Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics

The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors wi...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 15; no. 7; pp. 11555 - 11563
Main Authors: Yang, Tao, Deng, Weili, Chu, Xiang, Wang, Xiao, Hu, Yeting, Fan, Xi, Song, Jia, Gao, Yuyu, Zhang, Binbin, Tian, Guo, Xiong, Da, Zhong, Shen, Tang, Lihua, Hu, Yonghe, Yang, Weiqing
Format: Journal Article
Language:English
Published: United States American Chemical Society 27.07.2021
Subjects:
ISSN:1936-0851, 1936-086X, 1936-086X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa–1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.
AbstractList The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa , a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.
The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa-1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa-1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.
The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa–1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.
Author Chu, Xiang
Xiong, Da
Gao, Yuyu
Yang, Tao
Fan, Xi
Song, Jia
Zhong, Shen
Deng, Weili
Zhang, Binbin
Tang, Lihua
Hu, Yeting
Hu, Yonghe
Tian, Guo
Yang, Weiqing
Wang, Xiao
AuthorAffiliation Department of Pharmacy
Department of Mechanical Engineering
Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
State Key Laboratory of Traction Power
Southwest Jiaotong University
AuthorAffiliation_xml – name: State Key Laboratory of Traction Power
– name: Department of Pharmacy
– name: Department of Mechanical Engineering
– name: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– name: Southwest Jiaotong University
Author_xml – sequence: 1
  givenname: Tao
  surname: Yang
  fullname: Yang, Tao
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 2
  givenname: Weili
  orcidid: 0000-0003-1427-534X
  surname: Deng
  fullname: Deng, Weili
  email: weili1812@swjtu.edu.cn
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 3
  givenname: Xiang
  surname: Chu
  fullname: Chu, Xiang
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 4
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 5
  givenname: Yeting
  surname: Hu
  fullname: Hu, Yeting
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 6
  givenname: Xi
  surname: Fan
  fullname: Fan, Xi
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 7
  givenname: Jia
  surname: Song
  fullname: Song, Jia
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 8
  givenname: Yuyu
  surname: Gao
  fullname: Gao, Yuyu
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 9
  givenname: Binbin
  surname: Zhang
  fullname: Zhang, Binbin
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 10
  givenname: Guo
  surname: Tian
  fullname: Tian, Guo
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 11
  givenname: Da
  surname: Xiong
  fullname: Xiong, Da
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 12
  givenname: Shen
  surname: Zhong
  fullname: Zhong, Shen
  organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering
– sequence: 13
  givenname: Lihua
  surname: Tang
  fullname: Tang, Lihua
  organization: Department of Mechanical Engineering
– sequence: 14
  givenname: Yonghe
  surname: Hu
  fullname: Hu, Yonghe
  email: huyonghezyy@163.com
  organization: Department of Pharmacy
– sequence: 15
  givenname: Weiqing
  orcidid: 0000-0001-8828-9862
  surname: Yang
  fullname: Yang, Weiqing
  email: wqyang@swjtu.edu.cn
  organization: Southwest Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34128640$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1LAzEQhoNUtFbP3qRHQdbma7O7Ry3WCoo9KHgLMTuLkTSpSVbUX29KqwfB0wzM8w4zzwEaOO8AoWOCzwmmZKJ0dMr5c6IxEVjsoCFpmChwLZ4Gv31J9tFBjK8Yl1VdiT20zzihteB4iBZzA0EF_WK0svZzfGd08DGFXqc-QHFpvHFxZQK045mFD_NsYbww8OUDRBOTeYdxZsCCTsE7o-Mh2u2UjXC0rSP0OLt6mM6L2_vrm-nFbaEYY6kgrMQdZfmKpqItUEJp29Q1Zhw4dBQIb7moAFQJXSlaTVtaqXxxfpqAxiUbodPN3lXwbz3EJJcmarBWOfB9lLTkhFHecJHRky3aPy-hlatglip8yh8LGSg3wPr3GKCT2iSVjHcpKGMlwXJtW25ty63tnJv8yf2s_j9xtknkgXz1fXDZ0b_0NyaHkuM
CitedBy_id crossref_primary_10_1016_j_compscitech_2023_110157
crossref_primary_10_1002_admt_202200609
crossref_primary_10_1016_j_nanoen_2025_110911
crossref_primary_10_1063_5_0238817
crossref_primary_10_1038_s41467_022_34168_x
crossref_primary_10_1016_j_compstruct_2023_117329
crossref_primary_10_1080_10589759_2024_2327639
crossref_primary_10_1016_j_etran_2025_100469
crossref_primary_10_1016_j_nanoen_2024_109408
crossref_primary_10_1016_j_cej_2022_136717
crossref_primary_10_1088_1361_665X_ac7dcf
crossref_primary_10_1016_j_sna_2023_114988
crossref_primary_10_1002_advs_202507135
crossref_primary_10_3390_s24134092
crossref_primary_10_1016_j_apmt_2024_102256
crossref_primary_10_1016_j_polymer_2023_125844
crossref_primary_10_1002_adma_202418108
crossref_primary_10_1016_j_cej_2025_159564
crossref_primary_10_1016_j_jallcom_2022_167566
crossref_primary_10_1002_admt_202301791
crossref_primary_10_1109_JSEN_2025_3532981
crossref_primary_10_1016_j_pmatsci_2024_101376
crossref_primary_10_1007_s12274_022_5371_6
crossref_primary_10_1016_j_trac_2024_117662
crossref_primary_10_3390_ma18174010
crossref_primary_10_1016_j_compositesa_2022_107313
crossref_primary_10_1016_j_aiepr_2025_09_004
crossref_primary_10_1016_j_cej_2024_150796
crossref_primary_10_1109_JSEN_2024_3514672
crossref_primary_10_1002_adhm_202303461
crossref_primary_10_1002_admt_202301685
crossref_primary_10_1021_acsanm_5c02609
crossref_primary_10_1002_adfm_202418791
crossref_primary_10_1021_acsaenm_5c00426
crossref_primary_10_46670_JSST_2022_31_6_403
crossref_primary_10_1016_j_nanoen_2022_107804
crossref_primary_10_1002_adma_202500076
crossref_primary_10_1002_adma_202500077
crossref_primary_10_1016_j_cej_2022_137268
crossref_primary_10_1088_2631_7990_acded1
crossref_primary_10_3390_nanoenergyadv2010003
crossref_primary_10_1016_j_cej_2025_159659
crossref_primary_10_1002_app_56419
crossref_primary_10_1002_admt_202200820
crossref_primary_10_1364_OL_564376
crossref_primary_10_1016_j_cej_2023_146572
crossref_primary_10_1002_aelm_202200993
crossref_primary_10_1016_j_mtphys_2025_101804
crossref_primary_10_1016_j_cej_2024_150201
crossref_primary_10_1016_j_materresbull_2025_113735
crossref_primary_10_1016_j_cej_2025_160539
crossref_primary_10_1109_JFLEX_2025_3538808
crossref_primary_10_1016_j_nanoen_2024_109443
crossref_primary_10_1007_s40843_023_2704_9
crossref_primary_10_1016_j_envres_2024_119248
crossref_primary_10_1016_j_mtphys_2024_101576
crossref_primary_10_1016_j_cej_2022_138258
crossref_primary_10_1021_acsaelm_5c00268
crossref_primary_10_1002_adma_202504372
crossref_primary_10_1016_j_mattod_2024_08_001
crossref_primary_10_1002_adfm_202313787
crossref_primary_10_1016_j_cej_2024_154109
crossref_primary_10_1063_10_0025653
crossref_primary_10_1109_TIM_2025_3542879
crossref_primary_10_3390_nano13192630
crossref_primary_10_1002_admi_202200614
crossref_primary_10_1002_app_55591
crossref_primary_10_1007_s42765_024_00420_w
crossref_primary_10_1002_adem_202500210
crossref_primary_10_1002_aisy_202200193
crossref_primary_10_1016_j_sna_2024_115408
crossref_primary_10_1016_j_nanoen_2024_109790
crossref_primary_10_1109_JSEN_2024_3506738
crossref_primary_10_1002_advs_202408653
crossref_primary_10_1016_j_jcis_2022_08_181
crossref_primary_10_1016_j_compositesa_2022_107240
crossref_primary_10_1016_j_jfluchem_2022_110064
crossref_primary_10_3390_bios13110976
crossref_primary_10_1002_admi_202201270
crossref_primary_10_1016_j_snb_2024_137012
crossref_primary_10_1016_j_sna_2024_115524
crossref_primary_10_1007_s12541_024_01171_9
crossref_primary_10_1088_1361_6463_ad0e95
crossref_primary_10_1016_j_nanoen_2023_108492
crossref_primary_10_1016_j_surfin_2024_104798
crossref_primary_10_1016_j_sna_2024_116183
crossref_primary_10_1021_acsami_5c07889
crossref_primary_10_1002_admt_202200504
crossref_primary_10_1016_j_device_2025_100893
crossref_primary_10_1007_s11431_022_2204_2
crossref_primary_10_1016_j_measurement_2024_114874
crossref_primary_10_1039_D4TC05320F
crossref_primary_10_1002_adfm_202214503
crossref_primary_10_1002_app_56340
crossref_primary_10_1039_D4MH01217H
crossref_primary_10_1002_macp_202400500
crossref_primary_10_1016_j_cis_2022_102828
crossref_primary_10_1016_j_cej_2024_158594
crossref_primary_10_1016_j_bios_2022_114999
crossref_primary_10_1016_j_cej_2025_166839
crossref_primary_10_3390_s24144698
crossref_primary_10_1007_s10570_024_06315_8
crossref_primary_10_1007_s42765_023_00359_4
crossref_primary_10_1016_j_cej_2024_158359
crossref_primary_10_1016_j_eml_2023_101998
crossref_primary_10_1088_2516_1091_ac2eae
crossref_primary_10_1016_j_biomaterials_2024_122579
crossref_primary_10_1016_j_sna_2023_114952
crossref_primary_10_1016_j_snb_2024_135443
crossref_primary_10_1088_1361_665X_ad860f
crossref_primary_10_1039_D2MH01345B
crossref_primary_10_1007_s40820_025_01872_4
crossref_primary_10_1016_j_mtcomm_2021_102757
crossref_primary_10_1016_j_compositesa_2022_107177
crossref_primary_10_3390_mi13091395
crossref_primary_10_3390_polym14173670
crossref_primary_10_1007_s42242_024_00292_4
crossref_primary_10_3390_s22145089
crossref_primary_10_1016_j_cej_2021_132911
crossref_primary_10_1016_j_sna_2024_115037
crossref_primary_10_1016_j_sna_2023_114226
crossref_primary_10_1038_s41378_023_00639_4
crossref_primary_10_3390_polym16060816
crossref_primary_10_1088_1361_6528_adddc5
crossref_primary_10_1002_adsr_202200091
crossref_primary_10_1016_j_sna_2025_116638
crossref_primary_10_1002_advs_202405501
crossref_primary_10_1016_j_cej_2023_146986
crossref_primary_10_1016_j_sna_2021_113240
crossref_primary_10_1016_j_cej_2025_166937
crossref_primary_10_1016_j_cej_2025_167905
crossref_primary_10_1002_admt_202301280
crossref_primary_10_1002_inf2_12500
crossref_primary_10_1002_advs_202303264
crossref_primary_10_1016_j_jmps_2025_106229
crossref_primary_10_1016_j_colsurfa_2024_134198
crossref_primary_10_1021_acsami_5c05118
crossref_primary_10_1016_j_nanoen_2023_108689
crossref_primary_10_1016_j_sna_2025_116872
crossref_primary_10_1002_smll_202104706
crossref_primary_10_1016_j_cej_2024_148639
crossref_primary_10_1039_D3MH02232C
crossref_primary_10_1002_admt_202302010
crossref_primary_10_1002_aelm_202201339
crossref_primary_10_1007_s00216_021_03602_2
crossref_primary_10_1016_j_cej_2022_135003
crossref_primary_10_1002_adfm_202414465
crossref_primary_10_1007_s12274_024_6551_3
crossref_primary_10_3390_jfb14010037
crossref_primary_10_1038_s41528_023_00254_3
crossref_primary_10_1002_adma_202405405
crossref_primary_10_1016_j_mtcomm_2023_107783
crossref_primary_10_1002_adfm_202418706
crossref_primary_10_1002_agt2_522
crossref_primary_10_1016_j_nanoen_2022_108041
crossref_primary_10_1016_j_sna_2025_116736
crossref_primary_10_3390_s23073717
crossref_primary_10_1002_marc_202400322
crossref_primary_10_1002_advs_202203428
crossref_primary_10_1002_admt_202201088
crossref_primary_10_3390_polym15071618
crossref_primary_10_1088_1361_6439_acfdb5
crossref_primary_10_1016_j_nanoen_2023_108903
crossref_primary_10_3390_polym15061386
crossref_primary_10_1016_j_compositesb_2024_111639
crossref_primary_10_1016_j_nanoen_2025_110678
crossref_primary_10_3390_agriculture14081346
crossref_primary_10_1016_j_porgcoat_2025_109601
crossref_primary_10_1002_inf2_12412
crossref_primary_10_1002_admt_202500302
crossref_primary_10_3390_biomimetics8020223
crossref_primary_10_1016_j_matlet_2025_138440
crossref_primary_10_1016_j_mtnano_2024_100502
crossref_primary_10_1016_j_scib_2024_04_060
crossref_primary_10_1016_j_nanoen_2023_108881
crossref_primary_10_1016_j_nanoen_2024_109276
crossref_primary_10_1002_aelm_202300082
crossref_primary_10_1016_j_nanoen_2023_109173
crossref_primary_10_1007_s10570_024_06224_w
crossref_primary_10_1039_D2NR06084A
crossref_primary_10_1002_adma_202202622
crossref_primary_10_1038_s41378_022_00477_w
crossref_primary_10_1109_JSEN_2022_3197182
crossref_primary_10_3390_s25020423
crossref_primary_10_1016_j_cis_2025_103600
crossref_primary_10_1039_D2MH00603K
crossref_primary_10_1016_j_cej_2025_161566
crossref_primary_10_1016_j_nanoen_2022_107135
crossref_primary_10_1007_s12274_022_5014_y
crossref_primary_10_3390_polym15030764
crossref_primary_10_1016_j_compositesa_2024_108648
crossref_primary_10_1002_adfm_202309792
crossref_primary_10_1002_admt_202400405
crossref_primary_10_1007_s42765_023_00331_2
crossref_primary_10_1002_VIW_20220031
crossref_primary_10_1038_s41528_022_00191_7
crossref_primary_10_1039_D4RA04793A
crossref_primary_10_1007_s12274_023_6248_z
crossref_primary_10_1016_j_sna_2022_113834
crossref_primary_10_1016_j_snb_2022_132996
crossref_primary_10_26599_JAC_2024_9220897
crossref_primary_10_1016_j_nanoen_2022_108135
crossref_primary_10_1016_j_cej_2025_165585
crossref_primary_10_1002_adfm_202425774
crossref_primary_10_1007_s40820_022_00874_w
crossref_primary_10_1088_1361_6463_acd64c
crossref_primary_10_1088_1674_4926_24100003
crossref_primary_10_1002_adfm_202207393
crossref_primary_10_1039_D5MH00942A
crossref_primary_10_1016_j_sna_2025_117071
crossref_primary_10_1002_adhm_202302460
crossref_primary_10_1002_smll_202310038
crossref_primary_10_1016_j_cej_2022_136028
crossref_primary_10_1088_1402_4896_acc98c
crossref_primary_10_1016_j_cej_2024_154952
crossref_primary_10_1016_j_ijbiomac_2025_140732
crossref_primary_10_1016_j_cej_2024_154953
crossref_primary_10_1016_j_nanoen_2023_108309
crossref_primary_10_1002_adhm_202501798
crossref_primary_10_1016_j_nanoen_2022_107710
crossref_primary_10_1002_smll_202303981
crossref_primary_10_3390_nano13192692
crossref_primary_10_1007_s10854_023_10691_5
crossref_primary_10_1007_s42114_022_00610_3
Cites_doi 10.1002/adma.201602126
10.1039/C8NR08341J
10.1021/acsnano.9b03454
10.1038/s41586-019-1687-0
10.1038/s41551-018-0201-6
10.1016/j.nanoen.2020.104706
10.1021/acsanm.9b02435
10.1002/adfm.201907091
10.1002/adfm.201909603
10.1016/j.nanoen.2018.10.049
10.1038/s41467-020-17301-6
10.1038/s41467-021-21958-y
10.1021/acsnano.9b00395
10.1038/s41467-020-14311-2
10.1038/s41467-019-12303-5
10.1021/acs.nanolett.0c00793
10.1038/nnano.2011.36
10.1002/adma.201904765
10.1002/adfm.201902484
10.1016/j.cej.2019.05.136
10.1002/admt.202000677
10.1016/j.nanoen.2017.12.004
10.1021/acsnano.0c04113
10.1021/acs.chemrev.7b00291
10.1021/acs.nanolett.0c01987
10.1021/acsami.7b09617
10.1002/smll.201803411
10.1126/sciadv.aaz8693
10.1038/nmat3380
10.1021/acsami.0c11658
10.1016/j.nanoen.2017.10.007
10.1021/acsnano.9b02297
10.1038/s41467-017-02685-9
10.1002/adma.201801072
10.1016/j.nanoen.2020.105179
10.1021/acsnano.7b07613
10.1016/j.nanoen.2019.104235
10.1002/aelm.201800252
10.1021/acsami.7b07935
10.1002/adma.201904752
10.1126/sciadv.aba9624
10.1002/adma.201908214
10.1039/C5TC01723H
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsnano.1c01606
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 11563
ExternalDocumentID 34128640
10_1021_acsnano_1c01606
b351509908
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
23M
4.4
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
F5P
GGK
GNL
IH9
IHE
JG
JG~
K2
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
BAANH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-a333t-1350f23286972de2122d988034e4ef2e14d467eea5ef56dc2d27a6400211ec053
IEDL.DBID ACS
ISICitedReferencesCount 290
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679406500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1936-0851
1936-086X
IngestDate Sun Nov 09 11:08:35 EST 2025
Thu Apr 03 07:03:37 EDT 2025
Sat Nov 29 05:41:33 EST 2025
Tue Nov 18 21:58:24 EST 2025
Thu Jul 29 03:24:49 EDT 2021
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords flexible piezoresistive sensor
PVDF/ PANI core-shell nanofibers
human health monitoring
bioinspired micostructure
hierarchical structure
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-1350f23286972de2122d988034e4ef2e14d467eea5ef56dc2d27a6400211ec053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8828-9862
0000-0003-1427-534X
PMID 34128640
PQID 2541324946
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2541324946
pubmed_primary_34128640
crossref_citationtrail_10_1021_acsnano_1c01606
crossref_primary_10_1021_acsnano_1c01606
acs_journals_10_1021_acsnano_1c01606
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
GGK
W1F
ABFRP
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210727
2021-07-27
2021-Jul-27
PublicationDateYYYYMMDD 2021-07-27
PublicationDate_xml – month: 07
  year: 2021
  text: 20210727
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref25/cit25
  doi: 10.1002/adma.201602126
– ident: ref38/cit38
  doi: 10.1039/C8NR08341J
– ident: ref24/cit24
  doi: 10.1021/acsnano.9b03454
– ident: ref4/cit4
  doi: 10.1038/s41586-019-1687-0
– ident: ref1/cit1
  doi: 10.1038/s41551-018-0201-6
– ident: ref12/cit12
  doi: 10.1016/j.nanoen.2020.104706
– ident: ref10/cit10
  doi: 10.1021/acsanm.9b02435
– ident: ref26/cit26
  doi: 10.1002/adfm.201907091
– ident: ref8/cit8
  doi: 10.1002/adfm.201909603
– ident: ref13/cit13
  doi: 10.1016/j.nanoen.2018.10.049
– ident: ref6/cit6
  doi: 10.1038/s41467-020-17301-6
– ident: ref28/cit28
  doi: 10.1038/s41467-021-21958-y
– ident: ref37/cit37
  doi: 10.1021/acsnano.9b00395
– ident: ref7/cit7
  doi: 10.1038/s41467-020-14311-2
– ident: ref23/cit23
  doi: 10.1038/s41467-019-12303-5
– ident: ref14/cit14
  doi: 10.1021/acs.nanolett.0c00793
– ident: ref5/cit5
  doi: 10.1038/nnano.2011.36
– ident: ref11/cit11
  doi: 10.1002/adma.201904765
– ident: ref18/cit18
  doi: 10.1002/adfm.201902484
– ident: ref35/cit35
  doi: 10.1016/j.cej.2019.05.136
– ident: ref19/cit19
  doi: 10.1002/admt.202000677
– ident: ref36/cit36
  doi: 10.1016/j.nanoen.2017.12.004
– ident: ref17/cit17
  doi: 10.1021/acsnano.0c04113
– ident: ref33/cit33
  doi: 10.1021/acs.chemrev.7b00291
– ident: ref16/cit16
  doi: 10.1021/acs.nanolett.0c01987
– ident: ref42/cit42
  doi: 10.1021/acsami.7b09617
– ident: ref39/cit39
  doi: 10.1002/smll.201803411
– ident: ref3/cit3
  doi: 10.1126/sciadv.aaz8693
– ident: ref22/cit22
  doi: 10.1038/nmat3380
– ident: ref27/cit27
  doi: 10.1021/acsami.0c11658
– ident: ref31/cit31
  doi: 10.1016/j.nanoen.2017.10.007
– ident: ref20/cit20
  doi: 10.1021/acsnano.9b02297
– ident: ref9/cit9
  doi: 10.1038/s41467-017-02685-9
– ident: ref21/cit21
  doi: 10.1002/adma.201801072
– ident: ref43/cit43
  doi: 10.1016/j.nanoen.2020.105179
– ident: ref40/cit40
  doi: 10.1021/acsnano.7b07613
– ident: ref15/cit15
  doi: 10.1016/j.nanoen.2019.104235
– ident: ref30/cit30
  doi: 10.1002/aelm.201800252
– ident: ref34/cit34
  doi: 10.1021/acsami.7b07935
– ident: ref32/cit32
  doi: 10.1002/adma.201904752
– ident: ref2/cit2
  doi: 10.1126/sciadv.aba9624
– ident: ref29/cit29
  doi: 10.1002/adma.201908214
– ident: ref41/cit41
  doi: 10.1039/C5TC01723H
SSID ssj0057876
Score 2.705172
Snippet The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity...
The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11555
SubjectTerms Humans
Movement
Nanofibers - chemistry
Skin
Wearable Electronic Devices
Title Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics
URI http://dx.doi.org/10.1021/acsnano.1c01606
https://www.ncbi.nlm.nih.gov/pubmed/34128640
https://www.proquest.com/docview/2541324946
Volume 15
WOSCitedRecordID wos000679406500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1936-086X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057876
  issn: 1936-0851
  databaseCode: ACS
  dateStart: 20070801
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s9aAH34_6KBF68JKabLZ5HGux9GIpqNBb2OxOIBASaWxBf72zSVpfFPQaZodkHjszzOQbgI4VK3ruR6aG9zS5L1zTD_TQuO87yrYk1c28XDbhjcf-dBpMPsGif3bwmX0rZJGJLO_aUoOhuQ3YZJTkamPuDx6Xl662O7dqIFOBTFnECsXnFwMdhmTxPQytyS3LGDPc-8fb7cNunUga_UrzB7CB2SHsfIEXPILJKNG_F5fbTtL0zXjQw3cVYOx8huZdkieZbrSjMoYaFzNK0Zgk-J5TCa5df4EG0XwuyimO4Xl4_zQYmfUGBVM4jqP3zPesmHIm3w08ppDCFFMBeazDkWPM0OaKLkpE0cO45yrJFPOEy3Xgt1GSf55AM8szPAODsdilbEWxyJZcRSrinHEhiHtMysWoBR2SRVh7QBGWzW1mh7WAwlpALegu5R7KGoVcL8NI1x-4WR14qQA41pNeLxUZkpPozofIMJ8XIVXBVHXzgBPNaaXhFTMK4yQfbp3_7QMuYJvpsRbLM5l3CU1SGl7Blly8JsWsDQ1v6rdL0_wAlmfeqA
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSD70d9RujBS2qy2byOVSwV21KwQm8hyU4gEBJpbEF_vbNJ2ipS0OuyO-zOY2eG2f0GoKlFgsadQJXwnip3fEt1XPlo3HEMoWsh5c28aDZhDwbOeOwOa6DN_8LQJnKilBdF_CW6gH5HY6mfZi09lJho1hqsm-RcpWa3H17md69UP6usI1OeTMHEAsznFwHpjcL8pzdaEWIWrqaz-_9N7sFOFVYq7VIP9qGG6QFsfwMbPIRhN5afjYveJ0nyofTlU7wSPnY6QfU-zuJUlt1RKB2JkhkkqAxj_MwoIZcXwQwVmrNsm5MfwWvncfTQVat-CqpvGIbsOm9qEUVQjuXaTCA5LSZcsl-DI8eIoc4FXZuIvomRaYmQCWb7FpdhgI4hWesx1NMsxVNQGIssil0EC_SQi0AEnDPu-0Q9IlFj0IAm8cKr7CH3ilI3072KQV7FoAa05uz3wgqTXLbGSFYvuF0seCvhOFZPvZnL0yOTkXUQP8VsmnuUE1MOzl1Oc05KQS-IkVMn_nDt7G8HuIbN7qjf83pPg-dz2GLywYtmq8y-gDoJEC9hI5y9x_nkqtDTL57h5iY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60iujB96M-I_TgJTXZbF7HWg0VtRRU6C0k2QkEQlIaW9Bf70ySVkUK4nXZHXbnsTPD7H7DWEuLJY47oUrwnqpwAkt1XHo07jiG1LUI82ZRNpuw-31nOHQH9acw-guDmyiQUlEW8cmqRzKuEQb0axzPgixv6xHholnLbMVEd07a3ek-z-5fUkGrqiVjrowBxRzQ5xcB8khR8dMjLQgzS3fjbf1vo9tssw4vlU6lDztsCbJdtvENdHCPDXoJfToue6Ck6bvyRE_yKhjZyRjUmyRPMiq_g1Q8QssMU1AGCXzkmJjThTAFBed8tc8p9tmrd_fS7al1XwU1MAyDus-bWoyRlGO5NpeAzotLF-3YECAg5qALidcnQGBCbFoy4pLbgSUoHNAhQqs9YI0sz-CIKZzHFsYwkod6JGQoQyG4CAKkHqPIIWyyFvLCr-2i8MuSN9f9mkF-zaAma89E4Ec1Njm1yEgXL7iaLxhVsByLp17OZOqj6VA9JMggnxQ-5saYiwtX4JzDSthzYujckT9CO_7bAS7Y2uDW8x_v-w8nbJ3TuxfNVrl9yhooPzhjq9H0LSnG56WqfgIOxeig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchically+Microstructure-Bioinspired+Flexible+Piezoresistive+Bioelectronics&rft.jtitle=ACS+nano&rft.au=Yang%2C+Tao&rft.au=Deng%2C+Weili&rft.au=Chu%2C+Xiang&rft.au=Wang%2C+Xiao&rft.date=2021-07-27&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=7&rft.spage=11555&rft_id=info:doi/10.1021%2Facsnano.1c01606&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon