Flexible Guidance of Microengines by Dynamic Topographical Pathways in Ferrofluids
In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field (H)...
Uloženo v:
| Vydáno v: | ACS nano Ročník 12; číslo 7; s. 6668 - 6676 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
American Chemical Society
24.07.2018
|
| Témata: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field (H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications. |
|---|---|
| AbstractList | In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field (H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications. In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field ( H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications.In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field ( H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications. |
| Author | Jiang, Yuzhou Xu, Leilei Luo, Ming Ma, Huiru Yang, Fan Mou, Fangzhi Guan, Jianguo |
| AuthorAffiliation | State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering |
| AuthorAffiliation_xml | – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering |
| Author_xml | – sequence: 1 givenname: Fan surname: Yang fullname: Yang, Fan – sequence: 2 givenname: Fangzhi orcidid: 0000-0002-9644-8277 surname: Mou fullname: Mou, Fangzhi email: moufz@whut.edu.cn – sequence: 3 givenname: Yuzhou surname: Jiang fullname: Jiang, Yuzhou – sequence: 4 givenname: Ming surname: Luo fullname: Luo, Ming – sequence: 5 givenname: Leilei surname: Xu fullname: Xu, Leilei – sequence: 6 givenname: Huiru surname: Ma fullname: Ma, Huiru – sequence: 7 givenname: Jianguo orcidid: 0000-0002-2223-4524 surname: Guan fullname: Guan, Jianguo email: guanjg@whut.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29906098$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kEFLAzEQRoMoVqtnb5KjINVkk81mj6JWhYoiCt6W2XSikW1Sk120_96V1h4EPc3AvO-Debtk0wePhBxwdsJZxk_BJA8-nOiacaWzDbLDS6FGTKvnzfWe8wHZTemNsbzQhdomg6wsmWKl3iEP4wY_Xd0gvercFLxBGiy9dSYG9C_OY6L1gl4sPMycoY9hHl4izF-dgYbeQ_v6AYtEnadjjDHYpu9Ie2TLQpNwfzWH5Gl8-Xh-PZrcXd2cn01GIIRoR5mQwmZymmuoc4GF5QqZVJxLq21hQWopM2sZl3paoBZGFwVyIwpphAINYkiOlr3zGN47TG01c8lg04DH0KUqY7kSZZ6VokcPV2hXz3BazaObQVxUPx564HQJ9H-nFNGuEc6qb9PVynS1Mt0n8l8J41poXfBtBNf8kzte5vpD9Ra66HtHf9JfxMOSwA |
| CitedBy_id | crossref_primary_10_1016_j_apmt_2019_100489 crossref_primary_10_1039_D3NH00412K crossref_primary_10_1002_smll_202306191 crossref_primary_10_1002_smll_202000413 crossref_primary_10_1002_adfm_201908602 crossref_primary_10_1039_D1MH00556A crossref_primary_10_1038_s41467_021_24948_2 crossref_primary_10_1039_D4NR01776E crossref_primary_10_3390_nano15010013 crossref_primary_10_1016_j_cis_2025_103475 crossref_primary_10_1016_j_cej_2021_130916 crossref_primary_10_1039_C9NR06221A crossref_primary_10_3390_mi14122253 |
| Cites_doi | 10.1021/acsnano.7b06107 10.1021/acs.chemrev.5b00047 10.1021/nn300413p 10.1002/chem.201602241 10.1002/adma.201304134 10.1103/PhysRevLett.117.198001 10.1021/acsnano.7b06824 10.1038/ncomms10598 10.1002/smll.201201864 10.1002/cplu.201402202 10.1209/0295-5075/77/68004 10.1021/ja2082735 10.1039/c1sm05960b 10.1039/B710948M 10.1021/acsnano.6b02518 10.1002/smll.201400384 10.1146/annurev-fluid-122414-034456 10.1002/smll.200900021 10.1126/science.1114397 10.1002/adhm.201700306 10.1016/j.partic.2016.06.001 10.1103/PhysRevLett.99.178103 10.1002/adma.201701970 10.1039/c1nr10840a 10.1021/cr400273r 10.1039/C5NR08768F 10.1002/adfm.201705872 10.1002/adma.201501372 10.1039/C0NR00566E 10.1021/ja903626h 10.1038/ncomms5829 10.1039/c0cs00078g 10.1039/C6CS00885B 10.1021/ar5002582 10.1126/sciadv.1400214 10.1021/ar200276t 10.1039/C7CS00516D 10.1002/anie.201406096 10.1103/PhysRevLett.99.048102 10.1039/C8TC00640G 10.1002/adfm.200902376 10.1002/adma.201603374 10.1039/c0sm01221a 10.1039/C1SM06512B 10.1016/j.matdes.2017.03.036 10.1002/smll.201501557 10.1002/smll.201403372 10.1073/pnas.1719206115 10.1088/0022-3727/33/10/201 10.1021/ja406090s 10.1002/ange.201504186 10.1016/j.nantod.2013.08.009 10.1002/adfm.201502835 10.1021/ja047697z 10.1126/scirobotics.aaq0495 10.1038/ncomms9999 10.1021/nn500077a 10.1039/C2NR32662K |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1021/acsnano.8b01682 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 6676 |
| ExternalDocumentID | 29906098 10_1021_acsnano_8b01682 i32909322 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CITATION CUPRZ GGK NPM 7X8 |
| ID | FETCH-LOGICAL-a333t-2343f24d58ab53e7f16e046114f8f7fa48442ff0148d7e83c877e1c374c36a8a3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440505000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Thu Oct 02 09:58:34 EDT 2025 Thu Jan 02 23:00:34 EST 2025 Sat Nov 29 02:50:14 EST 2025 Tue Nov 18 21:18:06 EST 2025 Thu Aug 27 13:42:58 EDT 2020 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | magnetic guidance micro/nanomotors topographical pathways ferrofluids |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a333t-2343f24d58ab53e7f16e046114f8f7fa48442ff0148d7e83c877e1c374c36a8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9644-8277 0000-0002-2223-4524 |
| PMID | 29906098 |
| PQID | 2056395293 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2056395293 pubmed_primary_29906098 crossref_primary_10_1021_acsnano_8b01682 crossref_citationtrail_10_1021_acsnano_8b01682 acs_journals_10_1021_acsnano_8b01682 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-07-24 |
| PublicationDateYYYYMMDD | 2018-07-24 |
| PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2018 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
