Restoring the Coherence of Quantum Emitters through Optically Driven Motional Narrowing Forces

Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of t...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 21; no. 24; pp. 10193 - 10198
Main Authors: Pont, Mathias, Phaneuf-L’Heureux, Anne-Laurence, André, Régis, Francoeur, Sébastien
Format: Journal Article
Language:English
Published: United States American Chemical Society 22.12.2021
Subjects:
ISSN:1530-6984, 1530-6992, 1530-6992
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.
AbstractList Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.
Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.
Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.
Author Phaneuf-L’Heureux, Anne-Laurence
Pont, Mathias
André, Régis
Francoeur, Sébastien
AuthorAffiliation Université Grenoble Alpes, CNRS
Institut NÉEL
Engineering Physics
AuthorAffiliation_xml – name: Engineering Physics
– name: Université Grenoble Alpes, CNRS
– name: Institut NÉEL
Author_xml – sequence: 1
  givenname: Mathias
  surname: Pont
  fullname: Pont, Mathias
  organization: Engineering Physics
– sequence: 2
  givenname: Anne-Laurence
  surname: Phaneuf-L’Heureux
  fullname: Phaneuf-L’Heureux, Anne-Laurence
  organization: Engineering Physics
– sequence: 3
  givenname: Régis
  surname: André
  fullname: André, Régis
  organization: Université Grenoble Alpes, CNRS
– sequence: 4
  givenname: Sébastien
  orcidid: 0000-0002-6129-7026
  surname: Francoeur
  fullname: Francoeur, Sébastien
  email: sebastien.francoeur@polymtl.ca
  organization: Engineering Physics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34870435$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03856025$$DView record in HAL
BookMark eNp9kU9PwzAMxSME4v83QChHOGw4TdOmRzQYIA0QCK5EaeqyojYZSQri29NpY0dOtuzfe5L9Dsi2dRYJOWEwZpCwC23C2GrrWoxxzAwkspBbZJ8JDqOsKJLtTS_TPXIQwgcAFFzALtnjqcwh5WKfvD1jiM439p3GOdKJm6NHa5C6mj712sa-o9ddEyP6MBDe9e9z-riIjdFt-0OvfPOFlt672DirW_qgvXffS7ep8wbDEdmpdRvweF0Pyev0-mVyO5o93txNLmcjzTmLo1KyyrAUTV6IupR1LjXWFSRgyjw1Ok-hEBWaEksjCyOk4FImoNOsrEQpUPNDcr7ynetWLXzTaf-jnG7U7eVMLWfApcggEV9sYM9W7MK7z344X3VNMNi22qLrg0oyyDkkGeMDerpG-7LDauP8978BSFeA8S4Ej_UGYaCWMakhJvUXk1rHNMhgJVtuP1zvh9-F_yW__o-aNg
Cites_doi 10.1038/nnano.2015.79
10.1038/nnano.2015.60
10.1103/PhysRevLett.100.073001
10.1103/PhysRevB.92.115447
10.1103/PhysRev.150.680
10.1088/1361-6528/aa542b
10.1038/ncomms2601
10.1103/PhysRevB.91.115201
10.1103/PhysRev.73.679
10.1103/PhysRevLett.100.126601
10.1063/1.5086181
10.1103/PhysRevB.82.235309
10.1103/PhysRevLett.108.107401
10.1038/nphoton.2016.23
10.1103/PhysRevApplied.15.014036
10.1103/PhysRevLett.117.167401
10.1021/nl204402v
10.1038/nphoton.2010.174
10.1063/1.4901045
10.1103/PhysRevLett.96.043601
10.1038/nphys433
10.1103/PhysRevLett.82.2417
10.1103/PhysRevLett.77.4792
10.1103/PhysRevLett.35.1366
10.1103/PhysRevLett.111.237403
10.1103/PhysRevLett.108.206401
10.1126/science.278.5346.2114
10.1103/PhysRevLett.116.033603
10.1143/JPSJ.9.316
10.1103/PhysRevLett.93.217401
10.1038/349225a0
10.1364/OPTICA.431262
10.1109/JQE.1968.1074954
10.1088/1367-2630/11/9/093032
10.1103/PhysRevB.64.115208
10.1038/nphys2688
10.1021/acsphotonics.6b00736
10.1103/PhysRevLett.80.3567
10.1103/PhysRevLett.108.057401
10.1103/PhysRevB.73.081306
10.1103/PhysRevB.93.195316
10.1126/science.aax9406
ContentType Journal Article
Copyright 2021 American Chemical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 American Chemical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7X8
1XC
DOI 10.1021/acs.nanolett.1c02898
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1530-6992
EndPage 10198
ExternalDocumentID oai:HAL:hal-03856025v1
34870435
10_1021_acs_nanolett_1c02898
a750778463
Genre Journal Article
GroupedDBID -
123
4.4
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
.K2
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
CITATION
CUPRZ
ED~
JG~
NPM
7X8
1XC
ID FETCH-LOGICAL-a331t-b81dc14ec795fb8f78aefd020cb74ca74095decbebc89c58538820a46bd5b5ea3
IEDL.DBID ACS
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758046000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1530-6984
1530-6992
IngestDate Tue Oct 14 20:58:10 EDT 2025
Fri Jul 11 09:10:47 EDT 2025
Mon Jul 21 05:55:14 EDT 2025
Sat Nov 29 06:17:22 EST 2025
Fri Dec 24 10:58:00 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Charge noise
Excitons
Quantum emitter
Motional narrowing
Spectral diffusion
Quantum coherence
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a331t-b81dc14ec795fb8f78aefd020cb74ca74095decbebc89c58538820a46bd5b5ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6129-7026
0000-0003-3035-4291
PMID 34870435
PQID 2607302613
PQPubID 23479
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_03856025v1
proquest_miscellaneous_2607302613
pubmed_primary_34870435
crossref_primary_10_1021_acs_nanolett_1c02898
acs_journals_10_1021_acs_nanolett_1c02898
PublicationCentury 2000
PublicationDate 20211222
2021-12-22
2021-Dec-22
PublicationDateYYYYMMDD 2021-12-22
PublicationDate_xml – month: 12
  year: 2021
  text: 20211222
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
Kubo R. A. (ref38/cit38) 1962
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1038/nnano.2015.79
– ident: ref10/cit10
  doi: 10.1038/nnano.2015.60
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.100.073001
– ident: ref6/cit6
  doi: 10.1103/PhysRevB.92.115447
– ident: ref34/cit34
  doi: 10.1103/PhysRev.150.680
– ident: ref15/cit15
  doi: 10.1088/1361-6528/aa542b
– ident: ref21/cit21
  doi: 10.1038/ncomms2601
– ident: ref33/cit33
  doi: 10.1103/PhysRevB.91.115201
– start-page: 23
  volume-title: Fluctuation, Relaxation and Resonance in Magnetic Systems
  year: 1962
  ident: ref38/cit38
– ident: ref25/cit25
  doi: 10.1103/PhysRev.73.679
– ident: ref31/cit31
  doi: 10.1103/PhysRevLett.100.126601
– ident: ref41/cit41
  doi: 10.1063/1.5086181
– ident: ref17/cit17
  doi: 10.1103/PhysRevB.82.235309
– ident: ref36/cit36
  doi: 10.1103/PhysRevLett.108.107401
– ident: ref9/cit9
  doi: 10.1038/nphoton.2016.23
– ident: ref14/cit14
  doi: 10.1103/PhysRevApplied.15.014036
– ident: ref40/cit40
  doi: 10.1103/PhysRevLett.117.167401
– ident: ref8/cit8
  doi: 10.1021/nl204402v
– ident: ref5/cit5
  doi: 10.1038/nphoton.2010.174
– ident: ref23/cit23
  doi: 10.1063/1.4901045
– ident: ref27/cit27
  doi: 10.1103/PhysRevLett.96.043601
– ident: ref32/cit32
  doi: 10.1038/nphys433
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.82.2417
– ident: ref28/cit28
  doi: 10.1103/PhysRevLett.77.4792
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.35.1366
– ident: ref20/cit20
  doi: 10.1103/PhysRevLett.111.237403
– ident: ref22/cit22
  doi: 10.1103/PhysRevLett.108.206401
– ident: ref1/cit1
  doi: 10.1126/science.278.5346.2114
– ident: ref19/cit19
  doi: 10.1103/PhysRevLett.116.033603
– ident: ref24/cit24
  doi: 10.1143/JPSJ.9.316
– ident: ref4/cit4
  doi: 10.1103/PhysRevLett.93.217401
– ident: ref3/cit3
  doi: 10.1038/349225a0
– ident: ref13/cit13
  doi: 10.1364/OPTICA.431262
– ident: ref26/cit26
  doi: 10.1109/JQE.1968.1074954
– ident: ref42/cit42
  doi: 10.1088/1367-2630/11/9/093032
– ident: ref35/cit35
  doi: 10.1103/PhysRevB.64.115208
– ident: ref2/cit2
  doi: 10.1038/nphys2688
– ident: ref12/cit12
  doi: 10.1021/acsphotonics.6b00736
– ident: ref29/cit29
  doi: 10.1103/PhysRevLett.80.3567
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.108.057401
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.73.081306
– ident: ref7/cit7
  doi: 10.1103/PhysRevB.93.195316
– ident: ref16/cit16
  doi: 10.1126/science.aax9406
SSID ssj0009350
Score 2.4153
Snippet Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two...
SourceID hal
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10193
SubjectTerms Physics
Title Restoring the Coherence of Quantum Emitters through Optically Driven Motional Narrowing Forces
URI http://dx.doi.org/10.1021/acs.nanolett.1c02898
https://www.ncbi.nlm.nih.gov/pubmed/34870435
https://www.proquest.com/docview/2607302613
https://hal.science/hal-03856025
Volume 21
WOSCitedRecordID wos000758046000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1530-6992
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009350
  issn: 1530-6984
  databaseCode: ACS
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7RwgEOyxu6LMggLhwCSewmzrFiqThAeUs9EdkTR1SCBDVtpf33O3ZTHiuhFbfIsizH4xl_n8czA3DoY-QjD5AUSYUeGTxDdpDTFyYZGiEz7aMrNhH3erLfT67fieK_HvwwOFFYHReqKOk3RscBWs-YbMB8SEjX7ujO6d17kl3uKrKSEhMlSqSYhcp9MYo9kLD6dCA1nuxzyK-wpjtzusvfne0K_KjRJetMt8MqzJliDZY-5Bxch8dbV0uGvhlhP2bDM1zAHytzdjOmdR6_sLOXgcu6yeoqPuzq1V15P_9hv4fWPLLLcnqHyHouiaMdrVsOyeZswEP37P703KuLLHiK82DkaQKsGAiDcdLOtcxjqUyeEYhEHQtUMfG_dmZQG40yQSIXnDC5r0Sks7ZuG8U3oVmUhdkGJiLLVzDONE9ELuIkt3G5ROCMkShU1IIjWp60VpIqdf7vMEht42zN0nrNWuDNpJK-TvNu_Kf_AYnuratNmn3euUhtm_V9RgTtJkEL9meSTUmLrGtEFaYcVymxOjJ1xCZ5C7amIn8bixOn8wlV_vzG9HdgMbSPX4LQC8Nf0BwNx2YXFnAyGlTDPWjEfbnn9u5fJijtIg
linkProvider American Chemical Society
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLeAIbE9AAO2HR9bQLzsoaNt0q_HE-N0E8fxLfG0KHFT7aTRousd0v57nFwL7AFN462KIiuNY_vnOLYB9n2MfeQBkiCp0COFZ0gPcvrCLEcj0lz76JpNJMNhenOTnc1B1ObC0CJqolS7IP5TdYHgwI6VqqzobybfArQBsnQe3kRkYe3x7h5ePtXa5a4xK8kyeUZZKtqMuReoWLuE9V92af6XfRX5EuR0pqe38spFr8JygzVZd3Y43sOcKdfg3bMKhOvw88J1lqFvRkiQ2WQNl_7HqoKdT2nXp7fs6HbkanCypqcPO71zF-C__7DvY6ss2Uk1u1FkQ1fS0VLrVWPSQBtw3Tu6Oux7TcsFT3EeTDxN8BUDYTDJokKnRZIqU-QEKVEnAlVC3mCUG9RGY5ohuRqcELqvRKzzSEdG8Q-wUFal-QRMxNZ7wSTXPBOFSLLCZumSO2dMikLFHfhK2yMbkamli4aHgbSD7Z7JZs864LXMkXezKhz_mL9HHHycakto97sDacdsJDQmoHcfdGC3ZbAkmbKBElWaalpL8vFI8ZFvyTvwccb5R1qcPDyfMObmfyz_Cyz1r04GcvBjeLwFb0P7LCYIvTDchoXJeGp2YBHvJ6N6_Nkd5AdWlfSg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VihA9tAUK3T5d1AuHlCR2XscVsNqq2y19SZyw7IkjkCBZbXaR-u87481SekAV6i2yrJHj8Tw-j2cG4H2IaYgyQhIkEwek8BzpQUlfWJToVF7aEH2ziWw8zk9Pi5Nbrb5oES1Ran0Qn6V6UlZdhYHogMdrUzf0R7MPEXKQLF-BhwnZdD7i_cPvf-rtSt-cleSZ0FGRq2XW3B1U2DZh-5dtWjnnl5F3uZ3e_Aye_MfCn8LjzucU_cUh2YQHrt6CR7cqEW7D2TffYYa-BXmEgpM2fBqgaCrxdU67P78Sx1cXvhan6Hr7iC8TfxF--UscTVlpis_N4mZRjH1pR6Y2aKakiZ7Bz8Hxj8Nh0LVeCIyU0Syw5MZipBxmRVLZvMpy46qSXEu0mUKTESpMSofWWcwLJMghyVMPjUptmdjEGbkDq3VTu-cgVMooBrPSykJVKisqztYlWOdcjsqkPdin7dGd6LTaR8XjSPPgcs90t2c9CJYM0pNFNY5_zN8jLt5M5VLaw_5I8xhHRFNy-K6jHrxbMlmTbHHAxNSumbeasB4pQMKYsge7C-7f0JKE9ELyNV_cY_lvYf3kaKBHH8efXsJGzK9jojiI41ewOpvO3WtYw-vZRTt948_ybyYu9xo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+the+Coherence+of+Quantum+Emitters+through+Optically+Driven+Motional+Narrowing+Forces&rft.jtitle=Nano+letters&rft.au=Pont%2C+Mathias&rft.au=Phaneuf-L%27Heureux%2C+Anne-Laurence&rft.au=Andr%C3%A9%2C+R%C3%A9gis&rft.au=Francoeur%2C+S%C3%A9bastien&rft.date=2021-12-22&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=21&rft.issue=24&rft.spage=10193&rft_id=info:doi/10.1021%2Facs.nanolett.1c02898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon