Restoring the Coherence of Quantum Emitters through Optically Driven Motional Narrowing Forces
Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of t...
Saved in:
| Published in: | Nano letters Vol. 21; no. 24; pp. 10193 - 10198 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Chemical Society
22.12.2021
|
| Subjects: | |
| ISSN: | 1530-6984, 1530-6992, 1530-6992 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices. |
|---|---|
| AbstractList | Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices.Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices. Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te2 molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices. Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two optically induced motional forces driving the environmental electrical field amplitude and fluctuations, we present a compelling illustration of the effects of motional narrowing on the energy, line shape, and line width of a single quantum emitter, a Te molecule embedded in ZnSe, subject to spectral diffusion. Motional narrowing is achieved in several regimes, irrespectively of the inhomogeneous disorder initially present and the charge reservoir state sourcing the field. The optimal coherence limit set by the radiative rate can be approached by accelerating spectral diffusion into the THz regime. Motional narrowing applies to any quantum systems for which environmental fluctuations can be deliberately accelerated and alleviates the need for perfected materials and devices. |
| Author | Phaneuf-L’Heureux, Anne-Laurence Pont, Mathias André, Régis Francoeur, Sébastien |
| AuthorAffiliation | Université Grenoble Alpes, CNRS Institut NÉEL Engineering Physics |
| AuthorAffiliation_xml | – name: Engineering Physics – name: Université Grenoble Alpes, CNRS – name: Institut NÉEL |
| Author_xml | – sequence: 1 givenname: Mathias surname: Pont fullname: Pont, Mathias organization: Engineering Physics – sequence: 2 givenname: Anne-Laurence surname: Phaneuf-L’Heureux fullname: Phaneuf-L’Heureux, Anne-Laurence organization: Engineering Physics – sequence: 3 givenname: Régis surname: André fullname: André, Régis organization: Université Grenoble Alpes, CNRS – sequence: 4 givenname: Sébastien orcidid: 0000-0002-6129-7026 surname: Francoeur fullname: Francoeur, Sébastien email: sebastien.francoeur@polymtl.ca organization: Engineering Physics |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34870435$$D View this record in MEDLINE/PubMed https://hal.science/hal-03856025$$DView record in HAL |
| BookMark | eNp9kU9PwzAMxSME4v83QChHOGw4TdOmRzQYIA0QCK5EaeqyojYZSQri29NpY0dOtuzfe5L9Dsi2dRYJOWEwZpCwC23C2GrrWoxxzAwkspBbZJ8JDqOsKJLtTS_TPXIQwgcAFFzALtnjqcwh5WKfvD1jiM439p3GOdKJm6NHa5C6mj712sa-o9ddEyP6MBDe9e9z-riIjdFt-0OvfPOFlt672DirW_qgvXffS7ep8wbDEdmpdRvweF0Pyev0-mVyO5o93txNLmcjzTmLo1KyyrAUTV6IupR1LjXWFSRgyjw1Ok-hEBWaEksjCyOk4FImoNOsrEQpUPNDcr7ynetWLXzTaf-jnG7U7eVMLWfApcggEV9sYM9W7MK7z344X3VNMNi22qLrg0oyyDkkGeMDerpG-7LDauP8978BSFeA8S4Ej_UGYaCWMakhJvUXk1rHNMhgJVtuP1zvh9-F_yW__o-aNg |