| References_xml | – ident: ref28/cit28 doi: 10.1021/acsnano.7b06107 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.5b00047 – ident: ref16/cit16 doi: 10.1021/nn300413p – ident: ref22/cit22 doi: 10.1002/chem.201602241 – ident: ref42/cit42 doi: 10.1002/adma.201304134 – ident: ref35/cit35 doi: 10.1103/PhysRevLett.117.198001 – ident: ref30/cit30 doi: 10.1021/acsnano.7b06824 – ident: ref33/cit33 doi: 10.1038/ncomms10598 – ident: ref17/cit17 doi: 10.1002/smll.201201864 – ident: ref38/cit38 doi: 10.1002/cplu.201402202 – ident: ref50/cit50 doi: 10.1209/0295-5075/77/68004 – ident: ref13/cit13 doi: 10.1021/ja2082735 – ident: ref37/cit37 doi: 10.1039/c1sm05960b – ident: ref40/cit40 doi: 10.1039/B710948M – ident: ref10/cit10 doi: 10.1021/acsnano.6b02518 – ident: ref57/cit57 doi: 10.1002/smll.201400384 – ident: ref11/cit11 doi: 10.1146/annurev-fluid-122414-034456 – ident: ref18/cit18 doi: 10.1002/smll.200900021 – ident: ref49/cit49 doi: 10.1126/science.1114397 – ident: ref44/cit44 doi: 10.1002/adhm.201700306 – ident: ref45/cit45 doi: 10.1016/j.partic.2016.06.001 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.99.178103 – ident: ref23/cit23 doi: 10.1002/adma.201701970 – ident: ref52/cit52 doi: 10.1039/c1nr10840a – ident: ref6/cit6 doi: 10.1021/cr400273r – ident: ref8/cit8 doi: 10.1039/C5NR08768F – ident: ref43/cit43 doi: 10.1002/adfm.201705872 – ident: ref47/cit47 doi: 10.1002/adma.201501372 – ident: ref2/cit2 doi: 10.1039/C0NR00566E – ident: ref51/cit51 doi: 10.1021/ja903626h – ident: ref26/cit26 doi: 10.1038/ncomms5829 – ident: ref19/cit19 doi: 10.1039/c0cs00078g – ident: ref58/cit58 doi: 10.1039/C6CS00885B – ident: ref4/cit4 doi: 10.1021/ar5002582 – ident: ref27/cit27 doi: 10.1126/sciadv.1400214 – ident: ref55/cit55 doi: 10.1021/ar200276t – ident: ref9/cit9 doi: 10.1039/C7CS00516D – ident: ref3/cit3 doi: 10.1002/anie.201406096 – ident: ref14/cit14 doi: 10.1103/PhysRevLett.99.048102 – ident: ref54/cit54 doi: 10.1039/C8TC00640G – ident: ref24/cit24 doi: 10.1002/adfm.200902376 – ident: ref25/cit25 doi: 10.1002/adma.201603374 – ident: ref41/cit41 doi: 10.1039/c0sm01221a – ident: ref15/cit15 doi: 10.1039/C1SM06512B – ident: ref46/cit46 doi: 10.1016/j.matdes.2017.03.036 – ident: ref29/cit29 doi: 10.1002/smll.201501557 – ident: ref20/cit20 doi: 10.1002/smll.201403372 – ident: ref53/cit53 doi: 10.1021/ja903626h – ident: ref59/cit59 doi: 10.1073/pnas.1719206115 – ident: ref39/cit39 doi: 10.1088/0022-3727/33/10/201 – ident: ref34/cit34 doi: 10.1021/ja406090s – ident: ref32/cit32 doi: 10.1002/ange.201504186 – ident: ref5/cit5 doi: 10.1016/j.nantod.2013.08.009 – ident: ref21/cit21 doi: 10.1002/adfm.201502835 – ident: ref12/cit12 doi: 10.1021/ja047697z – ident: ref56/cit56 doi: 10.1126/scirobotics.aaq0495 – ident: ref36/cit36 doi: 10.1038/ncomms9999 – ident: ref7/cit7 doi: 10.1021/nn500077a – ident: ref48/cit48 doi: 10.1039/C2NR32662K |
| SSID | ssj0057876 |
| Score | 2.4007015 |
| Snippet | In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6668 |
| Title | Flexible Guidance of Microengines by Dynamic Topographical Pathways in Ferrofluids |
| URI | http://dx.doi.org/10.1021/acsnano.8b01682 https://www.ncbi.nlm.nih.gov/pubmed/29906098 https://www.proquest.com/docview/2056395293 |
| Volume | 12 |
| WOSCitedRecordID | wos000440505000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagMMDA-1EelZE6sAQa243tsSoEBqgqKKhb5Di2VKlKqroF9d9jJ2l5qRLs9im5s-8--87fAVBHSGvn9j2USO2ROOEeV5R69tyGpaCcxnnJ_-sD7XRYv8-7n2TRPzP4yL8W0qQiza5YbNEJs952DVmQ66r3Wu3nudN16y4oEsj2gGxRxILF55cAF4ak-R6GlmDLPMaE2__4uh2wVQJJ2CosvwtWVLoHNr_QC-6Dp9CxXcZDBe-mg8SZF2YaProSPJWPMzCewZuiJz3sZaOCvtqZDXYtMnwXMwMHKQzV2HrroZVhDsBLeNtr33tlDwVPYIwnHsIEa0SSJhNxEyuq_UA5jnWfaKapFoQRYs3l7hUTqhiWjFLlS0yJxIFgAh-CSpql6hhAnhCi_EYcMEmIJJwJi_Yawj2mlwlGuArqVhtRuQdMlKe3kR-VKopKFVXB1VzzkSx5yF07jOHyCZeLCaOCgmP50Iu5KSO7TVzuQ6Qqm5oIWaCHedOCmyo4Kmy8EOYictDg7ORvP3AKNixqYu6CF5EzUJmMp-ocrMu3ycCMa2CV9lktX5wfUWregg |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hhgQ8bPymsA0j8cBLILHd2HmsGF0RpUJbQbxFjmNLlaoE1S0T__3OSdoxTZXYa2SfHN_57rPP_g7gjFJrvdsPaK5twLM8CRIjRID7NqaVSERWXfl_7IvBQD49JfcrEM7fwuAgHEpyVRL_D7tAdInfClWUFzJDkCLR6X5oY3D1NQs6Vz_nvtebX1znkXGfjGBiQebzjwAfjbT7OxotgZhVqOl--v9BbsHHBlaSTm0H27Biih3YfEM2uAs_up77Mhsb8n02yr2ySWnJnb-QZ6p2jmSv5FtdoZ4My-eazNorkdwjTvylXh0ZFaRrJui7xyjD7cFD93p41QuaigqBYoxNA8o4s5TnbamyNjPCRrHxjOsRt9IKq7jkHJXnTxlzYSTTUggTaSa4ZrGSiu3DalEW5hBIknNuojCLpeZc80QqxH6h8k_rdc4oa8EZzkbarAiXVsluGqXNFKXNFLXgYq6AVDes5L44xnh5h_NFh-eakGN509O5RlNcND4TogpTzlxKQ288bYQ6LTioVb0Q5uNzHCby6H0_cALrveFdP-3fDG6PYQPxlPRHv5R_htXpZGa-wJp-mY7c5Gtlqb8BcKfmAA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQIMQe-L2tMIaReOAl0Nhu7DxWsDBEqSrGJt4ix7GlSlVS1e0m_nvukrQCoUoTr5F9cu7su88--ztCzhhzDt1-wHLjApHlcRBbKQPYt3GjZSyz6sr_n57s99XTUzxoHoXhWxgYhAdJvkri46oe565hGAgv4Xuhi_JCZQBUFDjetQ6Ec6xb0L36Nfe_OAWjOpcMe2UAFAtCn3cCMCIZ_zYiLYGZVbhJtj820B2y1cBL2q3nwy5ZscUe-fSKdHCfPCTIgZmNLL2ZDXM0Oi0dvceLebZq52n2TK_rSvX0sRzXpNZoTDoAvPhPP3s6LGhiJ-DDRyDDH5DfyY_Hq59BU1kh0JzzacC44I6JvKN01uFWujCyyLweCqecdFooUKtzeNqYS6u4UVLa0HApDI-00vwzWS3Kwn4lNM6FsGE7i5QRwohYacCAbY1P7E3OGW-RM9BG2qwMn1ZJbxamjYrSRkUtcjE3QmoadnIskjFa3uF80WFcE3Msb3o6t2oKiwczIrqw5cynDOAfjzsAeVrkS23uhTCM01E7Vof_9wMnZGNwnaS92_7dEdkEWKXwBJiJb2R1OpnZY7Ju_k6HfvK9mqwv7aXoeg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Guidance+of+Microengines+by+Dynamic+Topographical+Pathways+in+Ferrofluids&rft.jtitle=ACS+nano&rft.au=Yang%2C+Fan&rft.au=Mou%2C+Fangzhi&rft.au=Jiang%2C+Yuzhou&rft.au=Luo%2C+Ming&rft.date=2018-07-24&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=12&rft.issue=7&rft.spage=6668&rft_id=info:doi/10.1021%2Facsnano.8b01682&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |