Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics
The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors wi...
Saved in:
| Published in: | ACS nano Vol. 15; no. 7; pp. 11555 - 11563 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Chemical Society
27.07.2021
|
| Subjects: | |
| ISSN: | 1936-0851, 1936-086X, 1936-086X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa–1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics. |
|---|---|
| AbstractList | The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa
, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics. The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa-1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics.The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa-1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics. The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity for wearable bioelectronics. However, due to the trade-off between sensitivity and linear detection range, obtaining piezoresistive sensors with both a wide pressure monitoring range and a high sensitivity is still a great challenge. Herein, we design a hierarchically microstructure-bioinspired flexible piezoresistive sensor consisting of a hierarchical polyaniline/polyvinylidene fluoride nanofiber (HPPNF) film sandwiched between two interlocking electrodes with microdome structure. Ascribed to the substantially enlarged 3D deformation rates, these bioelectronics exhibit an ultrahigh sensitivity of 53 kPa–1, a pressure detection range from 58.4 to 960 Pa, a fast response time of 38 ms, and excellent cycle stability over 50 000 cycles. Furthermore, this conformally skin-adhered sensor successfully demonstrates the monitoring of human physiological signals and movement states, such as wrist pulse, throat activity, spinal posture, and gait recognition. Evidently, this hierarchically microstructure-bioinspired and amplified sensitivity piezoresistive sensor provides a promising strategy for the rapid development of next-generation wearable bioelectronics. |
| Author | Chu, Xiang Xiong, Da Gao, Yuyu Yang, Tao Fan, Xi Song, Jia Zhong, Shen Deng, Weili Zhang, Binbin Tang, Lihua Hu, Yeting Hu, Yonghe Tian, Guo Yang, Weiqing Wang, Xiao |
| AuthorAffiliation | Department of Pharmacy Department of Mechanical Engineering Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering State Key Laboratory of Traction Power Southwest Jiaotong University |
| AuthorAffiliation_xml | – name: State Key Laboratory of Traction Power – name: Department of Pharmacy – name: Department of Mechanical Engineering – name: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – name: Southwest Jiaotong University |
| Author_xml | – sequence: 1 givenname: Tao surname: Yang fullname: Yang, Tao organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 2 givenname: Weili orcidid: 0000-0003-1427-534X surname: Deng fullname: Deng, Weili email: weili1812@swjtu.edu.cn organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 3 givenname: Xiang surname: Chu fullname: Chu, Xiang organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 4 givenname: Xiao surname: Wang fullname: Wang, Xiao organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 5 givenname: Yeting surname: Hu fullname: Hu, Yeting organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 6 givenname: Xi surname: Fan fullname: Fan, Xi organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 7 givenname: Jia surname: Song fullname: Song, Jia organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 8 givenname: Yuyu surname: Gao fullname: Gao, Yuyu organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 9 givenname: Binbin surname: Zhang fullname: Zhang, Binbin organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 10 givenname: Guo surname: Tian fullname: Tian, Guo organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 11 givenname: Da surname: Xiong fullname: Xiong, Da organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 12 givenname: Shen surname: Zhong fullname: Zhong, Shen organization: Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering – sequence: 13 givenname: Lihua surname: Tang fullname: Tang, Lihua organization: Department of Mechanical Engineering – sequence: 14 givenname: Yonghe surname: Hu fullname: Hu, Yonghe email: huyonghezyy@163.com organization: Department of Pharmacy – sequence: 15 givenname: Weiqing orcidid: 0000-0001-8828-9862 surname: Yang fullname: Yang, Weiqing email: wqyang@swjtu.edu.cn organization: Southwest Jiaotong University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34128640$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kE1LAzEQhoNUtFbP3qRHQdbma7O7Ry3WCoo9KHgLMTuLkTSpSVbUX29KqwfB0wzM8w4zzwEaOO8AoWOCzwmmZKJ0dMr5c6IxEVjsoCFpmChwLZ4Gv31J9tFBjK8Yl1VdiT20zzihteB4iBZzA0EF_WK0svZzfGd08DGFXqc-QHFpvHFxZQK045mFD_NsYbww8OUDRBOTeYdxZsCCTsE7o-Mh2u2UjXC0rSP0OLt6mM6L2_vrm-nFbaEYY6kgrMQdZfmKpqItUEJp29Q1Zhw4dBQIb7moAFQJXSlaTVtaqXxxfpqAxiUbodPN3lXwbz3EJJcmarBWOfB9lLTkhFHecJHRky3aPy-hlatglip8yh8LGSg3wPr3GKCT2iSVjHcpKGMlwXJtW25ty63tnJv8yf2s_j9xtknkgXz1fXDZ0b_0NyaHkuM |
| CitedBy_id | crossref_primary_10_1016_j_compscitech_2023_110157 crossref_primary_10_1002_admt_202200609 crossref_primary_10_1016_j_nanoen_2025_110911 crossref_primary_10_1063_5_0238817 crossref_primary_10_1038_s41467_022_34168_x crossref_primary_10_1016_j_compstruct_2023_117329 crossref_primary_10_1080_10589759_2024_2327639 crossref_primary_10_1016_j_etran_2025_100469 crossref_primary_10_1016_j_nanoen_2024_109408 crossref_primary_10_1016_j_cej_2022_136717 crossref_primary_10_1088_1361_665X_ac7dcf crossref_primary_10_1016_j_sna_2023_114988 crossref_primary_10_1002_advs_202507135 crossref_primary_10_3390_s24134092 crossref_primary_10_1016_j_apmt_2024_102256 crossref_primary_10_1016_j_polymer_2023_125844 crossref_primary_10_1002_adma_202418108 crossref_primary_10_1016_j_cej_2025_159564 crossref_primary_10_1016_j_jallcom_2022_167566 crossref_primary_10_1002_admt_202301791 crossref_primary_10_1109_JSEN_2025_3532981 crossref_primary_10_1016_j_pmatsci_2024_101376 crossref_primary_10_1007_s12274_022_5371_6 crossref_primary_10_1016_j_trac_2024_117662 crossref_primary_10_3390_ma18174010 crossref_primary_10_1016_j_compositesa_2022_107313 crossref_primary_10_1016_j_aiepr_2025_09_004 crossref_primary_10_1016_j_cej_2024_150796 crossref_primary_10_1109_JSEN_2024_3514672 crossref_primary_10_1002_adhm_202303461 crossref_primary_10_1002_admt_202301685 crossref_primary_10_1021_acsanm_5c02609 crossref_primary_10_1002_adfm_202418791 crossref_primary_10_1021_acsaenm_5c00426 crossref_primary_10_46670_JSST_2022_31_6_403 crossref_primary_10_1016_j_nanoen_2022_107804 crossref_primary_10_1002_adma_202500076 crossref_primary_10_1002_adma_202500077 crossref_primary_10_1016_j_cej_2022_137268 crossref_primary_10_1088_2631_7990_acded1 crossref_primary_10_3390_nanoenergyadv2010003 crossref_primary_10_1016_j_cej_2025_159659 crossref_primary_10_1002_app_56419 crossref_primary_10_1002_admt_202200820 crossref_primary_10_1364_OL_564376 crossref_primary_10_1016_j_cej_2023_146572 crossref_primary_10_1002_aelm_202200993 crossref_primary_10_1016_j_mtphys_2025_101804 crossref_primary_10_1016_j_cej_2024_150201 crossref_primary_10_1016_j_materresbull_2025_113735 crossref_primary_10_1016_j_cej_2025_160539 crossref_primary_10_1109_JFLEX_2025_3538808 crossref_primary_10_1016_j_nanoen_2024_109443 crossref_primary_10_1007_s40843_023_2704_9 crossref_primary_10_1016_j_envres_2024_119248 crossref_primary_10_1016_j_mtphys_2024_101576 crossref_primary_10_1016_j_cej_2022_138258 crossref_primary_10_1021_acsaelm_5c00268 crossref_primary_10_1002_adma_202504372 crossref_primary_10_1016_j_mattod_2024_08_001 crossref_primary_10_1002_adfm_202313787 crossref_primary_10_1016_j_cej_2024_154109 crossref_primary_10_1063_10_0025653 crossref_primary_10_1109_TIM_2025_3542879 crossref_primary_10_3390_nano13192630 crossref_primary_10_1002_admi_202200614 crossref_primary_10_1002_app_55591 crossref_primary_10_1007_s42765_024_00420_w crossref_primary_10_1002_adem_202500210 crossref_primary_10_1002_aisy_202200193 crossref_primary_10_1016_j_sna_2024_115408 crossref_primary_10_1016_j_nanoen_2024_109790 crossref_primary_10_1109_JSEN_2024_3506738 crossref_primary_10_1002_advs_202408653 crossref_primary_10_1016_j_jcis_2022_08_181 crossref_primary_10_1016_j_compositesa_2022_107240 crossref_primary_10_1016_j_jfluchem_2022_110064 crossref_primary_10_3390_bios13110976 crossref_primary_10_1002_admi_202201270 crossref_primary_10_1016_j_snb_2024_137012 crossref_primary_10_1016_j_sna_2024_115524 crossref_primary_10_1007_s12541_024_01171_9 crossref_primary_10_1088_1361_6463_ad0e95 crossref_primary_10_1016_j_nanoen_2023_108492 crossref_primary_10_1016_j_surfin_2024_104798 crossref_primary_10_1016_j_sna_2024_116183 crossref_primary_10_1021_acsami_5c07889 crossref_primary_10_1002_admt_202200504 crossref_primary_10_1016_j_device_2025_100893 crossref_primary_10_1007_s11431_022_2204_2 crossref_primary_10_1016_j_measurement_2024_114874 crossref_primary_10_1039_D4TC05320F crossref_primary_10_1002_adfm_202214503 crossref_primary_10_1002_app_56340 crossref_primary_10_1039_D4MH01217H crossref_primary_10_1002_macp_202400500 crossref_primary_10_1016_j_cis_2022_102828 crossref_primary_10_1016_j_cej_2024_158594 crossref_primary_10_1016_j_bios_2022_114999 crossref_primary_10_1016_j_cej_2025_166839 crossref_primary_10_3390_s24144698 crossref_primary_10_1007_s10570_024_06315_8 crossref_primary_10_1007_s42765_023_00359_4 crossref_primary_10_1016_j_cej_2024_158359 crossref_primary_10_1016_j_eml_2023_101998 crossref_primary_10_1088_2516_1091_ac2eae crossref_primary_10_1016_j_biomaterials_2024_122579 crossref_primary_10_1016_j_sna_2023_114952 crossref_primary_10_1016_j_snb_2024_135443 crossref_primary_10_1088_1361_665X_ad860f crossref_primary_10_1039_D2MH01345B crossref_primary_10_1007_s40820_025_01872_4 crossref_primary_10_1016_j_mtcomm_2021_102757 crossref_primary_10_1016_j_compositesa_2022_107177 crossref_primary_10_3390_mi13091395 crossref_primary_10_3390_polym14173670 crossref_primary_10_1007_s42242_024_00292_4 crossref_primary_10_3390_s22145089 crossref_primary_10_1016_j_cej_2021_132911 crossref_primary_10_1016_j_sna_2024_115037 crossref_primary_10_1016_j_sna_2023_114226 crossref_primary_10_1038_s41378_023_00639_4 crossref_primary_10_3390_polym16060816 crossref_primary_10_1088_1361_6528_adddc5 crossref_primary_10_1002_adsr_202200091 crossref_primary_10_1016_j_sna_2025_116638 crossref_primary_10_1002_advs_202405501 crossref_primary_10_1016_j_cej_2023_146986 crossref_primary_10_1016_j_sna_2021_113240 crossref_primary_10_1016_j_cej_2025_166937 crossref_primary_10_1016_j_cej_2025_167905 crossref_primary_10_1002_admt_202301280 crossref_primary_10_1002_inf2_12500 crossref_primary_10_1002_advs_202303264 crossref_primary_10_1016_j_jmps_2025_106229 crossref_primary_10_1016_j_colsurfa_2024_134198 crossref_primary_10_1021_acsami_5c05118 crossref_primary_10_1016_j_nanoen_2023_108689 crossref_primary_10_1016_j_sna_2025_116872 crossref_primary_10_1002_smll_202104706 crossref_primary_10_1016_j_cej_2024_148639 crossref_primary_10_1039_D3MH02232C crossref_primary_10_1002_admt_202302010 crossref_primary_10_1002_aelm_202201339 crossref_primary_10_1007_s00216_021_03602_2 crossref_primary_10_1016_j_cej_2022_135003 crossref_primary_10_1002_adfm_202414465 crossref_primary_10_1007_s12274_024_6551_3 crossref_primary_10_3390_jfb14010037 crossref_primary_10_1038_s41528_023_00254_3 crossref_primary_10_1002_adma_202405405 crossref_primary_10_1016_j_mtcomm_2023_107783 crossref_primary_10_1002_adfm_202418706 crossref_primary_10_1002_agt2_522 crossref_primary_10_1016_j_nanoen_2022_108041 crossref_primary_10_1016_j_sna_2025_116736 crossref_primary_10_3390_s23073717 crossref_primary_10_1002_marc_202400322 crossref_primary_10_1002_advs_202203428 crossref_primary_10_1002_admt_202201088 crossref_primary_10_3390_polym15071618 crossref_primary_10_1088_1361_6439_acfdb5 crossref_primary_10_1016_j_nanoen_2023_108903 crossref_primary_10_3390_polym15061386 crossref_primary_10_1016_j_compositesb_2024_111639 crossref_primary_10_1016_j_nanoen_2025_110678 crossref_primary_10_3390_agriculture14081346 crossref_primary_10_1016_j_porgcoat_2025_109601 crossref_primary_10_1002_inf2_12412 crossref_primary_10_1002_admt_202500302 crossref_primary_10_3390_biomimetics8020223 crossref_primary_10_1016_j_matlet_2025_138440 crossref_primary_10_1016_j_mtnano_2024_100502 crossref_primary_10_1016_j_scib_2024_04_060 crossref_primary_10_1016_j_nanoen_2023_108881 crossref_primary_10_1016_j_nanoen_2024_109276 crossref_primary_10_1002_aelm_202300082 crossref_primary_10_1016_j_nanoen_2023_109173 crossref_primary_10_1007_s10570_024_06224_w crossref_primary_10_1039_D2NR06084A crossref_primary_10_1002_adma_202202622 crossref_primary_10_1038_s41378_022_00477_w crossref_primary_10_1109_JSEN_2022_3197182 crossref_primary_10_3390_s25020423 crossref_primary_10_1016_j_cis_2025_103600 crossref_primary_10_1039_D2MH00603K crossref_primary_10_1016_j_cej_2025_161566 crossref_primary_10_1016_j_nanoen_2022_107135 crossref_primary_10_1007_s12274_022_5014_y crossref_primary_10_3390_polym15030764 crossref_primary_10_1016_j_compositesa_2024_108648 crossref_primary_10_1002_adfm_202309792 crossref_primary_10_1002_admt_202400405 crossref_primary_10_1007_s42765_023_00331_2 crossref_primary_10_1002_VIW_20220031 crossref_primary_10_1038_s41528_022_00191_7 crossref_primary_10_1039_D4RA04793A crossref_primary_10_1007_s12274_023_6248_z crossref_primary_10_1016_j_sna_2022_113834 crossref_primary_10_1016_j_snb_2022_132996 crossref_primary_10_26599_JAC_2024_9220897 crossref_primary_10_1016_j_nanoen_2022_108135 crossref_primary_10_1016_j_cej_2025_165585 crossref_primary_10_1002_adfm_202425774 crossref_primary_10_1007_s40820_022_00874_w crossref_primary_10_1088_1361_6463_acd64c crossref_primary_10_1088_1674_4926_24100003 crossref_primary_10_1002_adfm_202207393 crossref_primary_10_1039_D5MH00942A crossref_primary_10_1016_j_sna_2025_117071 crossref_primary_10_1002_adhm_202302460 crossref_primary_10_1002_smll_202310038 crossref_primary_10_1016_j_cej_2022_136028 crossref_primary_10_1088_1402_4896_acc98c crossref_primary_10_1016_j_cej_2024_154952 crossref_primary_10_1016_j_ijbiomac_2025_140732 crossref_primary_10_1016_j_cej_2024_154953 crossref_primary_10_1016_j_nanoen_2023_108309 crossref_primary_10_1002_adhm_202501798 crossref_primary_10_1016_j_nanoen_2022_107710 crossref_primary_10_1002_smll_202303981 crossref_primary_10_3390_nano13192692 crossref_primary_10_1007_s10854_023_10691_5 crossref_primary_10_1007_s42114_022_00610_3 |
| Cites_doi | 10.1002/adma.201602126 10.1039/C8NR08341J 10.1021/acsnano.9b03454 10.1038/s41586-019-1687-0 10.1038/s41551-018-0201-6 10.1016/j.nanoen.2020.104706 10.1021/acsanm.9b02435 10.1002/adfm.201907091 10.1002/adfm.201909603 10.1016/j.nanoen.2018.10.049 10.1038/s41467-020-17301-6 10.1038/s41467-021-21958-y 10.1021/acsnano.9b00395 10.1038/s41467-020-14311-2 10.1038/s41467-019-12303-5 10.1021/acs.nanolett.0c00793 10.1038/nnano.2011.36 10.1002/adma.201904765 10.1002/adfm.201902484 10.1016/j.cej.2019.05.136 10.1002/admt.202000677 10.1016/j.nanoen.2017.12.004 10.1021/acsnano.0c04113 10.1021/acs.chemrev.7b00291 10.1021/acs.nanolett.0c01987 10.1021/acsami.7b09617 10.1002/smll.201803411 10.1126/sciadv.aaz8693 10.1038/nmat3380 10.1021/acsami.0c11658 10.1016/j.nanoen.2017.10.007 10.1021/acsnano.9b02297 10.1038/s41467-017-02685-9 10.1002/adma.201801072 10.1016/j.nanoen.2020.105179 10.1021/acsnano.7b07613 10.1016/j.nanoen.2019.104235 10.1002/aelm.201800252 10.1021/acsami.7b07935 10.1002/adma.201904752 10.1126/sciadv.aba9624 10.1002/adma.201908214 10.1039/C5TC01723H |
| ContentType | Journal Article |
| Copyright | 2021 American
Chemical Society |
| Copyright_xml | – notice: 2021 American Chemical Society |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acsnano.1c01606 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1936-086X |
| EndPage | 11563 |
| ExternalDocumentID | 34128640 10_1021_acsnano_1c01606 b351509908 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | - .K2 23M 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ F5P GGK GNL IH9 IHE JG JG~ K2 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV BAANH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-a333t-1350f23286972de2122d988034e4ef2e14d467eea5ef56dc2d27a6400211ec053 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 290 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000679406500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1936-0851 1936-086X |
| IngestDate | Sun Nov 09 11:08:35 EST 2025 Thu Apr 03 07:03:37 EDT 2025 Sat Nov 29 05:41:33 EST 2025 Tue Nov 18 21:58:24 EST 2025 Thu Jul 29 03:24:49 EDT 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | flexible piezoresistive sensor PVDF/ PANI core-shell nanofibers human health monitoring bioinspired micostructure hierarchical structure |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a333t-1350f23286972de2122d988034e4ef2e14d467eea5ef56dc2d27a6400211ec053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8828-9862 0000-0003-1427-534X |
| PMID | 34128640 |
| PQID | 2541324946 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2541324946 pubmed_primary_34128640 crossref_citationtrail_10_1021_acsnano_1c01606 crossref_primary_10_1021_acsnano_1c01606 acs_journals_10_1021_acsnano_1c01606 |
| ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 GGK W1F ABFRP ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
| PublicationCentury | 2000 |
| PublicationDate | 20210727 2021-07-27 2021-Jul-27 |
| PublicationDateYYYYMMDD | 2021-07-27 |
| PublicationDate_xml | – month: 07 year: 2021 text: 20210727 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS nano |
| PublicationTitleAlternate | ACS Nano |
| PublicationYear | 2021 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
| References_xml | – ident: ref25/cit25 doi: 10.1002/adma.201602126 – ident: ref38/cit38 doi: 10.1039/C8NR08341J – ident: ref24/cit24 doi: 10.1021/acsnano.9b03454 – ident: ref4/cit4 doi: 10.1038/s41586-019-1687-0 – ident: ref1/cit1 doi: 10.1038/s41551-018-0201-6 – ident: ref12/cit12 doi: 10.1016/j.nanoen.2020.104706 – ident: ref10/cit10 doi: 10.1021/acsanm.9b02435 – ident: ref26/cit26 doi: 10.1002/adfm.201907091 – ident: ref8/cit8 doi: 10.1002/adfm.201909603 – ident: ref13/cit13 doi: 10.1016/j.nanoen.2018.10.049 – ident: ref6/cit6 doi: 10.1038/s41467-020-17301-6 – ident: ref28/cit28 doi: 10.1038/s41467-021-21958-y – ident: ref37/cit37 doi: 10.1021/acsnano.9b00395 – ident: ref7/cit7 doi: 10.1038/s41467-020-14311-2 – ident: ref23/cit23 doi: 10.1038/s41467-019-12303-5 – ident: ref14/cit14 doi: 10.1021/acs.nanolett.0c00793 – ident: ref5/cit5 doi: 10.1038/nnano.2011.36 – ident: ref11/cit11 doi: 10.1002/adma.201904765 – ident: ref18/cit18 doi: 10.1002/adfm.201902484 – ident: ref35/cit35 doi: 10.1016/j.cej.2019.05.136 – ident: ref19/cit19 doi: 10.1002/admt.202000677 – ident: ref36/cit36 doi: 10.1016/j.nanoen.2017.12.004 – ident: ref17/cit17 doi: 10.1021/acsnano.0c04113 – ident: ref33/cit33 doi: 10.1021/acs.chemrev.7b00291 – ident: ref16/cit16 doi: 10.1021/acs.nanolett.0c01987 – ident: ref42/cit42 doi: 10.1021/acsami.7b09617 – ident: ref39/cit39 doi: 10.1002/smll.201803411 – ident: ref3/cit3 doi: 10.1126/sciadv.aaz8693 – ident: ref22/cit22 doi: 10.1038/nmat3380 – ident: ref27/cit27 doi: 10.1021/acsami.0c11658 – ident: ref31/cit31 doi: 10.1016/j.nanoen.2017.10.007 – ident: ref20/cit20 doi: 10.1021/acsnano.9b02297 – ident: ref9/cit9 doi: 10.1038/s41467-017-02685-9 – ident: ref21/cit21 doi: 10.1002/adma.201801072 – ident: ref43/cit43 doi: 10.1016/j.nanoen.2020.105179 – ident: ref40/cit40 doi: 10.1021/acsnano.7b07613 – ident: ref15/cit15 doi: 10.1016/j.nanoen.2019.104235 – ident: ref30/cit30 doi: 10.1002/aelm.201800252 – ident: ref34/cit34 doi: 10.1021/acsami.7b07935 – ident: ref32/cit32 doi: 10.1002/adma.201904752 – ident: ref2/cit2 doi: 10.1126/sciadv.aba9624 – ident: ref29/cit29 doi: 10.1002/adma.201908214 – ident: ref41/cit41 doi: 10.1039/C5TC01723H |
| SSID | ssj0057876 |
| Score | 2.705172 |
| Snippet | The naturally microstructure-bioinspired piezoresistive sensor for human–machine interaction and human health monitoring represents an attractive opportunity... The naturally microstructure-bioinspired piezoresistive sensor for human-machine interaction and human health monitoring represents an attractive opportunity... |
| SourceID | proquest pubmed crossref acs |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 11555 |
| SubjectTerms | Humans Movement Nanofibers - chemistry Skin Wearable Electronic Devices |
| Title | Hierarchically Microstructure-Bioinspired Flexible Piezoresistive Bioelectronics |
| URI | http://dx.doi.org/10.1021/acsnano.1c01606 https://www.ncbi.nlm.nih.gov/pubmed/34128640 https://www.proquest.com/docview/2541324946 |
| Volume | 15 |
| WOSCitedRecordID | wos000679406500051&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1936-086X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057876 issn: 1936-0851 databaseCode: ACS dateStart: 20070801 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5s9aAH34_6KBF68JKabLZ5HGux9GIpqNBb2OxOIBASaWxBf72zSVpfFPQaZodkHjszzOQbgI4VK3ruR6aG9zS5L1zTD_TQuO87yrYk1c28XDbhjcf-dBpMPsGif3bwmX0rZJGJLO_aUoOhuQ3YZJTkamPuDx6Xl662O7dqIFOBTFnECsXnFwMdhmTxPQytyS3LGDPc-8fb7cNunUga_UrzB7CB2SHsfIEXPILJKNG_F5fbTtL0zXjQw3cVYOx8huZdkieZbrSjMoYaFzNK0Zgk-J5TCa5df4EG0XwuyimO4Xl4_zQYmfUGBVM4jqP3zPesmHIm3w08ppDCFFMBeazDkWPM0OaKLkpE0cO45yrJFPOEy3Xgt1GSf55AM8szPAODsdilbEWxyJZcRSrinHEhiHtMysWoBR2SRVh7QBGWzW1mh7WAwlpALegu5R7KGoVcL8NI1x-4WR14qQA41pNeLxUZkpPozofIMJ8XIVXBVHXzgBPNaaXhFTMK4yQfbp3_7QMuYJvpsRbLM5l3CU1SGl7Blly8JsWsDQ1v6rdL0_wAlmfeqA |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSD70d9RujBS2qy2byOVSwV21KwQm8hyU4gEBJpbEF_vbNJ2ipS0OuyO-zOY2eG2f0GoKlFgsadQJXwnip3fEt1XPlo3HEMoWsh5c28aDZhDwbOeOwOa6DN_8LQJnKilBdF_CW6gH5HY6mfZi09lJho1hqsm-RcpWa3H17md69UP6usI1OeTMHEAsznFwHpjcL8pzdaEWIWrqaz-_9N7sFOFVYq7VIP9qGG6QFsfwMbPIRhN5afjYveJ0nyofTlU7wSPnY6QfU-zuJUlt1RKB2JkhkkqAxj_MwoIZcXwQwVmrNsm5MfwWvncfTQVat-CqpvGIbsOm9qEUVQjuXaTCA5LSZcsl-DI8eIoc4FXZuIvomRaYmQCWb7FpdhgI4hWesx1NMsxVNQGIssil0EC_SQi0AEnDPu-0Q9IlFj0IAm8cKr7CH3ilI3072KQV7FoAa05uz3wgqTXLbGSFYvuF0seCvhOFZPvZnL0yOTkXUQP8VsmnuUE1MOzl1Oc05KQS-IkVMn_nDt7G8HuIbN7qjf83pPg-dz2GLywYtmq8y-gDoJEC9hI5y9x_nkqtDTL57h5iY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60iujB96M-I_TgJTXZbF7HWg0VtRRU6C0k2QkEQlIaW9Bf70ySVkUK4nXZHXbnsTPD7H7DWEuLJY47oUrwnqpwAkt1XHo07jiG1LUI82ZRNpuw-31nOHQH9acw-guDmyiQUlEW8cmqRzKuEQb0axzPgixv6xHholnLbMVEd07a3ek-z-5fUkGrqiVjrowBxRzQ5xcB8khR8dMjLQgzS3fjbf1vo9tssw4vlU6lDztsCbJdtvENdHCPDXoJfToue6Ck6bvyRE_yKhjZyRjUmyRPMiq_g1Q8QssMU1AGCXzkmJjThTAFBed8tc8p9tmrd_fS7al1XwU1MAyDus-bWoyRlGO5NpeAzotLF-3YECAg5qALidcnQGBCbFoy4pLbgSUoHNAhQqs9YI0sz-CIKZzHFsYwkod6JGQoQyG4CAKkHqPIIWyyFvLCr-2i8MuSN9f9mkF-zaAma89E4Ec1Njm1yEgXL7iaLxhVsByLp17OZOqj6VA9JMggnxQ-5saYiwtX4JzDSthzYujckT9CO_7bAS7Y2uDW8x_v-w8nbJ3TuxfNVrl9yhooPzhjq9H0LSnG56WqfgIOxeig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchically+Microstructure-Bioinspired+Flexible+Piezoresistive+Bioelectronics&rft.jtitle=ACS+nano&rft.au=Yang%2C+Tao&rft.au=Deng%2C+Weili&rft.au=Chu%2C+Xiang&rft.au=Wang%2C+Xiao&rft.date=2021-07-27&rft.issn=1936-086X&rft.eissn=1936-086X&rft.volume=15&rft.issue=7&rft.spage=11555&rft_id=info:doi/10.1021%2Facsnano.1c01606&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |