Degree Spectra of Relations on a Cone
Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A,R) is a "natural" structure, or (to make this rigorous) among copies of (\mathcal A,R) computable in...
Uložené v:
| Hlavný autor: | |
|---|---|
| Médium: | E-kniha Kniha |
| Jazyk: | English |
| Vydavateľské údaje: |
Providence, Rhode Island
American Mathematical Society
2018
|
| Vydanie: | 1 |
| Edícia: | Memoirs of the American Mathematical Society |
| Predmet: | |
| ISBN: | 1470428393, 9781470428396 |
| ISSN: | 0065-9266, 1947-6221 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies of \mathcal A when (\mathcal A,R) is a "natural" structure, or (to make this rigorous) among copies of (\mathcal A,R) computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on \mathcal A and R, if R is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees. |
|---|---|
| AbstractList | Let $\mathcal A$ be a mathematical structure with an additional relation $R$. The author is interested in the degree spectrum of $R$, either among computable copies of $\mathcal A$ when $(\mathcal A,R)$ is a ``natural'' structure, or (to make this rigorous) among copies of $(\mathcal A,R)$ computable in a large degree d. He introduces the partial order of degree spectra on a cone and begin the study of these objects. Using a result of Harizanov--that, assuming an effectiveness condition on $\mathcal A$ and $R$, if $R$ is not intrinsically computable, then its degree spectrum contains all c.e. degrees--the author shows that there is a minimal non-trivial degree spectrum on a cone, consisting of the c.e. degrees. Let |
| Author | Harrison-Trainor, Matthew |
| Author_xml | – sequence: 1 fullname: Harrison-Trainor, Matthew |
| BackLink | https://cir.nii.ac.jp/crid/1130282272750515456$$DView record in CiNii |
| BookMark | eNpVkctOwzAQRQ20iLZ0wR9EAoRYhI7f9hJKeUiVkACxtZzEhtA0LnWA3ydpu2Ezs5ijuTP3DlGvDrVD6ATDFQYNk6VbhgkmoPbQWEuFmQTGGMZkHw2wZjIVhOADNNwMiKKa9tAAQPBUEyH6aEgAK8CScnbYUkAVSKWVOELDGD8BQAGTA3R-697XziUvK5c3a5sEnzy7yjZlqGMS6sQm0_auY9T3topuvOsj9HY3e50-pPOn-8fp9Ty1lBKsU0pFIYktZC6oExkQyKmXztJCcC2zzBFfFLY9F7TPVK6wz5X3XiumZF54TkfocrvYxoX7jR-haqL5qVwWwiKafz607MWWXa3D17eLjdlguavbRyozu5lyBro1oSXPtmRdliYvu4oxBaIIkURy4JgzLlrsdCe-jGYnicF0cZguDtPFQf8AlCdvaw |
| ContentType | eBook Book |
| Copyright | Copyright 2018 American Mathematical Society |
| Copyright_xml | – notice: Copyright 2018 American Mathematical Society |
| DBID | RYH |
| DEWEY | 511.3 |
| DOI | 10.1090/memo/1208 |
| DatabaseName | CiNii Complete |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISBN | 9781470444112 1470444119 |
| EISSN | 1947-6221 |
| Edition | 1 |
| ExternalDocumentID | 9781470444112 EBC5409180 BB26311572 10_1090_memo_1208 |
| GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 3.E 38. AABBV AAWPO ABARN ABQPQ ACLGV ADVEM AEKGI AERYV AFOJC AHWGJ AJFER AZNFR AZZ BBABE CZZ GEOUK RYH |
| ID | FETCH-LOGICAL-a33219-336d72ad7c63e6b020c3f7ea3d6597bbe2fdda42809fb8c81fc8fff98487cdf53 |
| ISBN | 1470428393 9781470428396 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=0000055994&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0065-9266 |
| IngestDate | Fri Nov 08 04:33:09 EST 2024 Wed Nov 26 07:41:25 EST 2025 Thu Jun 26 23:35:11 EDT 2025 Thu Aug 14 15:25:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | degree spectrum of a relation cone of Turing degrees computable structure |
| LCCN | 2018017354 |
| LCCallNum_Ident | QA9.63 .H377 2018 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a33219-336d72ad7c63e6b020c3f7ea3d6597bbe2fdda42809fb8c81fc8fff98487cdf53 |
| Notes | Includes bibliographical references and index May 2018, volume 253, number 1208 (third of 7 numbers) |
| OCLC | 1038078986 |
| PQID | EBC5409180 |
| PageCount | 120 |
| ParticipantIDs | askewsholts_vlebooks_9781470444112 proquest_ebookcentral_EBC5409180 nii_cinii_1130282272750515456 ams_ebooks_10_1090_memo_1208 |
| PublicationCentury | 2000 |
| PublicationDate | [2018] |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: [2018] |
| PublicationDecade | 2010 |
| PublicationPlace | Providence, Rhode Island |
| PublicationPlace_xml | – name: Providence, Rhode Island – name: Providence, RI – name: Providence |
| PublicationSeriesTitle | Memoirs of the American Mathematical Society |
| PublicationYear | 2018 |
| Publisher | American Mathematical Society |
| Publisher_xml | – name: American Mathematical Society |
| SSID | ssj0008047 ssj0002007189 |
| Score | 2.6668825 |
| Snippet | Let Let \mathcal A be a mathematical structure with an additional relation R. The author is interested in the degree spectrum of R, either among computable copies... Let $\mathcal A$ be a mathematical structure with an additional relation $R$. The author is interested in the degree spectrum of $R$, either among computable... |
| SourceID | askewsholts proquest nii ams |
| SourceType | Aggregation Database Publisher |
| SubjectTerms | Angles (Geometry) Angles (Geometry) -- Measurement Conic sections Unsolvability (Mathematical logic) |
| TableOfContents | Introduction
--
Preliminaries
--
Degree Spectra between the C.E. Degrees and the D.C.E. Degrees
--
Degree Spectra of Relations on the Naturals
--
A “Fullness” Theorem for 2-CEA\xspace Degrees
--
Further Questions
--
Relativizing Harizanov’s Theorem on C.E. Degrees Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- 2.1. Computability Theory -- 2.2. Computable Structure Theory -- 2.3. Relativizing to a Cone -- Chapter 3. Degree Spectra between the C.E. Degrees and the D.C.E. Degrees -- 3.1. Necessary and Sufficient Conditions to be Intrinsically of C.E. Degree -- 3.2. Incomparable Degree Spectra of D.C.E. Degrees -- Chapter 4. Degree Spectra of Relations on the Naturals -- Chapter 5. A "Fullness" Theorem for 2-\cea Degrees -- 5.1. Approximating a 2-\cea Set -- 5.2. Basic Framework of the Construction -- 5.3. An Informal Description of the Construction -- 5.4. The Game Gs and the Final Condition -- 5.5. Basic Plays and the Basic Game -- 5.6. The Construction -- Chapter 6. Further Questions -- Appendix A. Relativizing Harizanov's Theorem on C.E. Degrees -- A.1. Framework of the Proof -- A.2. The First Two Cases -- A.3. The Third Case -- Bibliography -- Index of Notation and Terminology -- Back Cover |
| Title | Degree Spectra of Relations on a Cone |
| URI | https://www.ams.org/memo/1208/ https://cir.nii.ac.jp/crid/1130282272750515456 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5409180 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470444112 |
| Volume | 253 |
| WOSCitedRecordID | wos0000055994&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbaLQf2BC2IhRZFFT2hqHGcxPZ1y0IlqpbDUvUW-SmtoAlKlqo_nxnnVbUHxIGLlTiRRzNj2fPZ8yDkg9TCaqNZLHRm4qxIdKyEyGJX5JwqrDsdHGSvL_jlpbi5kd_60pJtKCfAq0rc38tf_1XV0AfKxtDZf1D3OCh0wDMoHVpQO7SPLOLxtdP4JwfY2X0MsZONQiuwmTzdKoyCrKc79HPVhOqD8RprRHSYva_9_fAggIpHBwHTDc-Y7xXzidRjQpERNdKMI1JiXSnZJ2toItHp8Nbd1ojq00RMW8XowLdcpkXI0wO73y4glhnZ-7K6-v51PN7CI1AqZAil66mxIcPWQH1I9CSTU6R2irRCwtt2Tuaq_QGrPOwAW3jbrTabJ5tlsADWL8gMo0Jekh1X7ZP5xHx7QE46wUe94KPaR6Pgo7qKVISCf0WuP6_WZ-dxX30iVozBOh4zVlieKstNwVyhgSXDPHeK2QJQmNYu9dYqYCWRXgsjqDfCey8FYEBjfc5ek1kF478hkeJ57nnmM6tMlhoPINcbLa1PTZoD1wtyCFyX4X68LTu_gKREoZQ0fD5-II7y7mf_4yBNMGlpuiBHIKXSbLCleB8Nth_H9P15MJMXJBrk1xHqvX_L1fIMzHZJRfL2L0O8I8-niXdIZtvmtzsiz8zddtM27_sp8AcJ8zBP |
| linkProvider | ProQuest Ebooks |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Degree+spectra+of+relations+on+a+cone&rft.au=Harrison-Trainor%2C+Matthew&rft.date=2018-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470428396&rft_id=info:doi/10.1090%2Fmemo%2F1208&rft.externalDocID=BB26311572 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470444112.jpg |