| Cites_doi | 10.1038/nnano.2015.79 10.1038/nnano.2015.60 10.1103/PhysRevLett.100.073001 10.1103/PhysRevB.92.115447 10.1103/PhysRev.150.680 10.1088/1361-6528/aa542b 10.1038/ncomms2601 10.1103/PhysRevB.91.115201 10.1103/PhysRev.73.679 10.1103/PhysRevLett.100.126601 10.1063/1.5086181 10.1103/PhysRevB.82.235309 10.1103/PhysRevLett.108.107401 10.1038/nphoton.2016.23 10.1103/PhysRevApplied.15.014036 10.1103/PhysRevLett.117.167401 10.1021/nl204402v 10.1038/nphoton.2010.174 10.1063/1.4901045 10.1103/PhysRevLett.96.043601 10.1038/nphys433 10.1103/PhysRevLett.82.2417 10.1103/PhysRevLett.77.4792 10.1103/PhysRevLett.35.1366 10.1103/PhysRevLett.111.237403 10.1103/PhysRevLett.108.206401 10.1126/science.278.5346.2114 10.1103/PhysRevLett.116.033603 10.1143/JPSJ.9.316 10.1103/PhysRevLett.93.217401 10.1038/349225a0 10.1364/OPTICA.431262 10.1109/JQE.1968.1074954 10.1088/1367-2630/11/9/093032 10.1103/PhysRevB.64.115208 10.1038/nphys2688 10.1021/acsphotonics.6b00736 10.1103/PhysRevLett.80.3567 10.1103/PhysRevLett.108.057401 10.1103/PhysRevB.73.081306 10.1103/PhysRevB.93.195316 10.1126/science.aax9406 |
| ContentType | Journal Article |
| Copyright | 2021 American Chemical Society Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2021 American Chemical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION NPM 7X8 1XC |
| DOI | 10.1021/acs.nanolett.1c02898 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1530-6992 |
| EndPage | 10198 |
| ExternalDocumentID | oai:HAL:hal-03856025v1 34870435 10_1021_acs_nanolett_1c02898 a750778463 |
| Genre | Journal Article |
| GroupedDBID | - 123 4.4 55A 5VS 7~N AABXI ABFRP ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X .K2 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV CITATION CUPRZ ED~ JG~ NPM 7X8 1XC |
| ID | FETCH-LOGICAL-a331t-b81dc14ec795fb8f78aefd020cb74ca74095decbebc89c58538820a46bd5b5ea3 |
| IEDL.DBID | ACS |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758046000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1530-6984 1530-6992 |
| IngestDate | Tue Oct 14 20:58:10 EDT 2025 Fri Jul 11 09:10:47 EDT 2025 Mon Jul 21 05:55:14 EDT 2025 Sat Nov 29 06:17:22 EST 2025 Fri Dec 24 10:58:00 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | Charge noise Excitons Quantum emitter Motional narrowing Spectral diffusion Quantum coherence |
| Language | English |
| License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a331t-b81dc14ec795fb8f78aefd020cb74ca74095decbebc89c58538820a46bd5b5ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-6129-7026 0000-0003-3035-4291 |
| PMID | 34870435 |
| PQID | 2607302613 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03856025v1 proquest_miscellaneous_2607302613 pubmed_primary_34870435 crossref_primary_10_1021_acs_nanolett_1c02898 acs_journals_10_1021_acs_nanolett_1c02898 |
| PublicationCentury | 2000 |
| PublicationDate | 20211222 2021-12-22 2021-Dec-22 |
| PublicationDateYYYYMMDD | 2021-12-22 |
| PublicationDate_xml | – month: 12 year: 2021 text: 20211222 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Nano letters |
| PublicationTitleAlternate | Nano Lett |
| PublicationYear | 2021 |
| Publisher | American Chemical Society |
| Publisher_xml | – name: American Chemical Society |
| References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 Kubo R. A. (ref38/cit38) 1962 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
| References_xml | – ident: ref11/cit11 doi: 10.1038/nnano.2015.79 – ident: ref10/cit10 doi: 10.1038/nnano.2015.60 – ident: ref30/cit30 doi: 10.1103/PhysRevLett.100.073001 – ident: ref6/cit6 doi: 10.1103/PhysRevB.92.115447 – ident: ref34/cit34 doi: 10.1103/PhysRev.150.680 – ident: ref15/cit15 doi: 10.1088/1361-6528/aa542b – ident: ref21/cit21 doi: 10.1038/ncomms2601 – ident: ref33/cit33 doi: 10.1103/PhysRevB.91.115201 – start-page: 23 volume-title: Fluctuation, Relaxation and Resonance in Magnetic Systems year: 1962 ident: ref38/cit38 – ident: ref25/cit25 doi: 10.1103/PhysRev.73.679 – ident: ref31/cit31 doi: 10.1103/PhysRevLett.100.126601 – ident: ref41/cit41 doi: 10.1063/1.5086181 – ident: ref17/cit17 doi: 10.1103/PhysRevB.82.235309 – ident: ref36/cit36 doi: 10.1103/PhysRevLett.108.107401 – ident: ref9/cit9 doi: 10.1038/nphoton.2016.23 – ident: ref14/cit14 doi: 10.1103/PhysRevApplied.15.014036 – ident: ref40/cit40 doi: 10.1103/PhysRevLett.117.167401 – ident: ref8/cit8 doi: 10.1021/nl204402v – ident: ref5/cit5 doi: 10.1038/nphoton.2010.174 – ident: ref23/cit23 doi: 10.1063/1.4901045 – ident: ref27/cit27 doi: 10.1103/PhysRevLett.96.043601 – ident: ref32/cit32 doi: 10.1038/nphys433 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.82.2417 – ident: ref28/cit28 doi: 10.1103/PhysRevLett.77.4792 – ident: ref39/cit39 doi: 10.1103/PhysRevLett.35.1366 – ident: ref20/cit20 doi: 10.1103/PhysRevLett.111.237403 – ident: ref22/cit22 doi: 10.1103/PhysRevLett.108.206401 – ident: ref1/cit1 doi: 10.1126/science.278.5346.2114 – ident: ref19/cit19 doi: 10.1103/PhysRevLett.116.033603 – ident: ref24/cit24 doi: 10.1143/JPSJ.9.316 – ident: ref4/cit4 doi: 10.1103/PhysRevLett.93.217401 – ident: ref3/cit3 doi: 10.1038/349225a0 – ident: ref13/cit13 doi: 10.1364/OPTICA.431262 – ident: ref26/cit26 doi: 10.1109/JQE.1968.1074954 – ident: ref42/cit42 doi: 10.1088/1367-2630/11/9/093032 – ident: ref35/cit35 doi: 10.1103/PhysRevB.64.115208 – ident: ref2/cit2 doi: 10.1038/nphys2688 – ident: ref12/cit12 doi: 10.1021/acsphotonics.6b00736 – ident: ref29/cit29 doi: 10.1103/PhysRevLett.80.3567 – ident: ref37/cit37 doi: 10.1103/PhysRevLett.108.057401 – ident: ref43/cit43 doi: 10.1103/PhysRevB.73.081306 – ident: ref7/cit7 doi: 10.1103/PhysRevB.93.195316 – ident: ref16/cit16 doi: 10.1126/science.aax9406 |
| SSID | ssj0009350 |
| Score | 2.4153 |
| Snippet | Motional narrowing is a phenomenon by which a quantum state can be entangled with a noisy environment and still retain its intrinsic coherence. Using two... |
| SourceID | hal proquest pubmed crossref acs |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 10193 |
| SubjectTerms | Physics |
| Title | Restoring the Coherence of Quantum Emitters through Optically Driven Motional Narrowing Forces |
| URI | http://dx.doi.org/10.1021/acs.nanolett.1c02898 https://www.ncbi.nlm.nih.gov/pubmed/34870435 https://www.proquest.com/docview/2607302613 https://hal.science/hal-03856025 |
| Volume | 21 |
| WOSCitedRecordID | wos000758046000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVABC databaseName: American Chemical Society Journals customDbUrl: eissn: 1530-6992 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009350 issn: 1530-6984 databaseCode: ACS dateStart: 20010101 isFulltext: true titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals providerName: American Chemical Society |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7RwgEOyxu6LMggLhwCSewmzrFiqThAeUs9EdkTR1SCBDVtpf33O3ZTHiuhFbfIsizH4xl_n8czA3DoY-QjD5AUSYUeGTxDdpDTFyYZGiEz7aMrNhH3erLfT67fieK_HvwwOFFYHReqKOk3RscBWs-YbMB8SEjX7ujO6d17kl3uKrKSEhMlSqSYhcp9MYo9kLD6dCA1nuxzyK-wpjtzusvfne0K_KjRJetMt8MqzJliDZY-5Bxch8dbV0uGvhlhP2bDM1zAHytzdjOmdR6_sLOXgcu6yeoqPuzq1V15P_9hv4fWPLLLcnqHyHouiaMdrVsOyeZswEP37P703KuLLHiK82DkaQKsGAiDcdLOtcxjqUyeEYhEHQtUMfG_dmZQG40yQSIXnDC5r0Sks7ZuG8U3oVmUhdkGJiLLVzDONE9ELuIkt3G5ROCMkShU1IIjWp60VpIqdf7vMEht42zN0nrNWuDNpJK-TvNu_Kf_AYnuratNmn3euUhtm_V9RgTtJkEL9meSTUmLrGtEFaYcVymxOjJ1xCZ5C7amIn8bixOn8wlV_vzG9HdgMbSPX4LQC8Nf0BwNx2YXFnAyGlTDPWjEfbnn9u5fJijtIg |
| linkProvider | American Chemical Society |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9wwDLeAIbE9AAO2HR9bQLzsoaNt0q_HE-N0E8fxLfG0KHFT7aTRousd0v57nFwL7AFN462KIiuNY_vnOLYB9n2MfeQBkiCp0COFZ0gPcvrCLEcj0lz76JpNJMNhenOTnc1B1ObC0CJqolS7IP5TdYHgwI6VqqzobybfArQBsnQe3kRkYe3x7h5ePtXa5a4xK8kyeUZZKtqMuReoWLuE9V92af6XfRX5EuR0pqe38spFr8JygzVZd3Y43sOcKdfg3bMKhOvw88J1lqFvRkiQ2WQNl_7HqoKdT2nXp7fs6HbkanCypqcPO71zF-C__7DvY6ss2Uk1u1FkQ1fS0VLrVWPSQBtw3Tu6Oux7TcsFT3EeTDxN8BUDYTDJokKnRZIqU-QEKVEnAlVC3mCUG9RGY5ohuRqcELqvRKzzSEdG8Q-wUFal-QRMxNZ7wSTXPBOFSLLCZumSO2dMikLFHfhK2yMbkamli4aHgbSD7Z7JZs864LXMkXezKhz_mL9HHHycakto97sDacdsJDQmoHcfdGC3ZbAkmbKBElWaalpL8vFI8ZFvyTvwccb5R1qcPDyfMObmfyz_Cyz1r04GcvBjeLwFb0P7LCYIvTDchoXJeGp2YBHvJ6N6_Nkd5AdWlfSg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VihA9tAUK3T5d1AuHlCR2XscVsNqq2y19SZyw7IkjkCBZbXaR-u87481SekAV6i2yrJHj8Tw-j2cG4H2IaYgyQhIkEwek8BzpQUlfWJToVF7aEH2ziWw8zk9Pi5Nbrb5oES1Ran0Qn6V6UlZdhYHogMdrUzf0R7MPEXKQLF-BhwnZdD7i_cPvf-rtSt-cleSZ0FGRq2XW3B1U2DZh-5dtWjnnl5F3uZ3e_Aye_MfCn8LjzucU_cUh2YQHrt6CR7cqEW7D2TffYYa-BXmEgpM2fBqgaCrxdU67P78Sx1cXvhan6Hr7iC8TfxF--UscTVlpis_N4mZRjH1pR6Y2aKakiZ7Bz8Hxj8Nh0LVeCIyU0Syw5MZipBxmRVLZvMpy46qSXEu0mUKTESpMSofWWcwLJMghyVMPjUptmdjEGbkDq3VTu-cgVMooBrPSykJVKisqztYlWOdcjsqkPdin7dGd6LTaR8XjSPPgcs90t2c9CJYM0pNFNY5_zN8jLt5M5VLaw_5I8xhHRFNy-K6jHrxbMlmTbHHAxNSumbeasB4pQMKYsge7C-7f0JKE9ELyNV_cY_lvYf3kaKBHH8efXsJGzK9jojiI41ewOpvO3WtYw-vZRTt948_ybyYu9xo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+the+Coherence+of+Quantum+Emitters+through+Optically+Driven+Motional+Narrowing+Forces&rft.jtitle=Nano+letters&rft.au=Pont%2C+Mathias&rft.au=Phaneuf-L%27Heureux%2C+Anne-Laurence&rft.au=Andr%C3%A9%2C+R%C3%A9gis&rft.au=Francoeur%2C+S%C3%A9bastien&rft.date=2021-12-22&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=21&rft.issue=24&rft.spage=10193&rft_id=info:doi/10.1021%2Facs.nanolett.1c02898&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |