJlQ_iv7ILBD-wrZBFeS6UY6Tjq_ABxQln2Z2LP_Oz15kfn8WR8Z6MYGJB5vNOgPNGunrrjZZATO9qrj7-_yQ_wXYDK0lnZgc7sGKLXdj6i2xwD352SF8-FLYu6c3Yv2ATPFrL8ZOsHXAl-CE-HXdUGg_OyfXIlzAiZU6G01E5qchjQfp4snyG26vL4UWXNpUUqGSM1TSxhhueIxTSRiuemrYWitsoaAuZ5yqMlYikcmXHZWBD7e6qucEmoVIWsDhh-7BWlIU9BBIkVikeRoppBHuRTU0qZR7ielsRGqtbcIpayJqdUGU-yB0GWaOarFFNC87nis90w0buimI8LR9wthgwnhFxLO_6fb6SGW4WFwGRhS2nVYZ4xRHo8wT7HMyWeCGMOaTTjtjRv_3ACWx0h_1e1rse_DqGTcRRLhmMhuwLrNWTqf0K6_q5fqwm37yFvgBgkOQG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6-ED34fr8i7MFLdNu0aXtcVhef64KreCt5VQS3Lduuv99J2l0UWRAvPYQkpDOTzJcM8w1CjcTnQkkaEBU4EfG44xPuMY_4jEpt6qKEtjbgy33Q7Yavr1GvTgozuTCwiAJmKmwQ3-zqXCU1w4BzAe0pT7PzSBhWOjaL5n1w58a6W-2n8flrTJBVsWS4KwOgmBD6_JrAeCRZ_PRIU2CmdTed1f8tdA2t1PAStyp7WEczOt1Ay99IBzfRbQs_8LdUlxl5zO1LNoYjNss_eGkALIYPtmm5g0xZkI5vBraUEc4S3B8NsmGB31P8ACfMFnruXPXb16SuqEA4pbQkgVZMsQQgkVRSsFA1ZSSY9pxmxJNEuL6IPC5M-XHuaFeaO2uioCkSIXWoH9BtNJdmqd5F2Am0EMz1BJUA-jwdqpDzxAW968hVWu6hBkghrndEEdtgt-vEtWjiWjR76Hws_FjWrOSmOMbH9AFnkwF5RcgxvevpWJsxbBoTCeGpzkZFDLjFEOmzAPrsVGqeTEYN4ml6dP9vP3CCFnuXnfj-pnt3gJYATpmcMOLSQzRXDkf6CC3Iz_K9GB5bI_0Cw8zmgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Magneto-Optical+Nanoplatform+for+Multimodality+Imaging+of+Tumors+in+Mice&rft.jtitle=ACS+nano&rft.au=Song%2C+Guosheng&rft.au=Zheng%2C+Xianchuang&rft.au=Wang%2C+Youjuan&rft.au=Xia%2C+Xin&rft.date=2019-07-23&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=13&rft.issue=7&rft.spage=7750&rft_id=info:doi/10.1021%2Facsnano.9b01436&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon