Flexible Guidance of Microengines by Dynamic Topographical Pathways in Ferrofluids

In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field (H)...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS nano Ročník 12; číslo 7; s. 6668 - 6676
Hlavní autoři: Yang, Fan, Mou, Fangzhi, Jiang, Yuzhou, Luo, Ming, Xu, Leilei, Ma, Huiru, Guan, Jianguo
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Chemical Society 24.07.2018
Témata:
ISSN:1936-0851, 1936-086X, 1936-086X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field (H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications.
AbstractList In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field (H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications.
In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field ( H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications.In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid by dynamic topographical pathways (DTPs), which are assembled from superparamagnetic nanoparticles in response to external magnetic field ( H). In this general strategy, the DTPs can exert anisotropic resistance forces on autonomously moving microengines and thus regulate their orientation. As the DTPs with different directions and lengths can be reversibly and swiftly assembled in response to the applied H, the microengines in the ferrofluid can be guided on demand with controlled motion directions and trajectories, including circular, elliptical, straight-line, semi-sine, and sinusoidal trajectories. The as-demonstrated control strategy obviates reliance on the customized responses of micromotors and applies to autonomously propelling agents swimming both in bulk and near substrate walls. Furthermore, the microengines (or motile microorganisms) in a ferrofluid can be considered as an integrated system, and it may inspire the development of intelligent systems with cooperative functions for biomedical and environmental applications.
Author Jiang, Yuzhou
Xu, Leilei
Luo, Ming
Ma, Huiru
Yang, Fan
Mou, Fangzhi
Guan, Jianguo
AuthorAffiliation State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering
Author_xml – sequence: 1
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
– sequence: 2
  givenname: Fangzhi
  orcidid: 0000-0002-9644-8277
  surname: Mou
  fullname: Mou, Fangzhi
  email: moufz@whut.edu.cn
– sequence: 3
  givenname: Yuzhou
  surname: Jiang
  fullname: Jiang, Yuzhou
– sequence: 4
  givenname: Ming
  surname: Luo
  fullname: Luo, Ming
– sequence: 5
  givenname: Leilei
  surname: Xu
  fullname: Xu, Leilei
– sequence: 6
  givenname: Huiru
  surname: Ma
  fullname: Ma, Huiru
– sequence: 7
  givenname: Jianguo
  orcidid: 0000-0002-2223-4524
  surname: Guan
  fullname: Guan, Jianguo
  email: guanjg@whut.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29906098$$D View this record in MEDLINE/PubMed
BookMark eNp9kEFLAzEQRoMoVqtnb5KjINVkk81mj6JWhYoiCt6W2XSikW1Sk120_96V1h4EPc3AvO-Debtk0wePhBxwdsJZxk_BJA8-nOiacaWzDbLDS6FGTKvnzfWe8wHZTemNsbzQhdomg6wsmWKl3iEP4wY_Xd0gvercFLxBGiy9dSYG9C_OY6L1gl4sPMycoY9hHl4izF-dgYbeQ_v6AYtEnadjjDHYpu9Ie2TLQpNwfzWH5Gl8-Xh-PZrcXd2cn01GIIRoR5mQwmZymmuoc4GF5QqZVJxLq21hQWopM2sZl3paoBZGFwVyIwpphAINYkiOlr3zGN47TG01c8lg04DH0KUqY7kSZZ6VokcPV2hXz3BazaObQVxUPx564HQJ9H-nFNGuEc6qb9PVynS1Mt0n8l8J41poXfBtBNf8kzte5vpD9Ra66HtHf9JfxMOSwA
CitedBy_id crossref_primary_10_1016_j_apmt_2019_100489
crossref_primary_10_1039_D3NH00412K
crossref_primary_10_1002_smll_202306191
crossref_primary_10_1002_smll_202000413
crossref_primary_10_1002_adfm_201908602
crossref_primary_10_1039_D1MH00556A
crossref_primary_10_1038_s41467_021_24948_2
crossref_primary_10_1039_D4NR01776E
crossref_primary_10_3390_nano15010013
crossref_primary_10_1016_j_cis_2025_103475
crossref_primary_10_1016_j_cej_2021_130916
crossref_primary_10_1039_C9NR06221A
crossref_primary_10_3390_mi14122253
Cites_doi 10.1021/acsnano.7b06107
10.1021/acs.chemrev.5b00047
10.1021/nn300413p
10.1002/chem.201602241
10.1002/adma.201304134
10.1103/PhysRevLett.117.198001
10.1021/acsnano.7b06824
10.1038/ncomms10598
10.1002/smll.201201864
10.1002/cplu.201402202
10.1209/0295-5075/77/68004
10.1021/ja2082735
10.1039/c1sm05960b
10.1039/B710948M
10.1021/acsnano.6b02518
10.1002/smll.201400384
10.1146/annurev-fluid-122414-034456
10.1002/smll.200900021
10.1126/science.1114397
10.1002/adhm.201700306
10.1016/j.partic.2016.06.001
10.1103/PhysRevLett.99.178103
10.1002/adma.201701970
10.1039/c1nr10840a
10.1021/cr400273r
10.1039/C5NR08768F
10.1002/adfm.201705872
10.1002/adma.201501372
10.1039/C0NR00566E
10.1021/ja903626h
10.1038/ncomms5829
10.1039/c0cs00078g
10.1039/C6CS00885B
10.1021/ar5002582
10.1126/sciadv.1400214
10.1021/ar200276t
10.1039/C7CS00516D
10.1002/anie.201406096
10.1103/PhysRevLett.99.048102
10.1039/C8TC00640G
10.1002/adfm.200902376
10.1002/adma.201603374
10.1039/c0sm01221a
10.1039/C1SM06512B
10.1016/j.matdes.2017.03.036
10.1002/smll.201501557
10.1002/smll.201403372
10.1073/pnas.1719206115
10.1088/0022-3727/33/10/201
10.1021/ja406090s
10.1002/ange.201504186
10.1016/j.nantod.2013.08.009
10.1002/adfm.201502835
10.1021/ja047697z
10.1126/scirobotics.aaq0495
10.1038/ncomms9999
10.1021/nn500077a
10.1039/C2NR32662K
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acsnano.8b01682
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 6676
ExternalDocumentID 29906098
10_1021_acsnano_8b01682
i32909322
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a333t-2343f24d58ab53e7f16e046114f8f7fa48442ff0148d7e83c877e1c374c36a8a3
IEDL.DBID ACS
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440505000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Thu Oct 02 09:58:34 EDT 2025
Thu Jan 02 23:00:34 EST 2025
Sat Nov 29 02:50:14 EST 2025
Tue Nov 18 21:18:06 EST 2025
Thu Aug 27 13:42:58 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords magnetic guidance
micro/nanomotors
topographical pathways
ferrofluids
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-2343f24d58ab53e7f16e046114f8f7fa48442ff0148d7e83c877e1c374c36a8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9644-8277
0000-0002-2223-4524
PMID 29906098
PQID 2056395293
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2056395293
pubmed_primary_29906098
crossref_primary_10_1021_acsnano_8b01682
crossref_citationtrail_10_1021_acsnano_8b01682
acs_journals_10_1021_acsnano_8b01682
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-07-24
PublicationDateYYYYMMDD 2018-07-24
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-24
  day: 24
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref28/cit28
  doi: 10.1021/acsnano.7b06107
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.5b00047
– ident: ref16/cit16
  doi: 10.1021/nn300413p
– ident: ref22/cit22
  doi: 10.1002/chem.201602241
– ident: ref42/cit42
  doi: 10.1002/adma.201304134
– ident: ref35/cit35
  doi: 10.1103/PhysRevLett.117.198001
– ident: ref30/cit30
  doi: 10.1021/acsnano.7b06824
– ident: ref33/cit33
  doi: 10.1038/ncomms10598
– ident: ref17/cit17
  doi: 10.1002/smll.201201864
– ident: ref38/cit38
  doi: 10.1002/cplu.201402202
– ident: ref50/cit50
  doi: 10.1209/0295-5075/77/68004
– ident: ref13/cit13
  doi: 10.1021/ja2082735
– ident: ref37/cit37
  doi: 10.1039/c1sm05960b
– ident: ref40/cit40
  doi: 10.1039/B710948M
– ident: ref10/cit10
  doi: 10.1021/acsnano.6b02518
– ident: ref57/cit57
  doi: 10.1002/smll.201400384
– ident: ref11/cit11
  doi: 10.1146/annurev-fluid-122414-034456
– ident: ref18/cit18
  doi: 10.1002/smll.200900021
– ident: ref49/cit49
  doi: 10.1126/science.1114397
– ident: ref44/cit44
  doi: 10.1002/adhm.201700306
– ident: ref45/cit45
  doi: 10.1016/j.partic.2016.06.001
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.99.178103
– ident: ref23/cit23
  doi: 10.1002/adma.201701970
– ident: ref52/cit52
  doi: 10.1039/c1nr10840a
– ident: ref6/cit6
  doi: 10.1021/cr400273r
– ident: ref8/cit8
  doi: 10.1039/C5NR08768F
– ident: ref43/cit43
  doi: 10.1002/adfm.201705872
– ident: ref47/cit47
  doi: 10.1002/adma.201501372
– ident: ref2/cit2
  doi: 10.1039/C0NR00566E
– ident: ref51/cit51
  doi: 10.1021/ja903626h
– ident: ref26/cit26
  doi: 10.1038/ncomms5829
– ident: ref19/cit19
  doi: 10.1039/c0cs00078g
– ident: ref58/cit58
  doi: 10.1039/C6CS00885B
– ident: ref4/cit4
  doi: 10.1021/ar5002582
– ident: ref27/cit27
  doi: 10.1126/sciadv.1400214
– ident: ref55/cit55
  doi: 10.1021/ar200276t
– ident: ref9/cit9
  doi: 10.1039/C7CS00516D
– ident: ref3/cit3
  doi: 10.1002/anie.201406096
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.99.048102
– ident: ref54/cit54
  doi: 10.1039/C8TC00640G
– ident: ref24/cit24
  doi: 10.1002/adfm.200902376
– ident: ref25/cit25
  doi: 10.1002/adma.201603374
– ident: ref41/cit41
  doi: 10.1039/c0sm01221a
– ident: ref15/cit15
  doi: 10.1039/C1SM06512B
– ident: ref46/cit46
  doi: 10.1016/j.matdes.2017.03.036
– ident: ref29/cit29
  doi: 10.1002/smll.201501557
– ident: ref20/cit20
  doi: 10.1002/smll.201403372
– ident: ref53/cit53
  doi: 10.1021/ja903626h
– ident: ref59/cit59
  doi: 10.1073/pnas.1719206115
– ident: ref39/cit39
  doi: 10.1088/0022-3727/33/10/201
– ident: ref34/cit34
  doi: 10.1021/ja406090s
– ident: ref32/cit32
  doi: 10.1002/ange.201504186
– ident: ref5/cit5
  doi: 10.1016/j.nantod.2013.08.009
– ident: ref21/cit21
  doi: 10.1002/adfm.201502835
– ident: ref12/cit12
  doi: 10.1021/ja047697z
– ident: ref56/cit56
  doi: 10.1126/scirobotics.aaq0495
– ident: ref36/cit36
  doi: 10.1038/ncomms9999
– ident: ref7/cit7
  doi: 10.1021/nn500077a
– ident: ref48/cit48
  doi: 10.1039/C2NR32662K
SSID ssj0057876
Score 2.4007015
Snippet In this work, we demonstrate a simple, versatile, and real-time motion guidance strategy for artificial microengines and motile microorganisms in a ferrofluid...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6668
Title Flexible Guidance of Microengines by Dynamic Topographical Pathways in Ferrofluids
URI http://dx.doi.org/10.1021/acsnano.8b01682
https://www.ncbi.nlm.nih.gov/pubmed/29906098
https://www.proquest.com/docview/2056395293
Volume 12
WOSCitedRecordID wos000440505000031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagMMDA-1EelZE6sAQa243tsSoEBqgqKKhb5Di2VKlKqroF9d9jJ2l5qRLs9im5s-8--87fAVBHSGvn9j2USO2ROOEeV5R69tyGpaCcxnnJ_-sD7XRYv8-7n2TRPzP4yL8W0qQiza5YbNEJs952DVmQ66r3Wu3nudN16y4oEsj2gGxRxILF55cAF4ak-R6GlmDLPMaE2__4uh2wVQJJ2CosvwtWVLoHNr_QC-6Dp9CxXcZDBe-mg8SZF2YaProSPJWPMzCewZuiJz3sZaOCvtqZDXYtMnwXMwMHKQzV2HrroZVhDsBLeNtr33tlDwVPYIwnHsIEa0SSJhNxEyuq_UA5jnWfaKapFoQRYs3l7hUTqhiWjFLlS0yJxIFgAh-CSpql6hhAnhCi_EYcMEmIJJwJi_Yawj2mlwlGuArqVhtRuQdMlKe3kR-VKopKFVXB1VzzkSx5yF07jOHyCZeLCaOCgmP50Iu5KSO7TVzuQ6Qqm5oIWaCHedOCmyo4Kmy8EOYictDg7ORvP3AKNixqYu6CF5EzUJmMp-ocrMu3ycCMa2CV9lktX5wfUWregg
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4hhgQ8bPymsA0j8cBLILHd2HmsGF0RpUJbQbxFjmNLlaoE1S0T__3OSdoxTZXYa2SfHN_57rPP_g7gjFJrvdsPaK5twLM8CRIjRID7NqaVSERWXfl_7IvBQD49JfcrEM7fwuAgHEpyVRL_D7tAdInfClWUFzJDkCLR6X5oY3D1NQs6Vz_nvtebX1znkXGfjGBiQebzjwAfjbT7OxotgZhVqOl--v9BbsHHBlaSTm0H27Biih3YfEM2uAs_up77Mhsb8n02yr2ySWnJnb-QZ6p2jmSv5FtdoZ4My-eazNorkdwjTvylXh0ZFaRrJui7xyjD7cFD93p41QuaigqBYoxNA8o4s5TnbamyNjPCRrHxjOsRt9IKq7jkHJXnTxlzYSTTUggTaSa4ZrGSiu3DalEW5hBIknNuojCLpeZc80QqxH6h8k_rdc4oa8EZzkbarAiXVsluGqXNFKXNFLXgYq6AVDes5L44xnh5h_NFh-eakGN509O5RlNcND4TogpTzlxKQ288bYQ6LTioVb0Q5uNzHCby6H0_cALrveFdP-3fDG6PYQPxlPRHv5R_htXpZGa-wJp-mY7c5Gtlqb8BcKfmAA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYQIMQe-L2tMIaReOAl0Nhu7DxWsDBEqSrGJt4ix7GlSlVS1e0m_nvukrQCoUoTr5F9cu7su88--ztCzhhzDt1-wHLjApHlcRBbKQPYt3GjZSyz6sr_n57s99XTUzxoHoXhWxgYhAdJvkri46oe565hGAgv4Xuhi_JCZQBUFDjetQ6Ec6xb0L36Nfe_OAWjOpcMe2UAFAtCn3cCMCIZ_zYiLYGZVbhJtj820B2y1cBL2q3nwy5ZscUe-fSKdHCfPCTIgZmNLL2ZDXM0Oi0dvceLebZq52n2TK_rSvX0sRzXpNZoTDoAvPhPP3s6LGhiJ-DDRyDDH5DfyY_Hq59BU1kh0JzzacC44I6JvKN01uFWujCyyLweCqecdFooUKtzeNqYS6u4UVLa0HApDI-00vwzWS3Kwn4lNM6FsGE7i5QRwohYacCAbY1P7E3OGW-RM9BG2qwMn1ZJbxamjYrSRkUtcjE3QmoadnIskjFa3uF80WFcE3Msb3o6t2oKiwczIrqw5cynDOAfjzsAeVrkS23uhTCM01E7Vof_9wMnZGNwnaS92_7dEdkEWKXwBJiJb2R1OpnZY7Ju_k6HfvK9mqwv7aXoeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+Guidance+of+Microengines+by+Dynamic+Topographical+Pathways+in+Ferrofluids&rft.jtitle=ACS+nano&rft.au=Yang%2C+Fan&rft.au=Mou%2C+Fangzhi&rft.au=Jiang%2C+Yuzhou&rft.au=Luo%2C+Ming&rft.date=2018-07-24&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=12&rft.issue=7&rft.spage=6668&rft_id=info:doi/10.1021%2Facsnano.8b01682&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon