A novel deep learning framework for landslide susceptibility assessment using improved deep belief networks with the intelligent optimization algorithm

This research proposed a novel deep learning framework that combines the Laplace function sparse regularized continuous deep belief network (LSCDBN) and the Gray Wolf Optimization Algorithm (GWO) and the Whale Optimization Algorithm (WOA), to perform landslide susceptibility assessment. This framewo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers and geotechnics Ročník 167; s. 106106
Hlavní autori: Meng, Shaoqiang, Shi, Zhenming, Li, Gang, Peng, Ming, Liu, Liu, Zheng, Hongchao, Zhou, Changshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.03.2024
Predmet:
ISSN:0266-352X, 1873-7633
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This research proposed a novel deep learning framework that combines the Laplace function sparse regularized continuous deep belief network (LSCDBN) and the Gray Wolf Optimization Algorithm (GWO) and the Whale Optimization Algorithm (WOA), to perform landslide susceptibility assessment. This framework mitigates the challenges of feature homogenization for continuous input variables for landslide condition factors, limited landslide samples, and local optima in the training process. To facilitate this investigation, a meticulous compilation of existing landslide occurrences was used to create a database comprising 18 landslide conditioning factors. To compare the performance of the model, a set of statistical indicators was employed. The results demonstrate the superior performance of both the LSCDBN-GWO model (AUC = 0.952, RMSE = 0.182) and LSCDBN-WOA model (AUC = 0.964, RMSE = 0.174) when compared to the alone LSCDBN model (AUC = 0.913, RMSE = 0.291). It is noteworthy that the performance of the LSCDBN model outperformed that of lone machine learning models (SVM, BP, RF, and LR), lone deep learning models (RNN and CNN), and hybrid deep learning models (CNN-GWO and CNN-WOA). Therefore, it is evident that the proposed LSCDBN-WOA framework can generate models that are optimally suited for landslide susceptibility assessment.
AbstractList This research proposed a novel deep learning framework that combines the Laplace function sparse regularized continuous deep belief network (LSCDBN) and the Gray Wolf Optimization Algorithm (GWO) and the Whale Optimization Algorithm (WOA), to perform landslide susceptibility assessment. This framework mitigates the challenges of feature homogenization for continuous input variables for landslide condition factors, limited landslide samples, and local optima in the training process. To facilitate this investigation, a meticulous compilation of existing landslide occurrences was used to create a database comprising 18 landslide conditioning factors. To compare the performance of the model, a set of statistical indicators was employed. The results demonstrate the superior performance of both the LSCDBN-GWO model (AUC = 0.952, RMSE = 0.182) and LSCDBN-WOA model (AUC = 0.964, RMSE = 0.174) when compared to the alone LSCDBN model (AUC = 0.913, RMSE = 0.291). It is noteworthy that the performance of the LSCDBN model outperformed that of lone machine learning models (SVM, BP, RF, and LR), lone deep learning models (RNN and CNN), and hybrid deep learning models (CNN-GWO and CNN-WOA). Therefore, it is evident that the proposed LSCDBN-WOA framework can generate models that are optimally suited for landslide susceptibility assessment.
ArticleNumber 106106
Author Peng, Ming
Li, Gang
Meng, Shaoqiang
Liu, Liu
Shi, Zhenming
Zheng, Hongchao
Zhou, Changshi
Author_xml – sequence: 1
  givenname: Shaoqiang
  surname: Meng
  fullname: Meng, Shaoqiang
  organization: Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
– sequence: 2
  givenname: Zhenming
  surname: Shi
  fullname: Shi, Zhenming
  organization: Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
– sequence: 3
  givenname: Gang
  surname: Li
  fullname: Li, Gang
  organization: Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
– sequence: 4
  givenname: Ming
  surname: Peng
  fullname: Peng, Ming
  email: pengming@tongji.edu.cn
  organization: Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
– sequence: 5
  givenname: Liu
  surname: Liu
  fullname: Liu, Liu
  organization: State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
– sequence: 6
  givenname: Hongchao
  surname: Zheng
  fullname: Zheng, Hongchao
  organization: Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China
– sequence: 7
  givenname: Changshi
  surname: Zhou
  fullname: Zhou, Changshi
  organization: Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
BookMark eNqFkEtKBDEQhoMoOI4eQcgFeux0-jW4EBFfMOBGwV3Io3qmxnTSJFHRi3hdux1XboSCgqK-j6r_iOw774CQU5YvWM7qs-1C-35Yg18UeVGOs3qsPTJjbcOzpuZ8n8zyoq4zXhXPh-Qoxm0-cst2OSNfl9T5N7DUAAzUggwO3Zp2Qfbw7sML7XygVjoTLRqg8TVqGBIqtJg-qIwRYuzBJfoaJw77IYw6s9MpsAgddZAmVaTvmDY0bYCiS2AtrifQj7oeP2VC76i0ax_Grf6YHHTSRjj57XPydHP9eHWXrR5u768uV5nkvEhZaYwyS6V1p9qqgsaUvFRFydqyazVvcsmqIq9MyaqWQds2hWmkMZop1UGl6obPyfnOq4OPMUAnNKafW1KQaAXLxZSx2IrfjMWUsdhlPNLVH3oI2Mvw8S93seNgfO0NIYioEZwGgwF0EsbjP4Zv7BKh2Q
CitedBy_id crossref_primary_10_3390_su16209085
crossref_primary_10_3390_su16114547
crossref_primary_10_3390_app15158212
crossref_primary_10_1016_j_ijrmms_2025_106234
crossref_primary_10_3390_app15158416
crossref_primary_10_1007_s11069_025_07306_z
crossref_primary_10_1016_j_apenergy_2024_123673
crossref_primary_10_3390_polym16233368
crossref_primary_10_1007_s00477_024_02876_z
crossref_primary_10_1007_s10064_025_04251_w
crossref_primary_10_1016_j_compgeo_2024_106440
crossref_primary_10_1016_j_asoc_2024_111627
crossref_primary_10_1080_19475705_2024_2341176
crossref_primary_10_3390_app142411853
crossref_primary_10_3390_w16233503
crossref_primary_10_1016_j_jrmge_2024_11_062
crossref_primary_10_1080_10298436_2025_2539493
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_3390_rs16122206
crossref_primary_10_1016_j_asr_2025_09_031
crossref_primary_10_1038_s41598_025_97074_4
crossref_primary_10_1016_j_dsp_2025_105340
crossref_primary_10_1016_j_aei_2025_103226
crossref_primary_10_1016_j_istruc_2025_108645
crossref_primary_10_1016_j_jclepro_2024_144112
crossref_primary_10_1007_s10064_024_03980_8
crossref_primary_10_1038_s41598_024_82580_8
crossref_primary_10_3390_geographies5030040
crossref_primary_10_1007_s10064_025_04092_7
crossref_primary_10_3390_su17115084
crossref_primary_10_1080_17499518_2024_2422498
crossref_primary_10_1109_ACCESS_2025_3536888
crossref_primary_10_1109_TGRS_2025_3541171
crossref_primary_10_1007_s42452_025_06999_y
crossref_primary_10_1016_j_geomorph_2024_109522
crossref_primary_10_1002_ente_202500805
Cites_doi 10.1038/s41598-021-89899-6
10.1007/s10346-020-01485-5
10.1080/10106049.2022.2134464
10.5194/essd-14-3157-2022
10.1007/s10346-022-01935-2
10.1016/j.advengsoft.2016.01.008
10.1080/13658816.2020.1808897
10.1016/j.enggeo.2018.10.025
10.1007/s12665-021-09788-z
10.1007/s11356-022-20213-1
10.1038/ngeo2868
10.1016/j.scitotenv.2017.09.262
10.1016/j.advengsoft.2013.12.007
10.1016/j.neucom.2018.08.093
10.3390/f10020157
10.1016/j.scitotenv.2019.01.329
10.1007/s11069-021-04800-y
10.1016/j.isprsjprs.2018.03.020
10.1016/j.compgeo.2023.105413
10.1038/srep09899
10.1016/j.cageo.2021.104860
10.1007/s00477-021-02165-z
10.1016/j.compgeo.2020.103598
10.1016/j.jenvman.2018.03.089
10.1016/j.gr.2020.08.007
10.3389/fenvs.2022.1028373
10.1016/j.geomorph.2020.107150
10.1007/s00500-019-03856-0
10.1007/s10346-019-01274-9
10.1016/j.jhydrol.2013.11.021
10.3390/w10091210
10.1007/s10346-019-01320-6
10.1007/s12145-022-00889-2
10.1016/j.gsf.2020.02.012
10.1109/NABIC.2009.5393690
10.1016/j.catena.2020.104833
10.1016/j.earscirev.2020.103225
10.1016/j.scitotenv.2021.151752
10.1016/j.earscirev.2022.104064
10.1016/j.scitotenv.2019.134413
10.1016/j.cageo.2023.105364
10.1016/j.catena.2019.104188
10.1016/j.jhydrol.2020.125734
10.1016/j.catena.2018.12.011
10.1016/j.catena.2019.104172
10.34194/geusb.v48.8293
10.1109/TASLP.2014.2303296
10.1016/j.jenvman.2021.114367
10.1016/j.compind.2018.01.005
10.1016/j.cageo.2019.104329
10.1007/s10489-020-02050-2
10.1016/j.scitotenv.2019.02.263
10.1016/j.dendro.2022.125935
10.1016/j.catena.2023.107590
10.1016/j.gsf.2020.06.013
10.1016/j.enggeo.2017.03.025
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compgeo.2024.106106
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7633
ExternalDocumentID 10_1016_j_compgeo_2024_106106
S0266352X24000429
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IMUCA
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSE
SST
SSV
SSZ
T5K
TN5
WH7
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-a332t-4ddbd9bccfb855e7d434b24184f8c370a15205d41581e8872d7addc1bbfe5b673
ISICitedReferencesCount 41
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001174965600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-352X
IngestDate Sat Nov 29 07:20:16 EST 2025
Tue Nov 18 20:49:36 EST 2025
Sat Apr 13 16:38:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Landslide susceptibility assessment
Deep belief network
Frequency ratio
Intelligent optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a332t-4ddbd9bccfb855e7d434b24184f8c370a15205d41581e8872d7addc1bbfe5b673
ParticipantIDs crossref_citationtrail_10_1016_j_compgeo_2024_106106
crossref_primary_10_1016_j_compgeo_2024_106106
elsevier_sciencedirect_doi_10_1016_j_compgeo_2024_106106
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Computers and geotechnics
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nguyen (b0135) 2019; 10
Tien Bui (b0245) 2020; 701
Dikshit, Pradhan, Alamri (b0040) 2021; 100
Ronoud, Asadi (b0185) 2019; 23
Wan (b0255) 2018; 143
Zhu, Huang, Sun (b0330) 2020; 123
Peter (b0155) 2021
Seyedali, Andrew (b0200) 2016; 95
Li, Lan, Strom, Macciotta (b0110) 2022; 19
Seyedali, Mohammad, Andrew (b0205) 2014; 69
Gatto, Montrasio (b0060) 2023; 154
Ibrokhimov, Hur, Kim, Kang (b0085) 2021; 51
Shafizadeh Moghadam, Valavi, Shahabi, Chapi, Shirzadi (b0210) 2018; 217
Kumar, L.A., K., G.N., S., B.K.K., 2014. Improving real time flood forecasting using fuzzy inference system. Journal of Hydrology, 509, 25-41.
Yong (b0295) 2022; 36
Salleh, Abd Rahman, Othman, Wan Mohd (b0190) 2018; 117
Li, Wu, Chen, Huang (b0115) 2019; 17
Peter, R., Jakobsen, Bjørn, Hermansen, 2020. Danmarks Digitale Jordartskort 1 25,000, Vers. 5.0. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2020/18, 1-28.
Rafiei Sardooi (b0170) 2021; 80
Chowdhuri (b0030) 2022; 37
Xu, Allen, Zhang, Li, He (b0285) 2020; 359
Pedersen, Schack, S.A., Gravesen, P., 2021. Kortbladsbeskrivelse, Geologisk kort over Danmark, 1:50 000, Møn Dele af 1511 I, 1511 IV og 1512 II. GEUS Bulletin, 48, 1-51.
Du (b0045) 2021; 155
Sivakumar, Ghosh (b0225) 2021; 108
Zhang (b0305) 2019; 182
Aslan, De Michele, Raucoules, Bernardie, Cakir (b0015) 2021; 11
Merghadi (b0130) 2020; 207
Aktas, San (b0010) 2019; 133
Tien, B., Dieu et al., 2018. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water, 10, 1210-1238.
Khalil (b0095) 2022; 10
Wang, Zhang, Yin, Luo, Li (b0275) 2021; 12
Fang, Wang, Peng, Hong (b0050) 2020; 35
Zhu (b0325) 2020; 20
Hakim (b0065) 2022; 305
Henriksen, H. et al., 2022. Sammenfatningsrapport vedr. modelleverancer til Hydrologisk Informations- og Prognosesystem. De Nationale Geologiske Undersøgelser for Danmark og Grønland: København, Denmark, 1-42.
Wang, Fang, Hong (b0260) 2019; 666
Wang, Wu, Yang, Wang (b0270) 2023; 159
Tehranya, Jonesa, Shabanib (b0235) 2019; 175
McColl (b0125) 2017; 10
Zhu (b0320) 2019; 183
Wang, Han, Guo, Qiao (b0265) 2020; 396
Dahal, Lombardo (b0035) 2023; 176
Razavi, Vahid, Kornejady, Pourghasemi, Keesstra (b0180) 2018; 615
Sreelakshmi, Vinod Chandra, Shaji (b0230) 2022; 15
Zhang, Cai, Liu (b0310) 2022; 72
Fang, Wang, Peng, Hong (b0055) 2021; 594
Jian, Yufeng, Adrian, Tugen (b0090) 2017; 222
Wei, Shuaixing, Siming (b0280) 2018; 247
Sarikaya, Hinton, Deoras (b0195) 2014; 22
Shahabi, Hashim (b0215) 2015; 5
Yang, X., Deb, S., 2009. Cuckoo search via Lévy flights. In: Proceedings of the world congress on nature & biologically inspired computing. NaBIC, 210–214.
Chen, Chen (b0025) 2021; 196
Lee (b0105) 2019; 35
Ozturk (b0140) 2020; 18
He (b0070) 2019; 663
Zhao, Xu, Hu, Wang, Ding (b0315) 2024; 234
Chapi, Singh, Shirzadi, Shahabi, Bui (b0020) 2017; 627
Agency, D., 2021. DHM product specification v1.0.0. Danish Agency for Data Supply and Efficiency, 1-21.
Luetzenburg, Svennevig, Bjørk, Keiding, Kroon (b0120) 2022; 14
Rasigraf, Wagner (b0175) 2022; 231
Park, Lee (b0145) 2022; 32
Huang (b0080) 2019; 17
Youssef, Pourghasemi, El-Haddad (b0300) 2022; 29
Thi Ngo (b0240) 2021; 12
Qiu, Su, Zou, Geng (b0165) 2022; 818
Shao, Jiang, Li, Liang (b0220) 2018; 96
10.1016/j.compgeo.2024.106106_b0100
Peter (10.1016/j.compgeo.2024.106106_b0155) 2021
Ozturk (10.1016/j.compgeo.2024.106106_b0140) 2020; 18
Sivakumar (10.1016/j.compgeo.2024.106106_b0225) 2021; 108
Chowdhuri (10.1016/j.compgeo.2024.106106_b0030) 2022; 37
Shafizadeh Moghadam (10.1016/j.compgeo.2024.106106_b0210) 2018; 217
Jian (10.1016/j.compgeo.2024.106106_b0090) 2017; 222
Shao (10.1016/j.compgeo.2024.106106_b0220) 2018; 96
Park (10.1016/j.compgeo.2024.106106_b0145) 2022; 32
Qiu (10.1016/j.compgeo.2024.106106_b0165) 2022; 818
Shahabi (10.1016/j.compgeo.2024.106106_b0215) 2015; 5
Wang (10.1016/j.compgeo.2024.106106_b0275) 2021; 12
Zhang (10.1016/j.compgeo.2024.106106_b0305) 2019; 182
Aslan (10.1016/j.compgeo.2024.106106_b0015) 2021; 11
Chen (10.1016/j.compgeo.2024.106106_b0025) 2021; 196
Dikshit (10.1016/j.compgeo.2024.106106_b0040) 2021; 100
Du (10.1016/j.compgeo.2024.106106_b0045) 2021; 155
Yong (10.1016/j.compgeo.2024.106106_b0295) 2022; 36
Tien Bui (10.1016/j.compgeo.2024.106106_b0245) 2020; 701
Ronoud (10.1016/j.compgeo.2024.106106_b0185) 2019; 23
Fang (10.1016/j.compgeo.2024.106106_b0050) 2020; 35
10.1016/j.compgeo.2024.106106_b0075
10.1016/j.compgeo.2024.106106_b0150
Wei (10.1016/j.compgeo.2024.106106_b0280) 2018; 247
Youssef (10.1016/j.compgeo.2024.106106_b0300) 2022; 29
Rafiei Sardooi (10.1016/j.compgeo.2024.106106_b0170) 2021; 80
Dahal (10.1016/j.compgeo.2024.106106_b0035) 2023; 176
Thi Ngo (10.1016/j.compgeo.2024.106106_b0240) 2021; 12
Luetzenburg (10.1016/j.compgeo.2024.106106_b0120) 2022; 14
Wang (10.1016/j.compgeo.2024.106106_b0260) 2019; 666
Xu (10.1016/j.compgeo.2024.106106_b0285) 2020; 359
10.1016/j.compgeo.2024.106106_b0160
Hakim (10.1016/j.compgeo.2024.106106_b0065) 2022; 305
Khalil (10.1016/j.compgeo.2024.106106_b0095) 2022; 10
He (10.1016/j.compgeo.2024.106106_b0070) 2019; 663
Ibrokhimov (10.1016/j.compgeo.2024.106106_b0085) 2021; 51
Sreelakshmi (10.1016/j.compgeo.2024.106106_b0230) 2022; 15
10.1016/j.compgeo.2024.106106_b0005
Wan (10.1016/j.compgeo.2024.106106_b0255) 2018; 143
Wang (10.1016/j.compgeo.2024.106106_b0270) 2023; 159
Li (10.1016/j.compgeo.2024.106106_b0110) 2022; 19
Zhang (10.1016/j.compgeo.2024.106106_b0310) 2022; 72
Sarikaya (10.1016/j.compgeo.2024.106106_b0195) 2014; 22
Razavi (10.1016/j.compgeo.2024.106106_b0180) 2018; 615
Seyedali (10.1016/j.compgeo.2024.106106_b0200) 2016; 95
10.1016/j.compgeo.2024.106106_b0290
Li (10.1016/j.compgeo.2024.106106_b0115) 2019; 17
Seyedali (10.1016/j.compgeo.2024.106106_b0205) 2014; 69
Wang (10.1016/j.compgeo.2024.106106_b0265) 2020; 396
Huang (10.1016/j.compgeo.2024.106106_b0080) 2019; 17
Aktas (10.1016/j.compgeo.2024.106106_b0010) 2019; 133
Zhu (10.1016/j.compgeo.2024.106106_b0325) 2020; 20
Zhu (10.1016/j.compgeo.2024.106106_b0320) 2019; 183
Chapi (10.1016/j.compgeo.2024.106106_b0020) 2017; 627
10.1016/j.compgeo.2024.106106_b0250
Zhao (10.1016/j.compgeo.2024.106106_b0315) 2024; 234
Gatto (10.1016/j.compgeo.2024.106106_b0060) 2023; 154
Nguyen (10.1016/j.compgeo.2024.106106_b0135) 2019; 10
Tehranya (10.1016/j.compgeo.2024.106106_b0235) 2019; 175
Rasigraf (10.1016/j.compgeo.2024.106106_b0175) 2022; 231
Fang (10.1016/j.compgeo.2024.106106_b0055) 2021; 594
Zhu (10.1016/j.compgeo.2024.106106_b0330) 2020; 123
Lee (10.1016/j.compgeo.2024.106106_b0105) 2019; 35
McColl (10.1016/j.compgeo.2024.106106_b0125) 2017; 10
Merghadi (10.1016/j.compgeo.2024.106106_b0130) 2020; 207
Salleh (10.1016/j.compgeo.2024.106106_b0190) 2018; 117
References_xml – volume: 80
  start-page: 1
  year: 2021
  end-page: 25
  ident: b0170
  article-title: A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran
  publication-title: Environ. Earth Sci.
– volume: 143
  start-page: 181
  year: 2018
  end-page: 190
  ident: b0255
  article-title: A simple terrain relief index for tuning slope-related parameters of LiDAR ground filtering algorithms
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 36
  start-page: 2399
  year: 2022
  end-page: 2417
  ident: b0295
  article-title: Review of landslide susceptibility assessment based on knowledge mapping
  publication-title: Stoch. Env. Res. Risk A.
– volume: 175
  start-page: 174
  year: 2019
  end-page: 192
  ident: b0235
  article-title: Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques
  publication-title: Catena
– volume: 17
  start-page: 709
  year: 2019
  end-page: 718
  ident: b0115
  article-title: Multiple data-driven approach for predicting landslide deformation
  publication-title: Landslides
– volume: 663
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0070
  article-title: Landslide spatial modelling using novel bivariate statistical based Naive Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 321
  year: 2020
  end-page: 347
  ident: b0050
  article-title: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 15
  start-page: 2063
  year: 2022
  end-page: 2090
  ident: b0230
  article-title: Landslide identification using machine learning techniques: review, motivation, and future prospects
  publication-title: Earth Sci. Inf.
– volume: 11
  start-page: 10407
  year: 2021
  end-page: 10419
  ident: b0015
  article-title: Transient motion of the largest landslide on earth, modulated by hydrological forces
  publication-title: Sci. Rep.
– volume: 12
  start-page: 351
  year: 2021
  end-page: 364
  ident: b0275
  article-title: Landslide identification using machine learning
  publication-title: Geosci. Front.
– volume: 12
  start-page: 505
  year: 2021
  end-page: 519
  ident: b0240
  article-title: Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran
  publication-title: Geosci. Front.
– volume: 154
  year: 2023
  ident: b0060
  article-title: X-SLIP: A SLIP-based multi-approach algorithm to predict the spatial–temporal triggering of rainfall-induced shallow landslides over large areas
  publication-title: Comput. Geotech.
– reference: Pedersen, Schack, S.A., Gravesen, P., 2021. Kortbladsbeskrivelse, Geologisk kort over Danmark, 1:50 000, Møn Dele af 1511 I, 1511 IV og 1512 II. GEUS Bulletin, 48, 1-51.
– volume: 359
  start-page: 107150
  year: 2020
  end-page: 107162
  ident: b0285
  article-title: Landslide characteristics in the Loess Plateau, northern China
  publication-title: Geomorphology
– volume: 176
  start-page: 105364
  year: 2023
  end-page: 105375
  ident: b0035
  article-title: Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling
  publication-title: Comput. Geosci.
– reference: Peter, R., Jakobsen, Bjørn, Hermansen, 2020. Danmarks Digitale Jordartskort 1 25,000, Vers. 5.0. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2020/18, 1-28.
– volume: 247
  start-page: 69
  year: 2018
  end-page: 83
  ident: b0280
  article-title: Landslide damage incurred to buildings: a case study of Shenzhen landslide
  publication-title: Eng. Geol.
– volume: 19
  start-page: 3009
  year: 2022
  end-page: 3029
  ident: b0110
  article-title: Landslide length, width, and aspect ratio: path-dependent measurement and a revisit of nomenclature
  publication-title: Landslides
– volume: 10
  start-page: 100
  year: 2017
  end-page: 104
  ident: b0125
  article-title: The global distribution and dynamics of surface soil moisture
  publication-title: Nat. Geosci.
– volume: 594
  start-page: 125734
  year: 2021
  end-page: 125754
  ident: b0055
  article-title: Predicting flood susceptibility using LSTM neural networks
  publication-title: J. Hydrol.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0200
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 29
  start-page: 66768
  year: 2022
  end-page: 66792
  ident: b0300
  article-title: Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 183
  start-page: 104188
  year: 2019
  end-page: 104205
  ident: b0320
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
– volume: 217
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0210
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manage.
– volume: 159
  start-page: 105413
  year: 2023
  end-page: 105424
  ident: b0270
  article-title: Deep learning methods for time-dependent reliability analysis of reservoir slopes in spatially variable soils
  publication-title: Comput. Geotech.
– volume: 10
  start-page: 157
  year: 2019
  end-page: 184
  ident: b0135
  article-title: Hybrid machine learning approaches for landslide susceptibility modeling
  publication-title: Forests
– reference: Henriksen, H. et al., 2022. Sammenfatningsrapport vedr. modelleverancer til Hydrologisk Informations- og Prognosesystem. De Nationale Geologiske Undersøgelser for Danmark og Grønland: København, Denmark, 1-42.
– volume: 196
  start-page: 104833
  year: 2021
  end-page: 104849
  ident: b0025
  article-title: GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
  publication-title: Catena
– volume: 51
  start-page: 4199
  year: 2021
  end-page: 4213
  ident: b0085
  article-title: A-DBNF: adaptive deep belief network framework for regression and classification tasks
  publication-title: Appl. Intell.
– volume: 182
  year: 2019
  ident: b0305
  article-title: Influence of soil moisture content and soil and water conservation measures on time to runoff initiation under different rainfall intensities
  publication-title: Catena
– volume: 37
  start-page: 17742
  year: 2022
  end-page: 17776
  ident: b0030
  article-title: Application of novel framework approach for assessing rainfall induced future landslide hazard to world heritage sites in Indo-Nepal-Bhutan Himalayan region
  publication-title: Geocarto Int.
– volume: 72
  start-page: 125935
  year: 2022
  end-page: 125946
  ident: b0310
  article-title: Altitudinal difference of growth-climate response models in the north subtropical forests of China
  publication-title: Dendrochronologia
– reference: Yang, X., Deb, S., 2009. Cuckoo search via Lévy flights. In: Proceedings of the world congress on nature & biologically inspired computing. NaBIC, 210–214.
– volume: 305
  start-page: 114367
  year: 2022
  end-page: 114381
  ident: b0065
  article-title: Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea
  publication-title: J. Environ. Manage.
– volume: 22
  start-page: 778
  year: 2014
  end-page: 784
  ident: b0195
  article-title: Application of deep belief networks for natural language understanding
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 5
  start-page: 9899
  year: 2015
  end-page: 9914
  ident: b0215
  article-title: Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
  publication-title: Sci. Rep.
– reference: Agency, D., 2021. DHM product specification v1.0.0. Danish Agency for Data Supply and Efficiency, 1-21.
– volume: 17
  start-page: 217
  year: 2019
  end-page: 229
  ident: b0080
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
– volume: 123
  start-page: 103598
  year: 2020
  end-page: 103606
  ident: b0330
  article-title: Solid-like and liquid-like granular flows on inclined surfaces under vibration – implications for earthquake-induced landslides
  publication-title: Comput. Geotech.
– volume: 818
  start-page: 151752
  year: 2022
  end-page: 151767
  ident: b0165
  article-title: A hybrid machine-learning model to map glacier-related debris flow susceptibility along Gyirong Zangbo watershed under the changing climate
  publication-title: Sci. Total Environ.
– volume: 155
  start-page: 104860
  year: 2021
  end-page: 104871
  ident: b0045
  article-title: Landslide susceptibility prediction based on image semantic segmentation
  publication-title: Comput. Geosci.
– volume: 666
  start-page: 975
  year: 2019
  end-page: 993
  ident: b0260
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
– reference: Tien, B., Dieu et al., 2018. New hybrids of ANFIS with several optimization algorithms for flood susceptibility modeling. Water, 10, 1210-1238.
– volume: 100
  start-page: 290
  year: 2021
  end-page: 301
  ident: b0040
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondw. Res.
– volume: 117
  start-page: 012035
  year: 2018
  end-page: 012042
  ident: b0190
  article-title: Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 32
  start-page: 27
  year: 2022
  end-page: 40
  ident: b0145
  article-title: A review of quantitative landslide susceptibility analysis methods using physically based modelling
  publication-title: Eng. Geol.
– volume: 207
  start-page: 103225
  year: 2020
  end-page: 103272
  ident: b0130
  article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 25
  ident: b0325
  article-title: Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network
  publication-title: Sensors (Basel)
– volume: 108
  start-page: 2765
  year: 2021
  end-page: 2811
  ident: b0225
  article-title: Assessment of the influence of physical and seismotectonic parameters on landslide occurrence: an integrated geoinformatic approach
  publication-title: Nat. Hazards
– volume: 396
  start-page: 241
  year: 2020
  end-page: 253
  ident: b0265
  article-title: A self-organizing deep belief network based on information relevance strategy
  publication-title: Neurocomputing
– volume: 627
  start-page: 744
  year: 2017
  end-page: 755
  ident: b0020
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model Softw.
– volume: 234
  start-page: 107590
  year: 2024
  end-page: 107607
  ident: b0315
  article-title: Geographically weighted neural network considering spatial heterogeneity for landslide susceptibility mapping: a case study of Yichang City, China
  publication-title: Catena
– reference: Kumar, L.A., K., G.N., S., B.K.K., 2014. Improving real time flood forecasting using fuzzy inference system. Journal of Hydrology, 509, 25-41.
– start-page: 1
  year: 2021
  end-page: 71
  ident: b0155
  article-title: Methods used in the danish climate atlas
  publication-title: Danish Meteorological Institute
– volume: 701
  start-page: 134413
  year: 2020
  end-page: 134425
  ident: b0245
  article-title: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area
  publication-title: Sci. Total Environ.
– volume: 222
  start-page: 124
  year: 2017
  end-page: 139
  ident: b0090
  article-title: Empirical predictive relationships for rigid sliding displacement based on directionally-dependent ground motion parameters
  publication-title: Eng. Geol.
– volume: 18
  start-page: 681
  year: 2020
  end-page: 695
  ident: b0140
  article-title: How robust are landslide susceptibility estimates?
  publication-title: Landslides
– volume: 35
  start-page: 179
  year: 2019
  end-page: 193
  ident: b0105
  article-title: Current and future status of GIS-based landslide susceptibility mapping A literature review
  publication-title: Korean Journal of Remote Sensing
– volume: 23
  start-page: 13139
  year: 2019
  end-page: 13159
  ident: b0185
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft. Comput.
– volume: 14
  start-page: 3157
  year: 2022
  end-page: 3165
  ident: b0120
  article-title: A national landslide inventory for Denmark
  publication-title: Earth Syst. Sci. Data
– volume: 133
  start-page: 104329
  year: 2019
  end-page: 104336
  ident: b0010
  article-title: Landslide susceptibility mapping using an automatic sampling algorithm based on two level random sampling
  publication-title: Comput. Geosci.
– volume: 615
  start-page: 438
  year: 2018
  end-page: 451
  ident: b0180
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
– volume: 96
  start-page: 27
  year: 2018
  end-page: 39
  ident: b0220
  article-title: Rolling bearing fault detection using continuous deep belief network with locally linear embedding
  publication-title: Comput. Ind.
– volume: 10
  start-page: 1
  year: 2022
  end-page: 19
  ident: b0095
  article-title: Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district
  publication-title: Front. Environ. Sci.
– volume: 231
  start-page: 104064
  year: 2022
  end-page: 104080
  ident: b0175
  article-title: Landslides: an emerging model for ecosystem and soil chronosequence research
  publication-title: Earth Sci. Rev.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0205
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 11
  start-page: 10407
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0015
  article-title: Transient motion of the largest landslide on earth, modulated by hydrological forces
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89899-6
– volume: 18
  start-page: 681
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0140
  article-title: How robust are landslide susceptibility estimates?
  publication-title: Landslides
  doi: 10.1007/s10346-020-01485-5
– volume: 117
  start-page: 012035
  year: 2018
  ident: 10.1016/j.compgeo.2024.106106_b0190
  article-title: Comparative study of landslides susceptibility mapping methods: Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN)
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 37
  start-page: 17742
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0030
  article-title: Application of novel framework approach for assessing rainfall induced future landslide hazard to world heritage sites in Indo-Nepal-Bhutan Himalayan region
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2022.2134464
– volume: 14
  start-page: 3157
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0120
  article-title: A national landslide inventory for Denmark
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-14-3157-2022
– ident: 10.1016/j.compgeo.2024.106106_b0005
– volume: 19
  start-page: 3009
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0110
  article-title: Landslide length, width, and aspect ratio: path-dependent measurement and a revisit of nomenclature
  publication-title: Landslides
  doi: 10.1007/s10346-022-01935-2
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.compgeo.2024.106106_b0200
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 35
  start-page: 321
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0050
  article-title: A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2020.1808897
– volume: 247
  start-page: 69
  year: 2018
  ident: 10.1016/j.compgeo.2024.106106_b0280
  article-title: Landslide damage incurred to buildings: a case study of Shenzhen landslide
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2018.10.025
– volume: 80
  start-page: 1
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0170
  article-title: A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-021-09788-z
– volume: 29
  start-page: 66768
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0300
  article-title: Advanced machine learning algorithms for flood susceptibility modeling - performance comparison: Red Sea, Egypt
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-022-20213-1
– volume: 10
  start-page: 100
  year: 2017
  ident: 10.1016/j.compgeo.2024.106106_b0125
  article-title: The global distribution and dynamics of surface soil moisture
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2868
– volume: 615
  start-page: 438
  year: 2018
  ident: 10.1016/j.compgeo.2024.106106_b0180
  article-title: Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.09.262
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.compgeo.2024.106106_b0205
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 396
  start-page: 241
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0265
  article-title: A self-organizing deep belief network based on information relevance strategy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.08.093
– volume: 10
  start-page: 157
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0135
  article-title: Hybrid machine learning approaches for landslide susceptibility modeling
  publication-title: Forests
  doi: 10.3390/f10020157
– volume: 663
  start-page: 1
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0070
  article-title: Landslide spatial modelling using novel bivariate statistical based Naive Bayes, RBF Classifier, and RBF Network machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.329
– volume: 108
  start-page: 2765
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0225
  article-title: Assessment of the influence of physical and seismotectonic parameters on landslide occurrence: an integrated geoinformatic approach
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-021-04800-y
– volume: 143
  start-page: 181
  year: 2018
  ident: 10.1016/j.compgeo.2024.106106_b0255
  article-title: A simple terrain relief index for tuning slope-related parameters of LiDAR ground filtering algorithms
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.03.020
– volume: 159
  start-page: 105413
  year: 2023
  ident: 10.1016/j.compgeo.2024.106106_b0270
  article-title: Deep learning methods for time-dependent reliability analysis of reservoir slopes in spatially variable soils
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2023.105413
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0325
  article-title: Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network
  publication-title: Sensors (Basel)
– volume: 5
  start-page: 9899
  year: 2015
  ident: 10.1016/j.compgeo.2024.106106_b0215
  article-title: Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment
  publication-title: Sci. Rep.
  doi: 10.1038/srep09899
– volume: 155
  start-page: 104860
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0045
  article-title: Landslide susceptibility prediction based on image semantic segmentation
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2021.104860
– volume: 36
  start-page: 2399
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0295
  article-title: Review of landslide susceptibility assessment based on knowledge mapping
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-021-02165-z
– volume: 123
  start-page: 103598
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0330
  article-title: Solid-like and liquid-like granular flows on inclined surfaces under vibration – implications for earthquake-induced landslides
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103598
– volume: 217
  start-page: 1
  year: 2018
  ident: 10.1016/j.compgeo.2024.106106_b0210
  article-title: Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2018.03.089
– volume: 100
  start-page: 290
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0040
  article-title: Pathways and challenges of the application of artificial intelligence to geohazards modelling
  publication-title: Gondw. Res.
  doi: 10.1016/j.gr.2020.08.007
– volume: 10
  start-page: 1
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0095
  article-title: Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2022.1028373
– ident: 10.1016/j.compgeo.2024.106106_b0075
– volume: 359
  start-page: 107150
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0285
  article-title: Landslide characteristics in the Loess Plateau, northern China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2020.107150
– volume: 23
  start-page: 13139
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0185
  article-title: An evolutionary deep belief network extreme learning-based for breast cancer diagnosis
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-019-03856-0
– volume: 17
  start-page: 217
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0080
  article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction
  publication-title: Landslides
  doi: 10.1007/s10346-019-01274-9
– ident: 10.1016/j.compgeo.2024.106106_b0100
  doi: 10.1016/j.jhydrol.2013.11.021
– ident: 10.1016/j.compgeo.2024.106106_b0250
  doi: 10.3390/w10091210
– volume: 17
  start-page: 709
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0115
  article-title: Multiple data-driven approach for predicting landslide deformation
  publication-title: Landslides
  doi: 10.1007/s10346-019-01320-6
– volume: 15
  start-page: 2063
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0230
  article-title: Landslide identification using machine learning techniques: review, motivation, and future prospects
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-022-00889-2
– volume: 35
  start-page: 179
  issue: 1
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0105
  article-title: Current and future status of GIS-based landslide susceptibility mapping A literature review
  publication-title: Korean Journal of Remote Sensing
– volume: 12
  start-page: 351
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0275
  article-title: Landslide identification using machine learning
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.02.012
– ident: 10.1016/j.compgeo.2024.106106_b0290
  doi: 10.1109/NABIC.2009.5393690
– volume: 196
  start-page: 104833
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0025
  article-title: GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104833
– volume: 207
  start-page: 103225
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0130
  article-title: Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103225
– volume: 818
  start-page: 151752
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0165
  article-title: A hybrid machine-learning model to map glacier-related debris flow susceptibility along Gyirong Zangbo watershed under the changing climate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.151752
– volume: 231
  start-page: 104064
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0175
  article-title: Landslides: an emerging model for ecosystem and soil chronosequence research
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2022.104064
– ident: 10.1016/j.compgeo.2024.106106_b0160
– volume: 701
  start-page: 134413
  year: 2020
  ident: 10.1016/j.compgeo.2024.106106_b0245
  article-title: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134413
– volume: 176
  start-page: 105364
  year: 2023
  ident: 10.1016/j.compgeo.2024.106106_b0035
  article-title: Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2023.105364
– volume: 154
  year: 2023
  ident: 10.1016/j.compgeo.2024.106106_b0060
  article-title: X-SLIP: A SLIP-based multi-approach algorithm to predict the spatial–temporal triggering of rainfall-induced shallow landslides over large areas
  publication-title: Comput. Geotech.
– volume: 183
  start-page: 104188
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0320
  article-title: A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104188
– volume: 594
  start-page: 125734
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0055
  article-title: Predicting flood susceptibility using LSTM neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125734
– volume: 32
  start-page: 27
  issue: 1
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0145
  article-title: A review of quantitative landslide susceptibility analysis methods using physically based modelling
  publication-title: Eng. Geol.
– start-page: 1
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0155
  article-title: Methods used in the danish climate atlas
  publication-title: Danish Meteorological Institute
– volume: 175
  start-page: 174
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0235
  article-title: Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques
  publication-title: Catena
  doi: 10.1016/j.catena.2018.12.011
– volume: 182
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0305
  article-title: Influence of soil moisture content and soil and water conservation measures on time to runoff initiation under different rainfall intensities
  publication-title: Catena
  doi: 10.1016/j.catena.2019.104172
– ident: 10.1016/j.compgeo.2024.106106_b0150
  doi: 10.34194/geusb.v48.8293
– volume: 22
  start-page: 778
  year: 2014
  ident: 10.1016/j.compgeo.2024.106106_b0195
  article-title: Application of deep belief networks for natural language understanding
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2014.2303296
– volume: 305
  start-page: 114367
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0065
  article-title: Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2021.114367
– volume: 96
  start-page: 27
  year: 2018
  ident: 10.1016/j.compgeo.2024.106106_b0220
  article-title: Rolling bearing fault detection using continuous deep belief network with locally linear embedding
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.01.005
– volume: 133
  start-page: 104329
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0010
  article-title: Landslide susceptibility mapping using an automatic sampling algorithm based on two level random sampling
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.104329
– volume: 51
  start-page: 4199
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0085
  article-title: A-DBNF: adaptive deep belief network framework for regression and classification tasks
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-02050-2
– volume: 627
  start-page: 744
  year: 2017
  ident: 10.1016/j.compgeo.2024.106106_b0020
  article-title: A novel hybrid artificial intelligence approach for flood susceptibility assessment
  publication-title: Environ. Model Softw.
– volume: 666
  start-page: 975
  year: 2019
  ident: 10.1016/j.compgeo.2024.106106_b0260
  article-title: Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.263
– volume: 72
  start-page: 125935
  year: 2022
  ident: 10.1016/j.compgeo.2024.106106_b0310
  article-title: Altitudinal difference of growth-climate response models in the north subtropical forests of China
  publication-title: Dendrochronologia
  doi: 10.1016/j.dendro.2022.125935
– volume: 234
  start-page: 107590
  year: 2024
  ident: 10.1016/j.compgeo.2024.106106_b0315
  article-title: Geographically weighted neural network considering spatial heterogeneity for landslide susceptibility mapping: a case study of Yichang City, China
  publication-title: Catena
  doi: 10.1016/j.catena.2023.107590
– volume: 12
  start-page: 505
  year: 2021
  ident: 10.1016/j.compgeo.2024.106106_b0240
  article-title: Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.06.013
– volume: 222
  start-page: 124
  year: 2017
  ident: 10.1016/j.compgeo.2024.106106_b0090
  article-title: Empirical predictive relationships for rigid sliding displacement based on directionally-dependent ground motion parameters
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2017.03.025
SSID ssj0016989
Score 2.542444
Snippet This research proposed a novel deep learning framework that combines the Laplace function sparse regularized continuous deep belief network (LSCDBN) and the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106106
SubjectTerms Deep belief network
Deep learning
Frequency ratio
Intelligent optimization algorithm
Landslide susceptibility assessment
Title A novel deep learning framework for landslide susceptibility assessment using improved deep belief networks with the intelligent optimization algorithm
URI https://dx.doi.org/10.1016/j.compgeo.2024.106106
Volume 167
WOSCitedRecordID wos001174965600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-7633
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016989
  issn: 0266-352X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRFki7goTdBqSxREnU0inRDGwRoChi9CKRIOQpkyfWG5Ev6Df3LDjdJaYNuQC-CQXAR_J7J4fjNDELP44ilmUiIzwACnzDKfc6SsRKuZWWYhEUpmC42kR4f0-k0OxmNvrlYmG2dNg29uMgW_xVqaAOwVejsX8DdTQoN8BlAhyfADs8_An7iNe1W1p6QcuGKQsy80omwtK5QB_jWlZDearPSwhatkb30WJeo09toL0KlnQ5glerpuASTtfQaox23kXHKdK26zJ5rr4Xp5ja802P1rF1Cr_nQCnalJEx-6JlsTSbZXnevtLbaL3vG2i9A4FnnCNI1iL3PZ7KZV33ze936etDxxM7wwfWyno2Q9NIu425zITe9vmmlM8UmPliNU3OAmV2bppEPG2V0ZVs3ZT5-OiKMt-JcIbyY6fjPkByqi3HwQ0pufch_VOup5ZTWVh3eN9BumMYZbKC7k7dH03fdX1aqEqdx6Jn368PFXly72PWG0MC4Ob2L7thbCZ4YNt1DI9ncR7cHuSofoK8TrHmFFRGw4xXueIWBV7jjFb7KK9zzCmteYccrM53hFXa8wopXGHiFB7zCQ17hjlcP0adXR6cv3_i2qofPoihc-0QILjJeFCWncSxTQSLCwY6kpKRFlAYMLMogFmBY0rGEIzAUKZzBxZjzUsY8SaNHaKdpG7mHcCBLCvfnOCAiI1wkGYtFQiWTBWWSR-k-Iu4rzgub8l5VXqlzp208zy0yuUImN8jso8Nu2MLkfPndAOrwy63hagzSHEj366EH_z70MbrV_2qeoJ31ciOfopvFdl2tls8sPb8Djn7L4Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+deep+learning+framework+for+landslide+susceptibility+assessment+using+improved+deep+belief+networks+with+the+intelligent+optimization+algorithm&rft.jtitle=Computers+and+geotechnics&rft.au=Meng%2C+Shaoqiang&rft.au=Shi%2C+Zhenming&rft.au=Li%2C+Gang&rft.au=Peng%2C+Ming&rft.date=2024-03-01&rft.pub=Elsevier+Ltd&rft.issn=0266-352X&rft.eissn=1873-7633&rft.volume=167&rft_id=info:doi/10.1016%2Fj.compgeo.2024.106106&rft.externalDocID=S0266352X24000429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-352X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-352X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-352X&client=summon