Numerical investigation of convergence in the $ L^{\infty} $ norm for modified SGFEM applied to elliptic interface problems
Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and...
Saved in:
| Published in: | AIMS mathematics Vol. 9; no. 11; pp. 31252 - 31273 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2024
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples illustrate the excellent properties of the proposed SGFEM, including its convergence in both the $ L^2 $ and $ L^{\infty} $ norms, as well as its stability and robustness. |
|---|---|
| AbstractList | Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples illustrate the excellent properties of the proposed SGFEM, including its convergence in both the $ L^2 $ and $ L^{\infty} $ norms, as well as its stability and robustness. |
| Author | Zhu, Pengfei Liu, Kai |
| Author_xml | – sequence: 1 givenname: Pengfei surname: Zhu fullname: Zhu, Pengfei organization: School of Computer and Information Engineering, Guizhou University of Commerce, Guiyang 550014, China – sequence: 2 givenname: Kai surname: Liu fullname: Liu, Kai organization: School of Science, East China University of Technology, Nanchang 330013, China |
| BookMark | eNpNkUlLBDEQhYMoOC5H7zl4bc3Wk-mjDG4w6kG9iU0lqcxk6O406SiI-N_tccNT1XsFXz14e2S7ix0ScsTZiaykOm0hr04EE4qXTG-RiVBaFtNqNtv-t--Sw2FYM8YEF0poNSHvty8tpmChoaF7xSGHJeQQOxo9tXF00hI7i-OR5hXSY7p4fn8Knc9vH6PoYmqpj4m20QUf0NH7y4vzGwp932xUjhSbJvQ52JGQMXkYWX2KpsF2OCA7HpoBD3_mPnm8OH-YXxWLu8vr-dmiACllLriQTmvUflYB6lIL5nEGErlzwCSW3ikAkJqXJQjmEKw3aio5emu1ASf3yfU310VY130KLaS3OkKov4yYljWkMWKDtTFCgVbceO9VZYzBcmoVGjs-mOpKjazim2VTHIaE_o_HWb0pot4UUf8WIT8BGs2BFA |
| Cites_doi | 10.1007/s00211-014-0609-1 10.1016/j.cma.2018.10.018 10.1016/j.cma.2020.112926 10.1016/j.cam.2019.112475 10.1016/j.enganabound.2022.01.010 10.1007/s00211-003-0473-x 10.1016/j.cma.2020.112889 10.1016/j.cam.2019.112558 10.1016/j.cma.2018.11.018 10.1016/j.camwa.2015.04.012 10.1016/j.cma.2011.09.012 10.1016/j.jcp.2020.110075 10.1016/j.cma.2013.07.010 10.1016/S0378-4754(99)00061-0 10.1016/j.camwa.2017.10.040 10.1016/j.cma.2016.02.030 10.1016/j.cma.2021.114537 10.1137/130912700 10.1088/0965-0393/17/4/043001 10.1016/j.cam.2023.115540 10.1016/j.camwa.2020.12.016 10.1016/j.cma.2020.112970 10.1093/imanum/7.3.283 10.1142/S0219876204000083 10.1002/nme.2768 10.1016/j.jcp.2011.01.033 10.1007/s002110050336 10.32604/cmes.2020.09831 10.1016/j.cma.2023.116703 10.1016/j.cma.2017.08.008 10.1017/CBO9780511618635 10.1002/nme.2914 10.1016/j.cma.2016.08.019 10.1007/s10915-021-01476-1 10.3934/dcdsb.2007.7.145 10.1016/S0045-7825(03)00346-3 10.1016/j.apnum.2019.03.010 10.1016/S0045-7825(01)00188-8 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.20241507 |
| DatabaseName | CrossRef DOAJ - Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 31273 |
| ExternalDocumentID | oai_doaj_org_article_bb24a741bfff49bbbe56c4ebcaa36794 10_3934_math_20241507 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a333t-123d77e7f89ae75720fe8a3e1dda03e5fd4aaa37155a20deacfb4631efcc7bad3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350799800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:46:08 EDT 2025 Sat Nov 29 06:04:49 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a333t-123d77e7f89ae75720fe8a3e1dda03e5fd4aaa37155a20deacfb4631efcc7bad3 |
| OpenAccessLink | https://doaj.org/article/bb24a741bfff49bbbe56c4ebcaa36794 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bb24a741bfff49bbbe56c4ebcaa36794 crossref_primary_10_3934_math_20241507 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20241507-3 key-10.3934/math.20241507-23 key-10.3934/math.20241507-4 key-10.3934/math.20241507-24 key-10.3934/math.20241507-5 key-10.3934/math.20241507-25 key-10.3934/math.20241507-6 key-10.3934/math.20241507-26 key-10.3934/math.20241507-7 key-10.3934/math.20241507-8 key-10.3934/math.20241507-20 key-10.3934/math.20241507-9 key-10.3934/math.20241507-21 key-10.3934/math.20241507-22 key-10.3934/math.20241507-27 key-10.3934/math.20241507-28 key-10.3934/math.20241507-29 key-10.3934/math.20241507-1 key-10.3934/math.20241507-2 key-10.3934/math.20241507-12 key-10.3934/math.20241507-34 key-10.3934/math.20241507-13 key-10.3934/math.20241507-35 key-10.3934/math.20241507-14 key-10.3934/math.20241507-36 key-10.3934/math.20241507-15 key-10.3934/math.20241507-37 key-10.3934/math.20241507-30 key-10.3934/math.20241507-31 key-10.3934/math.20241507-10 key-10.3934/math.20241507-32 key-10.3934/math.20241507-11 key-10.3934/math.20241507-33 key-10.3934/math.20241507-16 key-10.3934/math.20241507-38 key-10.3934/math.20241507-17 key-10.3934/math.20241507-18 key-10.3934/math.20241507-19 |
| References_xml | – ident: key-10.3934/math.20241507-24 doi: 10.1007/s00211-014-0609-1 – ident: key-10.3934/math.20241507-27 doi: 10.1016/j.cma.2018.10.018 – ident: key-10.3934/math.20241507-28 doi: 10.1016/j.cma.2020.112926 – ident: key-10.3934/math.20241507-32 doi: 10.1016/j.cam.2019.112475 – ident: key-10.3934/math.20241507-31 doi: 10.1016/j.enganabound.2022.01.010 – ident: key-10.3934/math.20241507-6 doi: 10.1007/s00211-003-0473-x – ident: key-10.3934/math.20241507-25 doi: 10.1016/j.cma.2020.112889 – ident: key-10.3934/math.20241507-26 doi: 10.1016/j.cam.2019.112558 – ident: key-10.3934/math.20241507-34 doi: 10.1016/j.cma.2018.11.018 – ident: key-10.3934/math.20241507-11 doi: 10.1016/j.camwa.2015.04.012 – ident: key-10.3934/math.20241507-21 doi: 10.1016/j.cma.2011.09.012 – ident: key-10.3934/math.20241507-14 doi: 10.1016/j.jcp.2020.110075 – ident: key-10.3934/math.20241507-33 doi: 10.1016/j.cma.2013.07.010 – ident: key-10.3934/math.20241507-10 doi: 10.1016/S0378-4754(99)00061-0 – ident: key-10.3934/math.20241507-8 doi: 10.1016/j.camwa.2017.10.040 – ident: key-10.3934/math.20241507-22 doi: 10.1016/j.cma.2016.02.030 – ident: key-10.3934/math.20241507-37 doi: 10.1016/j.cma.2021.114537 – ident: key-10.3934/math.20241507-9 doi: 10.1137/130912700 – ident: key-10.3934/math.20241507-17 doi: 10.1088/0965-0393/17/4/043001 – ident: key-10.3934/math.20241507-29 doi: 10.1016/j.cam.2023.115540 – ident: key-10.3934/math.20241507-12 doi: 10.1016/j.camwa.2020.12.016 – ident: key-10.3934/math.20241507-35 doi: 10.1016/j.cma.2020.112970 – ident: key-10.3934/math.20241507-5 doi: 10.1093/imanum/7.3.283 – ident: key-10.3934/math.20241507-16 doi: 10.1142/S0219876204000083 – ident: key-10.3934/math.20241507-19 doi: 10.1002/nme.2768 – ident: key-10.3934/math.20241507-20 doi: 10.1016/j.jcp.2011.01.033 – ident: key-10.3934/math.20241507-1 doi: 10.1007/s002110050336 – ident: key-10.3934/math.20241507-4 doi: 10.32604/cmes.2020.09831 – ident: key-10.3934/math.20241507-7 doi: 10.1016/j.cma.2023.116703 – ident: key-10.3934/math.20241507-23 doi: 10.1016/j.cma.2017.08.008 – ident: key-10.3934/math.20241507-3 doi: 10.1017/CBO9780511618635 – ident: key-10.3934/math.20241507-18 doi: 10.1002/nme.2914 – ident: key-10.3934/math.20241507-30 doi: 10.1016/j.cma.2016.08.019 – ident: key-10.3934/math.20241507-38 doi: 10.1007/s10915-021-01476-1 – ident: key-10.3934/math.20241507-2 doi: 10.3934/dcdsb.2007.7.145 – ident: key-10.3934/math.20241507-36 doi: 10.1016/S0045-7825(03)00346-3 – ident: key-10.3934/math.20241507-13 doi: 10.1016/j.apnum.2019.03.010 – ident: key-10.3934/math.20241507-15 doi: 10.1016/S0045-7825(01)00188-8 |
| SSID | ssj0002124274 |
| Score | 2.2495935 |
| Snippet | Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 31252 |
| SubjectTerms | convergence elliptic interface problem l^{\infty} $ norm scaled condition number sgfem |
| Title | Numerical investigation of convergence in the $ L^{\infty} $ norm for modified SGFEM applied to elliptic interface problems |
| URI | https://doaj.org/article/bb24a741bfff49bbbe56c4ebcaa36794 |
| Volume | 9 |
| WOSCitedRecordID | wos001350799800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPOhB_MT5xTsMb2VtkzXtUWXTwzYEFXYQS5ImMNBWtk6QoX-7L003e_PipdCvNPxeeO_3kvT3COmgiX0as8DDDEV6LNHMQxYuPRoZFWql0SlWVUuGfDyOJ5PkvlHqy-4Jc_LADriulCETGPakMYYlUkrdixSzW3gEjfBL1vv6PGkkU9YHo0NmmG85UU2aUNZF_mfXHmzAsqVjG0GoodVfBZXBLtmp2SBcuV7skQ2d75Pt0VpKdX5AluOFW1R5hemvJkaRQ2Gg2jJe_T2p8SbgW9CB4cvyGYdN-fmFJzlSUkBeCm9FNjVIN-HhdtAfgXDkE8oCrCIn-g0FVjliZgS2VVeZmR-Sp0H_8ebOqysmeIJSWnoYhjLONTdxIjTv8dA3OhZUB1kmfKp7JmMCceNIIkToZ-h0jWQRDbRRikuR0SPSyotcHxPgijEZUKGFzxgXTMZInKhEtoaMMvZ7bXK5gjB9d8IYKSYUFuvUYp2usG6Tawvw-iGrZ11dQCuntZXTv6x88h-NnJIt2yk3gXJGWuVsoc_Jpvoop_PZRTWA8Dj67v8AapDQfA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+convergence+in+the+%24+L%5E%7B%5Cinfty%7D+%24+norm+for+modified+SGFEM+applied+to+elliptic+interface+problems&rft.jtitle=AIMS+mathematics&rft.au=Pengfei+Zhu&rft.au=Kai+Liu&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=11&rft.spage=31252&rft.epage=31273&rft_id=info:doi/10.3934%2Fmath.20241507&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bb24a741bfff49bbbe56c4ebcaa36794 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |