Degree Spectra of Relations on a Cone

Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A,R) is a "natural" structure, or (to make this rigorous) among copies of (\mathcal A,R) computable in...

Celý popis

Uloženo v:
Podrobná bibliografie
Hlavní autor: Harrison-Trainor, Matthew
Médium: E-kniha Kniha
Jazyk:angličtina
Vydáno: Providence, Rhode Island American Mathematical Society 2018
Vydání:1
Edice:Memoirs of the American Mathematical Society
Témata:
ISBN:1470428393, 9781470428396
ISSN:0065-9266, 1947-6221
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A,R) is a "natural" structure, or (to make this rigorous) among copies of (\mathcal A,R) computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on \mathcal A and R, if R is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees.
Bibliografie:Includes bibliographical references and index
May 2018, volume 253, number 1208 (third of 7 numbers)
ISBN:1470428393
9781470428396
ISSN:0065-9266
1947-6221
DOI:10.1090/memo/1208