Numerical investigation of convergence in the $ L^{\infty} $ norm for modified SGFEM applied to elliptic interface problems

Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:AIMS mathematics Ročník 9; číslo 11; s. 31252 - 31273
Hlavní autori: Zhu, Pengfei, Liu, Kai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: AIMS Press 01.01.2024
Predmet:
ISSN:2473-6988, 2473-6988
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples illustrate the excellent properties of the proposed SGFEM, including its convergence in both the $ L^2 $ and $ L^{\infty} $ norms, as well as its stability and robustness.
AbstractList Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples illustrate the excellent properties of the proposed SGFEM, including its convergence in both the $ L^2 $ and $ L^{\infty} $ norms, as well as its stability and robustness.
Author Zhu, Pengfei
Liu, Kai
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Zhu
  fullname: Zhu, Pengfei
  organization: School of Computer and Information Engineering, Guizhou University of Commerce, Guiyang 550014, China
– sequence: 2
  givenname: Kai
  surname: Liu
  fullname: Liu, Kai
  organization: School of Science, East China University of Technology, Nanchang 330013, China
BookMark eNpNkUlLBDEQhYMoOC5H7zl4bc3Wk-mjDG4w6kG9iU0lqcxk6O406SiI-N_tccNT1XsFXz14e2S7ix0ScsTZiaykOm0hr04EE4qXTG-RiVBaFtNqNtv-t--Sw2FYM8YEF0poNSHvty8tpmChoaF7xSGHJeQQOxo9tXF00hI7i-OR5hXSY7p4fn8Knc9vH6PoYmqpj4m20QUf0NH7y4vzGwp932xUjhSbJvQ52JGQMXkYWX2KpsF2OCA7HpoBD3_mPnm8OH-YXxWLu8vr-dmiACllLriQTmvUflYB6lIL5nEGErlzwCSW3ikAkJqXJQjmEKw3aio5emu1ASf3yfU310VY130KLaS3OkKov4yYljWkMWKDtTFCgVbceO9VZYzBcmoVGjs-mOpKjazim2VTHIaE_o_HWb0pot4UUf8WIT8BGs2BFA
Cites_doi 10.1007/s00211-014-0609-1
10.1016/j.cma.2018.10.018
10.1016/j.cma.2020.112926
10.1016/j.cam.2019.112475
10.1016/j.enganabound.2022.01.010
10.1007/s00211-003-0473-x
10.1016/j.cma.2020.112889
10.1016/j.cam.2019.112558
10.1016/j.cma.2018.11.018
10.1016/j.camwa.2015.04.012
10.1016/j.cma.2011.09.012
10.1016/j.jcp.2020.110075
10.1016/j.cma.2013.07.010
10.1016/S0378-4754(99)00061-0
10.1016/j.camwa.2017.10.040
10.1016/j.cma.2016.02.030
10.1016/j.cma.2021.114537
10.1137/130912700
10.1088/0965-0393/17/4/043001
10.1016/j.cam.2023.115540
10.1016/j.camwa.2020.12.016
10.1016/j.cma.2020.112970
10.1093/imanum/7.3.283
10.1142/S0219876204000083
10.1002/nme.2768
10.1016/j.jcp.2011.01.033
10.1007/s002110050336
10.32604/cmes.2020.09831
10.1016/j.cma.2023.116703
10.1016/j.cma.2017.08.008
10.1017/CBO9780511618635
10.1002/nme.2914
10.1016/j.cma.2016.08.019
10.1007/s10915-021-01476-1
10.3934/dcdsb.2007.7.145
10.1016/S0045-7825(03)00346-3
10.1016/j.apnum.2019.03.010
10.1016/S0045-7825(01)00188-8
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20241507
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 31273
ExternalDocumentID oai_doaj_org_article_bb24a741bfff49bbbe56c4ebcaa36794
10_3934_math_20241507
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a333t-123d77e7f89ae75720fe8a3e1dda03e5fd4aaa37155a20deacfb4631efcc7bad3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350799800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:46:08 EDT 2025
Sat Nov 29 06:04:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a333t-123d77e7f89ae75720fe8a3e1dda03e5fd4aaa37155a20deacfb4631efcc7bad3
OpenAccessLink https://doaj.org/article/bb24a741bfff49bbbe56c4ebcaa36794
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_bb24a741bfff49bbbe56c4ebcaa36794
crossref_primary_10_3934_math_20241507
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20241507-3
key-10.3934/math.20241507-23
key-10.3934/math.20241507-4
key-10.3934/math.20241507-24
key-10.3934/math.20241507-5
key-10.3934/math.20241507-25
key-10.3934/math.20241507-6
key-10.3934/math.20241507-26
key-10.3934/math.20241507-7
key-10.3934/math.20241507-8
key-10.3934/math.20241507-20
key-10.3934/math.20241507-9
key-10.3934/math.20241507-21
key-10.3934/math.20241507-22
key-10.3934/math.20241507-27
key-10.3934/math.20241507-28
key-10.3934/math.20241507-29
key-10.3934/math.20241507-1
key-10.3934/math.20241507-2
key-10.3934/math.20241507-12
key-10.3934/math.20241507-34
key-10.3934/math.20241507-13
key-10.3934/math.20241507-35
key-10.3934/math.20241507-14
key-10.3934/math.20241507-36
key-10.3934/math.20241507-15
key-10.3934/math.20241507-37
key-10.3934/math.20241507-30
key-10.3934/math.20241507-31
key-10.3934/math.20241507-10
key-10.3934/math.20241507-32
key-10.3934/math.20241507-11
key-10.3934/math.20241507-33
key-10.3934/math.20241507-16
key-10.3934/math.20241507-38
key-10.3934/math.20241507-17
key-10.3934/math.20241507-18
key-10.3934/math.20241507-19
References_xml – ident: key-10.3934/math.20241507-24
  doi: 10.1007/s00211-014-0609-1
– ident: key-10.3934/math.20241507-27
  doi: 10.1016/j.cma.2018.10.018
– ident: key-10.3934/math.20241507-28
  doi: 10.1016/j.cma.2020.112926
– ident: key-10.3934/math.20241507-32
  doi: 10.1016/j.cam.2019.112475
– ident: key-10.3934/math.20241507-31
  doi: 10.1016/j.enganabound.2022.01.010
– ident: key-10.3934/math.20241507-6
  doi: 10.1007/s00211-003-0473-x
– ident: key-10.3934/math.20241507-25
  doi: 10.1016/j.cma.2020.112889
– ident: key-10.3934/math.20241507-26
  doi: 10.1016/j.cam.2019.112558
– ident: key-10.3934/math.20241507-34
  doi: 10.1016/j.cma.2018.11.018
– ident: key-10.3934/math.20241507-11
  doi: 10.1016/j.camwa.2015.04.012
– ident: key-10.3934/math.20241507-21
  doi: 10.1016/j.cma.2011.09.012
– ident: key-10.3934/math.20241507-14
  doi: 10.1016/j.jcp.2020.110075
– ident: key-10.3934/math.20241507-33
  doi: 10.1016/j.cma.2013.07.010
– ident: key-10.3934/math.20241507-10
  doi: 10.1016/S0378-4754(99)00061-0
– ident: key-10.3934/math.20241507-8
  doi: 10.1016/j.camwa.2017.10.040
– ident: key-10.3934/math.20241507-22
  doi: 10.1016/j.cma.2016.02.030
– ident: key-10.3934/math.20241507-37
  doi: 10.1016/j.cma.2021.114537
– ident: key-10.3934/math.20241507-9
  doi: 10.1137/130912700
– ident: key-10.3934/math.20241507-17
  doi: 10.1088/0965-0393/17/4/043001
– ident: key-10.3934/math.20241507-29
  doi: 10.1016/j.cam.2023.115540
– ident: key-10.3934/math.20241507-12
  doi: 10.1016/j.camwa.2020.12.016
– ident: key-10.3934/math.20241507-35
  doi: 10.1016/j.cma.2020.112970
– ident: key-10.3934/math.20241507-5
  doi: 10.1093/imanum/7.3.283
– ident: key-10.3934/math.20241507-16
  doi: 10.1142/S0219876204000083
– ident: key-10.3934/math.20241507-19
  doi: 10.1002/nme.2768
– ident: key-10.3934/math.20241507-20
  doi: 10.1016/j.jcp.2011.01.033
– ident: key-10.3934/math.20241507-1
  doi: 10.1007/s002110050336
– ident: key-10.3934/math.20241507-4
  doi: 10.32604/cmes.2020.09831
– ident: key-10.3934/math.20241507-7
  doi: 10.1016/j.cma.2023.116703
– ident: key-10.3934/math.20241507-23
  doi: 10.1016/j.cma.2017.08.008
– ident: key-10.3934/math.20241507-3
  doi: 10.1017/CBO9780511618635
– ident: key-10.3934/math.20241507-18
  doi: 10.1002/nme.2914
– ident: key-10.3934/math.20241507-30
  doi: 10.1016/j.cma.2016.08.019
– ident: key-10.3934/math.20241507-38
  doi: 10.1007/s10915-021-01476-1
– ident: key-10.3934/math.20241507-2
  doi: 10.3934/dcdsb.2007.7.145
– ident: key-10.3934/math.20241507-36
  doi: 10.1016/S0045-7825(03)00346-3
– ident: key-10.3934/math.20241507-13
  doi: 10.1016/j.apnum.2019.03.010
– ident: key-10.3934/math.20241507-15
  doi: 10.1016/S0045-7825(01)00188-8
SSID ssj0002124274
Score 2.2496932
Snippet Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 31252
SubjectTerms convergence
elliptic interface problem
l^{\infty} $ norm
scaled condition number
sgfem
Title Numerical investigation of convergence in the $ L^{\infty} $ norm for modified SGFEM applied to elliptic interface problems
URI https://doaj.org/article/bb24a741bfff49bbbe56c4ebcaa36794
Volume 9
WOSCitedRecordID wos001350799800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPOhBfGJ9sYfiLTTNbrLZo0qrh7YIPuhBDPuEgibSpoIU_e3OZtOamxcvIc9l-WYz80128w1CbRVFXIRaBIIYFVCl3PwuvO5JLKxOdRrJ6vexpwEbjdLxmN81Sn25NWFeHtgD15EyogLCnrTWUi6lNHGiqFvCI0gCg8l535DxRjLlfDA4ZAr5lhfVJJzQDvA_N_fgApYrHdsIQg2t_iqo9HfQds0G8aXvxS5aM_ke2hqupFRn-2gxmvtJlVc8-dXEKHJcWFwtGa_-njRwEcNTuI0HL4tnGDbl5xcc5EBJMfBS_FboiQW6ie9v-r0hFp584rLATpET_IbCTjliagW0VVeZmR2gx37v4fo2qCsmANSElAGEIc2YYTblwrCYRaE1KVihq7UIiYmtpgJwY0AiRBRqcLpW0oR0jVWKSaHJIVrPi9wcIdyVVFjJIaOAPcsMF9ykNuTg27WSEW-hiyWE2bsXxsggoXBYZw7rbIl1C105gFc3OT3r6gRYOautnP1l5eP_aOQEbbpO-Q8op2i9nM7NGdpQH-VkNj2vBhBsh9-9H0gp0tM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+investigation+of+convergence+in+the+%24+L%5E%7B%5Cinfty%7D+%24+norm+for+modified+SGFEM+applied+to+elliptic+interface+problems&rft.jtitle=AIMS+mathematics&rft.au=Pengfei+Zhu&rft.au=Kai+Liu&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=11&rft.spage=31252&rft.epage=31273&rft_id=info:doi/10.3934%2Fmath.20241507&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bb24a741bfff49bbbe56c4ebcaa36794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon